Geochemical Characteristics and Tectonic Implications of Nayixiong Formation Basalts in Eastern Qiangtang Basin, Tibet
-
摘要: 羌塘盆地东部那益雄组玄武岩作为裂谷演化最后阶段的喷发产物,其成岩年龄和地球化学特征为裂谷的关闭时间和二叠纪构造演化提供了重要约束.在剖面地质调查基础上,对那益雄组玄武岩进行了LA-ICP-MS锆石U-Pb测年及全岩分析测试,结果显示:那益雄组玄武岩锆石U-Pb年龄为257.2±2.9 Ma,形成于晚二叠世;该玄武岩属于大陆拉斑玄武岩系列,轻微富集Ta元素而轻微亏损Nb元素,是软流圈地幔物质上涌与岩石圈地幔相互作用的产物,形成于裂谷关闭碰撞后的伸展背景.羌塘地块东部二叠纪玄武岩的地球化学数据显示,早二叠世-晚二叠世玄武岩具有由OIB型玄武岩向火山弧型玄武岩过渡的演化趋势,表明羌塘地块东部板内裂谷在早二叠世打开,中二叠世进入裂谷演化阶段,于晚二叠世关闭.Abstract: The Nayixiong Formation basalts in the eastern Qiangtang basin were the eruption products of the last stage of rift evolution, and their diagenetic age and geochemical characteristics provided important constraints for the closure time of the rift and the tectonic evolution of the Permian. Based on the profile geological survey, LA-ICP-MS zircon U-Pb dating and whole rock analysis of the Nayixiong Formation basalts were carried out in this study. Nayixiong Formation basalt samples yield the concordant age with a weighted mean 206Pb/238U age of 257.2±2.9 Ma. The geochemical characteristics of the basalts show a tholeiitic basalt affinity, with slight enrichment of Ta and slight negative Nb anomalies, as well as exhibiting no Eu-anomalies. The Nayixiong Formation basalts were likely resulted from the interaction between the upwelling asthenosphere and the lithospheric mantle that formed by the predated underplating. we propose that the basalts formed in an extensional setting after the closure of the Permian rift. All of the Permian basalts geochemical data show a transitional trend that the Early Permian-Late Permian basalts gradually evolved from OIB continental basalt to volcanic arc basalt, demonstating that the Permian rift undergoing the opening, rifting and closing from Early Permian to Late Permian in eastern Qiangtang terrane. The Nayixiong Formation basalts formed in an extensional setting after the amalgamation of intra-plate rift, confirming that the Qiangtang terrane was a tectonic transitional phase experiencing extension and closure of intra-plate rift (limited ocean) in the Late Permian.
-
Key words:
- Qiangtang basin /
- Nayixiong Formation /
- basalts /
- U-Pb dating /
- tectonic implications /
- geochemistry /
- geochronology
-
图 1 羌塘盆地构造位置及二叠纪火山岩分布(a),研究区地质简图及采样位置(b)和周琼玛鲁二叠系柱状图(c)
TR.塔里木盆地;QD.柴达木盆地;AKMS.阿尼玛卿-昆仑-木孜塔格缝合带;HJS.可可西里-金沙江缝合带;SP.松潘甘孜复理石杂岩;HXP.可可西里山前褶皱带;QT.羌塘盆地;BNS.班公湖-怒江缝合带;LS.拉萨地体;YTS.雅鲁藏布缝合带;HMLY.喜马拉雅地体;图1中年龄数据见表 1
Fig. 1. Tectonic outline of the Qiangtang basin and the distribution of the Permian volcanic rocks (a), simplified geological map of the study area and locations of the samples (b), the Permian stratigraphic column of Zhouqiongmalu (c)
图 5 那益雄组(a,b)、诺日巴尕日保组(c,d)、尕笛考组(e,f)玄武岩稀土元素配分模式和微量元素蛛网图
诺日巴尕日保组、尕笛考组玄武岩数据引自1:25万直根尕卡幅;OIB型玄武岩数据引自Sun and McDonough(1989)
Fig. 5. Chondrite-normalized REE patterns and PM-normalized trace element spider diagrams for Nayixiong Formation (a, b), Nuoribagaribao Formation (c, d) and Gadikao Formation (e, f) basalts
图 6 二叠纪玄武岩构造背景判别图解
图a据Meschede(1986),图b据Pearce and Norry (1979),图c据Cabanis and Lecolle (1989),图d据Shervais (1982);A1.板内碱性玄武岩,A2.板内碱性玄武岩和板内拉斑玄武岩,B.富集型洋中脊玄武岩,C.板内拉斑玄武岩和火山弧型玄武岩,D.亏损型洋中脊玄武岩和火山弧型玄武岩;1A.钙碱性玄武岩,1B.过渡型,1C.火山弧拉斑玄武岩,2A.大陆玄武岩,2B.弧后盆地玄武岩, 3A.大陆裂谷碱性玄武岩,3B.富集型洋中脊玄武岩,3C.富集型洋中脊玄武岩,3D.正常洋中脊玄武岩;WPB.板内玄武岩,MORB.洋中脊玄武岩,IAB.岛弧玄武岩,OIB.洋岛玄武岩,CFB.大陆泛流玄武岩,IAT.岛弧拉斑玄武岩,AB.钙碱性玄武岩
Fig. 6. The discrimination diagrams of Permian basalts
表 1 羌塘盆地二叠纪基性岩
Table 1. Summary of the Permian basic rocks from Qiangtang basin
