Formation of Nano-Micron Pores in Conglomerate Reservoirs of Xujiaweizi Fault Depression and Their Relationship with Natural Gas Filling
-
摘要: 松辽盆地徐家围子断陷在沙河子组致密砂砾岩纳米-微米级的孔隙中获得了工业气流,研究纳米-微米级孔隙形成与天然气充注的关系,为勘探选区和"甜点"预测奠定基础.在分析储层岩石学、储集空间和成岩作用特征的基础上,通过储层分类和计算各成岩事件对储层物性的影响,确定了砂砾岩储层的致密成因、微米-纳米级孔隙形成机制.研究认为,断陷早期的快速沉降大量减少储层原始孔隙,在强烈的机械压实作用下,富含粘土和塑性岩屑的"超致密砂砾岩"首先致密,相对富含刚性组分的"致密砂砾岩"受中成岩B期碳酸盐胶结物的充填达到致密,晚期碳酸盐岩胶结开始形成时期对应砂砾岩大规模致密化的时期,这期间原始较大孔隙也逐渐向微米-纳米级转化.结合砂砾岩中方解石胶结物内气液烃包裹体的均一温度和地层埋藏史、热史,推断砂砾岩致密化深度为2 500 m,致密化时期为距今100 Ma.砂砾岩孔隙演化史、源岩生烃史和油气充注史综合研究表明,天然气在储层致密前、后均有充注:初次充注发生在储层致密以前,天然气的生成速率和充注强度低,形成"先成藏、后致密"型构造气藏,斜坡带上倾方向发育微构造形态的部位是"甜点"发育的有利区;成藏高峰发生在砂砾岩致密化之后,天然气"连续"充注,形成不受构造控制的、大面积分布的致密气藏,斜坡带下倾方向邻近生烃中心的河道砂砾岩体是"甜点"发育的有利区.沙河子组砂砾岩储层致密与天然气充注关系综合分析认为,沙河子组主体为"先致密、后成藏",局部为"先成藏、后致密".Abstract: Sandy on conglomerate gas prospecting in Shahezi Formation of Xujiaweizi depression has achieved initial success after several industrial gas flow wells had been drilled in reservoir space of nano-micron size. It is of great importance to determine the relationship between tight reservoir formation and natural gas charge for the exploration plan and "sweet spot" prediction. Based on the analysis of reservoir petrology, reservoir space and diagenetic evolution sequence, principal reasons and formation mechanism of nano-micron pores were determined through calculating the porosity changed by various diagenesis events. It is concluded that the quick subsidence and the huge mechanical compaction in the early diagenetic stage accelerated the damage of primary pores, resulting in the compacting of 'super-tight sandy conglomerates' which are rich in clay and plastic lithic fragments. 'Tight sandy conglomerates' which are rich in rigid components reached the tight grade in the later diagenetic process mainly due to the filling of carbonate cements, thus the formation of later carbonate cements corresponding to the densification threshold, after which the original pores reduced into nano-micron pores greatly. According to analysis of the homogeneous temperature of hydrocarbon inclusion in the calcite cement and burial-thermal history of Shahezi Formation, the compacting of sandy conglomerates happened around 2 500 m in depth and before 100 Ma. According to the comprehensive study of pore evolution history, hydrocarbon generation history and hydrocarbon filling history, gas accumulation occurred both before and after the compacting of sandy conglomerates. Before the compacting of sandy conglomerates, gas generated at a low speed and filled into the reservoir with a weak strength, forming some structural gas pools at the boundary of the depression, and therefore the upward direction of slope where micro amplitude structure developed is the favorable area for prospecting. The peak of gas accumulation occurred after reservoir compacting, characterized by high gas injection strength, forming widely distributed lithologic gas reservoirs, and thus the downdip direction of the slop where distributary channel sandbody developed and closely contact with main source rocks is the potential area for exploration.The comprehensive analysis indicates that the gas pool mainly formed after the reservoir tight with some formed before the reservoir compacting.