样品 岩性 测试方法 年龄(Ma) 纬度(N), 经度(E) 数据来源 Qsm01 辉绿岩 Sm-Nd 299 戈木日东侧 李才(2004) GS26-1 玄武岩 SHRIMP 287 莫云一带 李善平(2008) Ge06 辉绿岩 SHRIMP 284 33°28′12″,85°19′24″ 翟庆国(2009) E0812 辉绿岩 SHRIMP 279 33°18′29″,86°01′38″ Zhai et al.(2013) Ge0815 辉长岩 SHRIMP 282 33°10′39″,85°15′39″ Zhai et al.(2013) LG0801 辉绿岩 SHRIMP 285 33°51′22″,84°01′06″ Zhai et al.(2013) LG0802 辉绿岩 SHRIMP 285 33°41′35″,84°03′55″ Zhai et al.(2013) T41 辉绿岩 LA-ICP-MS 291 33°59′07″,84°14′03″ Xu et al.(2013) T51 辉绿岩 LA-ICP-MS 292 33°55′10″,84°20′13″ Xu et al.(2013) L07 辉绿岩 LA-ICP-MS 290 34°27′57″,84°58′38″ Xu et al.(2016) L26 辉绿岩 LA-ICP-MS 290 34°03′55″,84°56′03″ Xu et al.(2016) QZ5-X1 玄武岩 LA-ICP-MS 267 角木茶卡 未发表 15R3 玄武岩 LA-ICP-MS 257 34°53′48″,91°51′21″ 本文 表 2 那益雄组玄武岩锆石LA-ICP-MS U-Pb同位素分析结果
Table 2. Zircon LA-ICP-MS U-Pb data of the Nayixiong Formation basalt
样品号 含量(10-6) Th/U 同位素比值 同位素年龄(Ma) Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 15R3-01 30 517 1 423 348 898 0.004 1 0.811 4 0.028 8 0.097 5 0.001 5 617 72.2 603 16.1 600 8.7 15R3-02 312 592 119 199 40 665 2.931 3 10.795 4 0.261 0 0.480 3 0.005 6 2 483 39.2 2 506 22.5 2 528 24.3 15R3-03 105 123 268 145 172 334 1.556 0 0.582 9 0.022 8 0.066 0 0.000 8 746 83.3 466 14.6 412 4.6 15R3-04 162 839 98 849 171 085 0.577 8 3.008 7 0.064 5 0.245 3 0.002 7 1 398 38.6 1 410 16.4 1414 14.2 15R3-05 51 932 199 447 251 198 0.794 0 0.298 3 0.022 0 0.041 1 0.001 0 343 181 265 17.2 259 6.5 15R3-06 52 714 122 710 285 648 0.429 6 0.423 2 0.023 3 0.056 7 0.001 0 398 133 358 16.6 355 5.8 15R3-07 64 794 212 195 225 994 0.938 9 0.330 2 0.019 6 0.045 4 0.000 9 328 153 290 14.9 286 5.3 15R3-08 94 225 216 599 208 163 1.040 5 0.535 7 0.018 8 0.066 5 0.000 8 543 75.9 436 12.4 415 4.8 15R3-09 92 754 187 918 215 763 0.870 9 0.578 2 0.026 3 0.071 4 0.001 2 546 90.7 463 16.9 444 7.5 15R3-10 91 965 193 280 214 299 0.901 9 0.588 8 0.028 6 0.070 7 0.001 0 633 102 470 18.3 440 5.9 15R3-11 54 561 177 841 260 271 0.683 3 0.312 8 0.018 5 0.040 3 0.000 8 487 150 276 14.3 255 5.1 15R3-12 77 612 307 022 180 672 1.699 3 0.315 9 0.021 4 0.040 5 0.001 0 528 174 279 16.5 256 6.0 15R3-13 222 497 67 700 105 531 0.641 5 11.275 5 0.226 9 0.474 5 0.005 3 2 576 30.7 2 546 18.8 2 503 23.2 15R3-14 69 032 160 332 249 020 0.643 9 0.469 4 0.020 3 0.060 5 0.001 0 476 89.8 391 14.0 379 5.9 15R3-15 64 393 159 206 255 099 0.624 1 0.396 0 0.018 7 0.054 6 0.000 8 350 114 339 13.6 343 5.1 15R3-16 56 743 207 668 244 209 0.850 4 0.304 1 0.016 4 0.040 7 0.000 6 389 119 270 12.8 257 3.6 15R3-17 100 200 234 055 190 755 1.227 0 0.486 2 0.017 6 0.066 0 0.000 8 339 79.6 402 12.1 412 4.7 15R3-18 120 963 285 644 154 447 1.849 5 0.487 9 0.017 8 0.065 4 0.000 9 372 75.0 403 12.2 409 5.4 15R3-19 90 205 352 551 151 526 2.326 7 0.267 8 0.012 8 0.040 7 0.000 8 200 -71 241 10.3 257 5.0 15R3-20 96 106 230 617 194 137 1.187 9 0.525 2 0.019 5 0.063 4 0.000 8 591 106 429 13.0 396 5.1 15R3-21 77 070 199 086 216 974 0.917 6 0.485 8 0.034 6 0.056 9 0.001 2 728 156 402 23.6 357 7.1 15R3-22 102 458 232 924 184 537 1.262 2 0.552 0 0.022 8 0.066 7 0.001 1 620 92.6 446 15.0 416 6.5 15R3-23 119 009 275 270 153 774 1.790 1 0.483 1 0.019 7 0.064 9 0.001 0 383 94.4 400 13.5 405 6.3 15R3-24 214 522 163 165 95 427 1.709 8 2.205 6 0.079 1 0.207 5 0.003 1 1 124 72.2 1 183 25.1 1 216 16.7 15R3-25 273 138 64 528 67 663 0.953 7 12.184 8 0.303 3 0.520 2 0.007 2 2 550 39 2 619 23.4 2 700 30.4 15R3-26 101 858 112 995 227 229 0.497 3 0.680 5 0.025 8 0.083 8 0.001 3 565 81 527 15.6 519 7.7 15R3-27 64 237 96 893 284 968 0.340 0 0.447 1 0.020 5 0.059 0 0.001 0 398 98.1 375 14.4 369 6.2 15R3-28 229 639 119 379 96 674 1.234 9 3.438 7 0.081 1 0.256 9 0.004 