-
Key words:
- tight /
- sandy conglomerate /
- reservoir /
- gas accumulation /
- Shahezi Formation /
- Xujiaweizi depression /
- petroleum geology
-
图 3 沙河子组砂砾岩成岩作用显微照片
a.原生粒间孔,SS4井,2 772.21 m;b.长石溶孔,SS4井,2 274.01 m;c.火山岩屑溶孔,ZS6井,3 970.3 m;d.长石溶蚀,XT1井,3 938.56 m,杂色砂砾岩;e.碳酸盐胶结物溶孔,XS1井,4 035.08 m;f.片状绿泥石晶间微孔,SS4井,2 566.42 m;g.自生石英晶间微孔,XS401,4 529.42 m;h.溶蚀孔隙和压裂缝同时发育,DS16井,3 619.06 m;i.砾石表面压裂缝,SS6井,3 097.00 m
Fig. 3. Diagenesis micrographs of sandy conglomerate reservoirs in Shahezi Formation
图 5 沙河子组砂砾岩成岩作用类型微观图像
a.云母压弯变形,XS35井,4 352.86 m;b.岩屑压弯变形,XT1井,3 820.12 m;c.砾石颗粒凹凸接触,ZS6井,3 970.3 m;d.铁方解石胶结镶嵌状分布,SS4井2 770.71 m;e.铁白云石胶结物,DS16井,3 618.52 m;f.石英次生加大,DS4井,3 343.83 m;g.自生硅质沉淀,SS4井,2 774.01 m;h.绿泥石衬边胶结,绿泥石膜外部发育微晶石英,XS801井,4 029.02 m;i.半蜂窝状伊蒙混层,SS4井,3 155.76 m;j.长石溶孔,SS4井,2 274.01 m;k.碳酸盐交代岩屑,DS15井,3 732.31 m;l.泥质重结晶,FS10井,3 689.51 m
Fig. 5. Microscopic diagenesis images of sandy conglomerates in Shahezi Formation
表 1 沙河子组砂砾岩储层试气成果
Table 1. Gas test results of sandy conglomerates in Shahezi Formation
井号 井段(km) 岩性 孔隙度(%) 渗透率(10-3 μm2) 压裂后产能(m3/d) XS401 4.37~4.38 砂砾岩 5.8 0.16 55 089 XT1 3.94~4.04 砂砾岩 6.5 0.08 91 025 DS3 3.79~3.80 砂砾岩 4.5 0.03 34 624 ZS12 3.72~3.75 砂砾岩 3.9 0.04 18 301 XS1 4.43~4.46 砂砾岩 4.0 0.03 14 825 SS5 2.96~3.04 砂砾岩 3.7 0.02 3 580 XS801 4.00~4.02 砂砾岩 2.8 0.01 6 580 CS6 3.23~3.26 砂砾岩 2.2 0.01 340 DS401 3.41~3.43 砂砾岩 2.0 0.01 880 表 2 沙河子组砂砾岩孔隙结构压汞测试参数
Table 2. Pore structure parameters of sandy conglomerates in Shahezi Formation based on mercury injection tests
井号 深度(m) 孔隙度(%) 渗透率(10-3 μm2) 排驱压力(MPa) 最大孔喉半径(μm) 平均半径(μm) 均质系数 退汞效率(%) 最大进汞饱和度(%) XS401 4 524.62 1.9 0.01 30.9 0.02 0.01 0.41 20.8 45.1 FS8 4 145.43 2.7 0.01 10.3 0.07 0.02 0.30 44.8 62.5 XS801 4 029.02 3.7 0.14 1.36 0.54 0.14 0.26 34.0 32.4 SS4 3 156.16 4.2 0.03 2.74 0.27 0.06 0.22 50.2 49.1 SHS6 3 211.03 5.4 0.05 2.74 0.07 0.08 0.30 28.3 64.4 SS4 2 774.01 8.2 0.07 1.36 0.53 0.12 0.23 30.3 73.1 表 3 不同成岩作用对沙河子组砂砾岩储层孔隙演化的影响
Table 3. The effect of different diagenesis events on porosity evolution of sandy conglomerates in Shahezi Formation
类型 原始孔隙度(%) 压实作用损失孔隙度(%) 早期胶结损失孔隙度(%) 溶蚀作用增加孔隙度(%) 晚期胶结损失孔隙度(%) 破裂作用增加孔隙度(%) 计算目前孔隙度(%) 实测目前孔隙度(%) 平均误差(%) 样品数 超致密砂砾岩 26.1~33.2
30.418.9~29.4
24.71.2~2.5
1.80.6~4.7
1.91.7~5.6
3.90~1.9
0.71.4~3.9
2.61.2~4.0
2.70.3 30 致密砂砾岩 27.5~35.6
31.515.8~26.4
23.40.8~2.3
2.12.7~9.6
4.32.1~8.4
5.10~1.8
0.63.6~11.9
5.84.0~10.6
6.00.4 22 -
[1] Baker, J.C., Havord, P.J., Martin, K.R., et al., 2000.Diagenesis and Petrophysics of the Early Permian Moogooloo Sandstone, Soutthern Carnarvon Basin, Weatern Australia.AAPG Bulletin, 84(2):250-265. https://www.researchgate.net/publication/277200779_Diagenesis_and_Petrophysics_of_the_Early_Permian_Moogooloo_Sandstone_Southern_Carnarvon_Basin_Western_Australia [2] Chen, D.Y., Zhu, Y.S., Xia, Y., et al., 2015.Origin Mechanism of Tightness from the He 8 Section Sandstone Reservoir in Gaoqiao Area of Ordos Basin, China.Acta Sedimentologica Sinica, 33(6):1217-1223 (in Chinese with English abstract). [3] Chen, H.F., 2016.Recognition of Tight Gas Using Kernel Fisher Discriminant Analysis:A Case from Shahezi Formation in Xujiaweizi Depression.Journal of China University of Mining & Technology, 45(3):521-526 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkydxxb201603013 [4] Dai, J.X., Ni, Y.Y., Wu, X.Q., 2012.Tight Gas in China and Its Significance in Exploration and Exploitation.Petroleum Exploration and Development, 39(3):257-264 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600433 [5] Feng, Z.H., Yin, C.H., Lu, J.M., et al., 2013.Formation and Accumulation of Tight Sandy Conglomerate Gas:A Case from the Lower Cretaceous Yingcheng Formation of Xujiaweizi Fault Depression, Songliao Basin.Petroleum Exploration and Development, 40(6):650-656 