0 1 569 42.9 1 513 18.6 1 474 20.6 15R3-29 179 107 79 920 99 729 0.801 4 3.313 1 0.085 3 0.261 4 0.003 9 1454 43 1484 20.1 1497 20.1 15R3-30 145 833 266 262 139 347 1.910 8 0.619 1 0.020 6 0.069 7 0.001 0 767 72 489 12.9 434 6.1 15R3-31 225 667 119 913 111 426 1.076 2 2.958 7 0.080 6 0.240 2 0.004 0 1 411 50 1 397 20.7 1 388 21.0 15R3-32 81 637 237 231 212 821 1.114 7 0.272 6 0.014 1 0.040 8 0.000 7 109 124.1 245 11.3 258 4.6 15R3-33 183 393 1 922 0.204 3 0.402 9 0.011 9 0.056 5 0.000 6 254 64.8 344 8.6 354 3.4 15R3-34 239 614 1 396 0.439 7 0.483 0 0.014 1 0.061 9 0.000 6 476 69 400 9.6 387 3.6 15R3-35 111 370 384 0.965 0 0.420 6 0.029 5 0.056 5 0.000 8 398 159 356 21.1 354 4.9 15R3-36 252 703 824 0.853 6 0.468 0 0.020 9 0.066 7 0.000 8 235 106 390 14.5 416 4.8 15R3-37 141 397 657 0.603 8 0.430 9 0.026 2 0.056 4 0.001 0 457 136 364 18.6 354 6.2 15R3-38 740 1 369 2 561 0.534 4 0.714 1 0.018 3 0.091 9 0.000 9 454 19.4 547 10.9 567 5.5 15R3-39 216 293 1 207 0.242 7 0.569 4 0.019 3 0.067 1 0.000 6 657 72.2 458 12.5 419 3.9 15R3-40 328 1 004 1 780 0.564 2 0.400 7 0.014 0 0.056 5 0.000 7 257 78 342 10.1 354 4.3 15R3-41 281 1 182 1 437 0.822 5 0.287 7 0.014 4 0.040 5 0.000 5 276 110 257 11.4 256 3.4 15R3-42 251 705 1 736 0.406 0 0.395 5 0.013 2 0.056 6 0.000 6 217 74 338 9.6 355 3.5 15R3-43 127 374 522 0.717 8 0.417 7 0.023 3 0.057 0 0.000 7 367 121.3 354 16.7 357 4.5 15R3-44 775 483 663 0.728 7 3.800 5 0.086 0 0.279 6 0.002 7 1591 39.7 1593 18.2 1590 13.7 15R3-45 3 729 3 251 5 767 0.563 8 2.588 1 0.047 9 0.197 6 0.001 3 1 517 33 1 297 13.6 1 162 6.9 15R3-46 324 918 1 312 0.699 6 0.455 1 0.017 6 0.061 3 0.000 8 346 84 381 12.3 384 4.8 15R3-47 189 455 698 0.651 3 0.531 0 0.021 2 0.068 9 0.000 9 465 91 433 14.1 429 5.5 15R3-48 210 658 1 012 0.649 6 0.402 8 0.014 4 0.057 1 0.000 7 243 79 344 10.4 358 4.2 15R3-49 95 356 726 0.490 4 0.278 3 0.015 8 0.041 0 0.000 7 176 135.2 249 12.5 259 4.1 15R3-50 128 589 501 1.175 0 0.304 4 0.020 5 0.040 8 0.000 7 394 157.4 270 15.9 258 4.3 15R3-51 3 214 1 401 3 179 0.440 7 8.892 1 0.168 5 0.409 3 0.003 6 2 417 31 2 327 17.4 2 212 16.6 15R3-52 171 492 632 0.777 7 0.431 2 0.020 3 0.061 5 0.000 7 235 111 364 14.4 385 4.4 15R3-53 430 1 204 2 137 0.563 4 0.481 4 0.012 1 0.063 3 0.000 6 409 57 399 8.3 396 3.9 15R3-54 401 276 357 0.771 4 3.841 3 0.107 2 0.282 1 0.003 3 1 589 51.4 1 601 22.5 1 602 16.6 15R3-55 1 011 332 494 0.673 3 13.610 3 0.307 1 0.533 5 0.004 9 2 684 37.0 2 723 21.4 2 756 20.6 表 3 那益雄组玄武岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Major elements (%) and trace elements (10-6) data of the Nayixong Formation basalts
样品号 15R9-H31 15R9-H32 15R9-H33 15R9-H34 15R9-H35 15R9-H36 15R9-H37 15R9-H38 SiO2 47.43 47.23 42.15 42.90 42.00 42.51 43.47 44.92 TiO2 1.57 1.57 1.30 1.45 1.45 1.35 1.45 1.24 Al2O3 13.81 13.56 11.14 12.89 12.51 11.55 12.98 10.60 Fe2O3 3.59 3.69 4.90 3.65 0.85 4.19 3.79 7.66 FeO 8.82 8.73 5.73 7.27 9.56 6.16 7.29 2.08 MnO 0.19 0.19 0.14 0.19 0.17 0.16 0.17 0.14 MgO 8.07 8.11 6.78 7.39 7.38 6.86 7.44 2.25 CaO 8.88 8.95 11.94 10.40 11.02 11.91 9.58 14.47 Na2O 2.54 2.58 3.18 2.73 3.03 2.76 3.04 4.33 K2O 1.42 1.45 0.32 1.51 0.84 0.90 1.11 0.64 P2O5 0.12 0.12 0.10 0.11 0.12 0.10 0.11 0.12 LOI 2.63 2.90 11.69 8.77 10.10 10.91 8.81 11.31 Total 99.07 99.08 99.37 99.26 99.03 99.37 99.24 99.75 La 7.51 7.99 7.18 6.87 8.05 7.50 7.75 9.49 Ce 20.00 19.80 17.00 17.10 19.60 17.50 18.60 22.10 Pr 2.85 2.84 2.63 2.48 2.81 2.54 3.05 2.81 Nd 13.70 13.70 12.40 12.50 14.20 13.90 13.80 13.20 Sm 3.65 3.79 3.20 3.49 3.76 3.67 3.46 3.61 Eu 1.34 1.37 1.34 1.26 1.37 1.38 1.42 1.28 Gd 4.08 4.42 3.63 3.67 4.20 3.96 3.92 3.75 Tb 0.78 0.82 0.68 0.75 0.82 0.72 0.78 0.72 Dy 4.19 4.50 3.54 3.89 4.30 4.07 4.05 3.79 Ho 0.82 0.82 0.72 0.74 0.80 0.73 0.79 0.70 Er 2.06 2.12 1.86 1.94 2.05 1.98 2.09 1.92 Tm 0.30 0.32 0.27 0.28 0.30 0.28 0.31 0.28 Yb 1.80 1.90 1.68 1.75 1.81 1.76 1.82 1.66 Lu 0.26 0.28 0.23 0.26 0.27 0.25 0.25 0.23 Y 20.00 20.70 17.90 19.10 21.50 20.00 19.90 18.10 Sr 524.00 515.00 278.00 379.00 447.00 392.00 426.00 303.00 Rb 48.70 49.90 11.50 49.40 31.10 32.00 42.30 34.40 Ba 395.00 396.00 48.80 389.00 179.00 145.00 234.00 55.50 Th 0.98 0.96 0.83 0.77 0.91 0.75 0.86 0.99 Ta 0.38 0.43 0.36 0.38 0.43 0.35 0.39 0.36 Nb 5.27 5.63 4.81 4.79 5.55 4.34 5.26 5.01 Zr 95.40 85.00 78.90 85.80 90.70 75.70 87.80 76.80 Hf 2.74 2.73 2.53 2.58 2.80 2.06 2.46 2.12 V 335.00 354.00 293.00 325.00 338.00 295.00 320.00 291.00 Cr 360.00 408.00 275.00 338.00 333.00 281.00 352.00 292.00 U 0.27 0.30 0.21 0.20 0.25 0.18 0.25 0.30 Ni 103.00 105.00 90.10 94.00 98.30 84.70 101.00 98.20 (La/Yb)N 2.99 3.02 3.07 2.82 3.19 3.06 3.05 4.10 δEu 1.06 1.02 1.20 1.07 1.05 1.10 1.17 1.05 -
[1] Ali, J.R., Cheung, H.M.C., Aitchison., J.C., et al., 2013.Palaeomagnetic Re-Investigation of Early Permian Rift Basalts from the Baoshan Block, SW China:Constraints on the Site-of-Origin of the Gondwana-Derived Eastern Cimmerian Terranes.Geophysical Journal International, 193(2):650-663. https://doi.org/10.1093/gji/ggt012 [2] Bai, Y.S., Li, L., Niu, Z.J., et al., 2004.Features and Tectonic Setting of Late Permian Nayixiong Fm.Volcanic Rocks in the Source Area of the Yangtze River.Geology & Mineral Resources of South China, (1):7-10 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hnkc200401001.htm [3] Bian, Q.T., Gao, S.L., Li, D.H., et al., 2001.A Study of the Kunlun-Qilian-Qinling Suture System.Acta Geologica Sinica (English Edition), 75(4):364-374. https://doi.org/10.1111/j.1755-6724.2001.tb00054.x [4] Bureau of Geology and Mineral Resources of Qinghai Province, 1991.Regional Geology of Qinghai Province. Geological Publishing House, Beijing, 115-137 (in Chinese). [5] Cabanis, B., Lecolle, M., 1989.Le Diagramme La/10-Y/15-Nb/8:Unoutil Pour la Discrimination des Series Volcaniques et la Mise en Evidence des Processus de Melange et/ou de Contamination Crustale.Comptes Rendus del' Académie des Sciences, 309(20):2023-2029. http://ci.nii.ac.jp/naid/80004995562 [6] Chen, H.L., Yang, S.F., Dong, C.W., et al., 1997.Confirmation of Permian Basalt Zone in Tarim Basin and Its Tectonic Significance.Geochemica, 26(6):77-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199706008.htm [7] Dai, Y.X., Zhang, X.Y., Yan, K., et al., 2017.Zircon U-Pb Chronology, Geochemical Characteristics of the Early Permian Basalt in the Keping Area, Xinjiang and Their Geological Significance.Geological Science and Technology Significance, 36(1):1-13 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201701001.htm [8] Deng, W.M., Yin, J.X., Guo, Z.P., 1996.Basic-Ultrabasic and Volcanic Rocks in Chabu-Shuanghu Area of Northern Xizang (Tibet), China.Science China Earth Science, 26(4):296-301 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg199604002&dbname=CJFD&dbcode=CJFQ [9] Duan, Q.F., Wang, J.X., Bai, Y.S., et al., 2010.Geochemistry and Mantle Source Characteristics of the Permian Basalts in Moyun Area, Eastern Tanggula Range.Acta Petrologica et Mineralogica, 29(2):125-138(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-yskw201002002.htm [10] Duan, Q.F., Yang, Z.Q., Wang, J.X., et al., 2006.Geochemical Characteristics of Permian High-Ti Basalt in the Eastern Part of the Northern Qiangtang Basin, Qinghai-Tibet Plateau.Geological Bulletin of China, 25(1):156-162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2006Z1024.htm [11] Fu, X.G., Wang, J., Tan, F.W., et al., 2016.New Insights about Petroleum Geology and Exploration of Qiangtang Basin, Northern Tibet, China:A Model for Low-Degree Exploration.Marine and Petroleum Geology, 77:323-340. https://doi.org/10.1016/j.marpetgeo.2016.06.015 [12] Garzanti, E., Le Fort, P., Sciunnach, D., 1999.First Report of Lower Permian Basalts in South Tibet:Tholeiitic Magmatism during Break-Up and Incipient Opening of Neotethys.Journal of Asian Earth Sciences, 17(4):533-546. https://doi.org/10.1016/s1367-9120(99)00008-5 [13] Li, C., Cheng, L.R., Hu, K., et al., 1995.Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu, Tibet.Geological Publishing House, Beijing (in Chinese). [14] Li, C., He, Z.H., Li, H.M., 2004.U-Pb and Sm-Nd Dating of Mafic Dike Swarms in Southern Qiangtang, Qinghai-Tibet Pleatau and Its Tectonic Significance.Geology in China, 31(4):384-389(in Chinese with English abstract). [15] Li, L., Bai, Y.S., Ma, L.Y., et al., 2009.Geochemical Characteristics and Tectonic Significance of Qixianian Volcanic Rocks in Zhigengaka Area, Zhiduo County, Eastern Qiangtang.Geology in China, 36(6):1289-1301(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200906012.htm [16] Li, S.P., Ma, H.Z., Shen, C.X., et al., 2008.Geochemical Characteristics and Tectonic of Volcanic Rocks of the Permian Gadikao Formation in the Jiezha Area, Northern Qiangtang, Qinghai-Tibet Plateau.Northwestern Geology, 41(2):31-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200802005.htm [17] Li, Y., Li, Y.L., Wang, M., et al., 2006.Tanggula Mountains.the Middle of the Geological Features and Resources and the Environment.Geological Publishing House, Beijing, 22-44 (in Chinese). [18] Liao, S.Y., Wang, D.B., Tang, Y., et al., 2015.Late Paleozoic Woniusi Basaltic Province from Sibumasu Terrane:Implications for the Breakup of Eastern Gondwana's Northern Margin.Geological Society of America Bulletin, 127(9-10):1313-1330. https://doi.org/10.1130/b31210.1 [19] Liu, H., Wang, B.D., Chen, L., et al., 2015.Early Carboniferous Subduction of Lungmu Co-Shuanghu Paleo-Tethys Ocean:Evidence from Island Arc Volcanic Rocks in Riwanchaka, Central Qiangtang.Geological Bulletin of China, 34(2-3):274-282 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/258125 [20] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [21] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [22] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 [23] Lu, Y.F., 2004.Geokit-A Geocbmaical Toolkit for Microsoft Excel.Geochimica, 33(5):459-464 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200405003.htm [24] Ludwig, K. R., 2012. Isoplot, rev. 3. 75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [25] Lassiter, J. C., Depaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington, D. C., 335-355. https: //doi. org/10.1029/gm100p0335 [26] Ma, L.Y., Niu, Z.J., Bai, Y.S., et al., 2007.Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance.Earth Science, 32(1):22-28(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200701002.htm [27] Meschede, M.A., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [28] Ormerod, D.S., Hawkesworth, C.J., Rogers, N.W., et al., 1988.Tectonic and Magmatic Transitions in the Western Great Basin, USA.Nature, 333:349-353. https://doi.org/10.1038/333349a0 [29] Niu, Z.J., Wu, J., Duan, Q.F., et al., 2011.Permian Tectonic Setting of Southern Qinghai and Its Tectonic Evolution.Geological Review, 57(5):609-622 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201105002.htm [30] Pan, S. J., 2011. Sedimentary Characteristics and Significance of Kaixinling Group in Western Qamdo Block, Xi Zang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [31] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 [32] Rudnick, R.L., Fountain, D.M., 1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective.Reviews of Geophysics, 33(3):267-309. https://doi.org/10.1029/95rg01302 [33] Shen, S.Y., Feng, Q.L., Liu, B.P., et al., 2002.Study on Ocean Ridge, Ocean Island Volcanic Rocks of Changning-Menglian Belt.Geological Science & Technology Information, 21(3):13-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200203002.htm [34] Shervais, J.W., 1982.Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas.Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0 [35] Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.077 [36] Stojanovic, D., Aitchison, J.C., Ali, J.R., et al., 2016.Paleomagnetic Investigation of the Early Permian Panjal Traps of NW India:Regional Tectonic Implications.Journal of Asian Earth Sciences, 115(9-11):114-123. https://doi.org/10.1016/j.jseaes.2015.09.028 [37] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in Ocean Basins.Geological Society, London, Special Publications, 42:313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [38] Tan, F.W., Zhang, R.H., Wang, J., et al., 2016.Discussion on Basement Structures of the Late Triassic-Early Cretaceous Qiangtang Rift Basin in Tibet, China.Journal of Chengdu University of Technology (Science & Technology Edition), 43(5):513-521 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-CDLG201605001.htm [39] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Boston, 196-197. [40] Turner, S., Hawkesworth, C., 1995.The Nature of the Sub-Continental Mantle:Constraints from the Major-Element Composition of Continental Flood Basalts.Chemical Geology, 120(3-4):295-314. https://doi.org/10.1016/0009-2541(94)00143-v [41] Wang, C.S., Hu, C.Z., Wu, R.Z., et al., 1987.Significance of the Discovery of Chabu-Chasang Rift in Northern Xizang.Journal of Chengdu College of Geology, 14(2):36-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG198702003.htm [42] Wang, J., Ding, J., Wang, C.S., et al., 2009.Investigation and Evaluation of the Qinghai-Tibet Plateau Oil and Gas Resources Strategy Constituency.Geological Publishing House, Beijing (in Chinese). [43] Wang, J., Tan, F.W., Li, Y.L., et al., 2004.The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai-Xizang Plateau.Geological Publishing House, Beijing (in Chinese). [44] Wang, L.Q., Pan, G.T., Li, C., et al., 2008.SHRIMP U-Pb Zircon Dating of Eoaleozoic Cumulate in Guoganjianian Mt.from Central Qiangtang Area of Northern Tibet-Considering the Evolvement of Proto-and Paleo-Tethys.Geological Bulletin of China, 27(12):2045-2056(in Chinese with English abstract). [45] Wang, Q., Xu S.C., Wei, R.Z., et al., 2006.Characteristics and Tectonic Setting of Volcanic Rocks of the Permian Zhanjin Formation in the Tuoheping Co Area, Northern Qiangtang, Qinghai-Tibet Plateau.Geological Bulletin of China, 25(1-2):146-155 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2006Z1023.htm [46] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman & Hall, London. [47] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007.The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method.Acta Petrologica et Mineralogica, 26(1):77-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200701010.htm [48] Xu, W., Dong, Y.S., Zhang, X.Z., et al., 2016.Petrogenesis of High-Ti Mafic Dykes from Southern Qiangtang, Tibet:Implications for a ca.290 Ma Large Igneous Province Related to the Early Permian Rifting of Gondwana.Gondwana Reseach, 36:410-422. https://doi.org/10.1016/j.gr.2015.07.016 [49] Xu, X.S., Qiu, J.S., 2010.Igneous Petrology.Science Press, Beijing, 91-92 (in Chinese). [50] Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001.Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China.Lithos, 58(3-4):145-168. https://doi.org/10.1016/s0024-4937(01)00055-x [51] Ye, Q., Jiang, H.S., 2016.Conodont Biostratigraphy and a Negative Excursion in Carbonate Carbon Isotopes across the Wuchiapingian-Changhsingian Boundary at the Dawoling Section, Hunan Province.Earth Science, 41(11):1883-1892 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.130 [52] Zhai, Q.G., Jahn, B.M., Su, L., et al., 2013.SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications.Lithos, 174:28-43. https://doi.org/10.1016/j.lithos.2012.10.018 [53] Zhai, Q.G., Li, C., Wang, J., et al., 2009.SHRIMP U-Pb Dating and Hf Isotopic Analyses of Zircons from the Mafic Dyke Swarms in Central Qiangtang Area, Northern Tibet.Geological Bulletin of China, 54(21):3331-3337 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200913023&dbname=CJFD&dbcode=CJFQ [54] Zhang, H.R., Hou, Z.Q., Yang, T.N., et al., 2010.Subduction-Related Quartz Syenite Porphyries in the Eastern Qiangtang Terrane, Qinghai-Xizang Plateau:Constraints from Geochemical Analyses.Geological Review, 56(3):403-412 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp201003013.htm [55] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.016 [56] Zhang, Y.C., Shi, G.R., Shen, S.Z., 2013.A Review of Permian Stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau.Gondwana Research, 24(1):55-76. https://doi.org/10.1016/j.gr.2012.06.010 [57] Zhang, Y.X., Zhang, K.J., 2017.Early Permian Qiangtang Flood Basalts, Northern Tibet, China:A Mantle Plume that Disintegrated Northern Gondwana? Gondwana Research, 44:96-108. https://doi.org/10.1016/j.gr.2016.10.019 [58] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010.Presence of Permian Extension-and Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications.Geological Society of America Bulletin, 122(7-8):979-993. https://doi.org/10.1130/b30062.1 [59] Zhu, T.X., Pan, G.T., Feng, X.T., et al., 2002.Discovery and Tectonic Significance of Permian Basic Volcanic Rocks in the Selong Area on the Northern Slope of the Himalayas, Southern Tibet.Geological Bulletin of China, 21(11):717-722(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200211003.htm [60] 白云山, 李莉, 牛志军, 等, 2004.长江源雀莫错一带上二叠统那益雄组火山岩特征及其构造环境.华南地质与矿产, (1):7-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hnkc200401001&dbname=CJFD&dbcode=CJFQ [61] 陈汉林, 杨树锋, 董传万, 等, 1997.塔里木盆地二叠纪基性岩带的确定及大地构造意义.地球化学, 26(6):77-87. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx199706008&dbname=CJFD&dbcode=CJFQ [62] 代友旭, 张新勇, 阎琨, 等, 2017.新疆柯坪地区早二叠世玄武岩年代学、地球化学特征及其地质意义.地质科技情报, 36(1):1-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201701001&dbname=CJFD&dbcode=CJFQ [63] 邓万明, 尹集祥, 呙中平, 1996.羌塘茶布-双湖地区基性超基性岩和火山岩研究.中国科学:地球科学, 26(4):296-301. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk199604001&dbname=CJFD&dbcode=CJFQ [64] 段其发, 杨振强, 王建雄, 等, 2006.青藏高原北羌塘盆地东部二叠纪高Ti玄武岩的地球化学特征.地质通报, 25(1):156-162. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd2006z1024&dbname=CJFD&dbcode=CJFQ [65] 段其发, 王建雄, 白云山, 等, 2010.唐古拉山东段莫云地区二叠纪玄武岩地球化学特征及源区性质.岩石矿物学杂志, 29(2):125-138. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yskw201002002&dbname=CJFD&dbcode=CJFQ [66] 李才, 程立人, 胡克, 等, 1995.西藏龙木错-双湖古特提斯缝合带研究.北京:地质出版社. [67] 李才, 和钟铧, 李惠民, 2004.青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构造意义.中国地质, 31(4):384-389. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200404006&dbname=CJFD&dbcode=CJFQ [68] 李莉, 白云山, 马丽艳, 等, 2009.羌塘东部治多县直根尕卡一带二叠纪栖霞期火山岩地球化学特征及其构造意义.中国地质, 36(6):1289-1301. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200906012&dbname=CJFD&dbcode=CJFQ [69] 李善平, 马海州, 沈存祥, 等, 2008.青藏高原北羌塘盆地结扎乡一带二叠系尕笛考组火山岩的特征及构造环境.西北地质, 41(2):31-40. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xbdi200802005&dbname=CJFD&dbcode=CJFQ [70] 李勇, 李亚林, 王谋, 等, 2006.唐古拉山中段地质特征与资源环境.北京:地质出版社, 22-44. [71] 刘函, 王保弟, 陈莉, 等, 2015.龙木错-双湖古特提斯洋俯冲记录——羌塘中部日湾茶卡早石炭世岛弧火山岩.地质通报, 34(2-3):274-282. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd2015z1005&dbname=CJFD&dbcode=CJFQ [72] 路远发, 2004.Gekit——一个用VBA构建的地球化学工具软件包.地球化学, 33(5):459-464. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200405003&dbname=CJFD&dbcode=CJFQ [73] 马丽艳, 牛志军, 白云山, 等, 2007.青海南部二叠纪火山岩Sr、Nd、Pb同位素特征及地质意义.地球科学, 32(1):22-28. http://www.earth-science.net/WebPage/Article.aspx?id=1658 [74] 牛志军, 吴俊, 段其发, 等, 2011.青海南部二叠纪大地构造背景及其构造演化研究.地质论评, 57(5):609-622. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp201105002&dbname=CJFD&dbcode=CJFQ [75] 潘术娟, 2011. 昌都地块西段二叠纪开心岭群沉积特征及其构造意义(硕士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011078109.htm [76] 青海省地质矿产局, 1991.青海省区域地质志.北京:地质出版社, 115-137. [77] 沈上越, 冯庆来, 刘本培, 等, 2002.昌宁-孟连带洋脊、洋岛型火山岩研究.地质科技情报, 21(3):13-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq200203002&dbname=CJFD&dbcode=CJFQ [78] 宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6):901-918. https://doi.org/10.3799/dqkx.2016.077 [79] 谭富文, 张润合, 王剑, 等, 2016.羌塘晚三叠世-早白垩世裂陷盆地基底构造.成都理工大学学报(自然科学版), 43(5):513-521. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cdlg201605001&dbname=CJFD&dbcode=CJFQ [80] 王成善, 胡承祖, 吴瑞忠, 等, 1987.西藏北部查桑-茶布裂谷的发现及其地质意义.成都地质学院学报, 14(2):36-49. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cdlg198702003&dbname=CJFD&dbcode=CJFQ [81] 王剑, 丁俊, 王成善, 等, 2009.青藏高原油气资源战略选区调查与评价.北京:地质出版社. [82] 王剑, 谭富文, 李亚林, 等, 2004.青藏高原重点沉积盆地油气资源潜力分析.北京:地质出版社. [83] 王立全, 潘桂棠, 李才, 等, 2008.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄——兼论原-古特提斯洋的演化.地质通报, 27(12):2045-2056. doi: 10.3969/j.issn.1671-2552.2008.12.010 [84] 王权, 续世朝, 魏荣珠, 等, 2006.青藏高原羌塘北部托和平错一带二叠系展金组火山岩的特征及构造环境.地质通报, 25(1-2):146-155. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd2006z1023&dbname=CJFD&dbcode=CJFQ [85] 夏林圻, 夏祖春, 徐学义, 等, 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志, 26(1):77-89. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yskw200701010&dbname=CJFD&dbcode=CJFQ [86] 徐夕生, 邱检生, 2010.火成岩岩石学.北京:科学出版社, 91-92. [87] 叶茜, 江海水, 2016.湖南嘉禾大窝岭剖面吴家坪阶-长兴阶界线牙形石生物地层及一次碳同位素负偏.地球科学, 41(11):1883-1892. https://doi.org/10.3799/dqkx.2016.130 [88] 翟庆国, 李才, 王军, 等, 2009.藏北羌塘地区基性岩墙群锆石SHRIMP定年及Hf同位素特征.科学通报, 54(21):3331-3337. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb200921021&dbname=CJFD&dbcode=CJFQ [89] 张洪瑞, 侯增谦, 杨天南, 等, 2010.青藏高原北羌塘南缘俯冲型石英正长斑岩的发现:来自地球化学分析证据.地质论评, 56(3):403-412. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp201003013&dbname=CJFD&dbcode=CJFQ [90] 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. https://doi.org/10.3799/dqkx.2015.016 [91] 朱同兴, 潘桂棠, 冯心涛, 等, 2002.藏南喜马拉雅北坡色龙地区二叠系基性火山岩的发现及其构造意义.地质通报, 21(11):717-722. doi: 10.3969/j.issn.1671-2552.2002.11.004