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S1876380413600944 [6] Fu, J., Wu, S.H., Fu, J.H., et al., 2013.Research on Quantitative Diagenetic Facies of the Yanchang Formation in Longdong Area, Ordos Basin.Earch Scinence Frontiers, 20(2):86-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201302013.htm [7] Guo, X.W., Liu, K.Y., Song, Y., et al., 2016.Relationship between Tight Sandstone Reservoir Formation and Petroleum Charge in Dabei Area of Kuqa Foreland Basin.Earth Science, 41(3):394-402 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603005.htm [8] Holditch, S.A., 2006.Tight Gas Sands.Journal of Petroleum Technology, 58(6):86-93. doi: 10.2118/103356-JPT [9] Jiang, Z.X., Lin, S.G, Pang, X.Q., et al., 2006.The Comparison of Two Types of Tight Sand Gas Reservoir.Petroleum Geology & Experiment, 28(3):210-214, 219 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200603003.htm [10] Li, F., Jiang, Z.X., Li, Z., et al., 2015.Enriched Mechanism of Natural Gas of Lower Jurassic in Dibei Area, Kuqa Depression.Earth Science, 40(9):1538-1548 (in Chinese with English abstract). https://www.researchgate.net/publication/283659471_Enriched_mechanism_of_natural_gas_of_lower_jurassic_in_Dibei_Area_Kuqa_depression [11] Li, J.K., Liu, W., Song, L.B., 2006.A Study of Hydrocarbon Generation Conditions of Deep Source Rocks in Xujiaweizi Fault Depression of the Songliao Basin.Natural Gas Industry, 26(6):21-24 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/a-study-on-hydrocarbon-generation-potential-of-deep-source-rocks-and-xyeZqDR9DR [12] Lin, X.B., Liu, L.P., Tian, J.C., et al., 2014.Characteristics and Controlling Factors of Tight Sandstone Reservoirs in the 5th Member of Xujiahe Formation in the Central of Western Sichuan Depression.Oil & Gas Geology, 35(2):224-230 (in Chinese with English abstract). https://www.researchgate.net/publication/288787523_Characteristics_and_controlling_factors_of_tight_sandstone_reservoirs_in_the_5th_member_of_Xujiahe_Formation_in_the_central_of_western_Sichuan_Depression [13] Liu, C.Y., 2015.Formation and Preservation Mechanism of Sweet Spot in Tight Clastic Reservoirs-A Case Study of Chang 8 Oil Layer of Yanchang Formation in Zhenjing Area, Southwest Ordos Basin.Oil & Gas Geology, 36(6):873-879 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0016236118303065 [14] Meng, Y.L., Hu, A.W., Qiao, D.W., et al., 2012.Regional Diagenetic Law and Control of Diagenesis over Gas-Bearing Capacity of Tight Reservoirs in Deep Xujiaweizi Fault Depression, Songliao Basin.Acta Geologica Sinica, 86(2):325-334 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2012.00663.x [15] Pang, X.Q., Zhou, X.Y., Dong, Y.X., et al., 2013.Formation Mechanism Classification of Tight Sandstone Hydrocarbon Reservoirs in Petroliferous Basin and Resources Appraisal.Journal of China University of Petroleum, 37(5):28-37 (in Chinese with English abstract). https://www.researchgate.net/publication/287882731_Formation_mechanism_classification_of_tight_sandstone_hydrocarbon_reservoirs_in_petroliferous_basin_and_resources_appraisal [16] Rossi, C., Marfil, R., Pamseyer, K., et al., 2001.Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt Western Desert.J.Sediment Res., 71(3):459-472. doi: 10.1306/2DC40955-0E47-11D7-8643000102C1865D [17] Scherer, M., 1987.Parameters Influencing Porosity in Sandstone:A Model for Sandstone Porosity Prediction.AAPG Bulletin, 71(5):485-491. https://www.researchgate.net/publication/249894943_Parameters_Influencing_Porosity_in_Sandstones_A_Model_for_Sandstone_Porosity_Prediction_ERRATUM [18] Tian, J.C., Liu, W.W., Wang, F., et al., 2014.Heterogeneity of the Paleozoic Tight Sandstone Reservoirs in Gaoqiao Area of Ordos Basin.Oil & Gas Geology, 35(2):183-189 (in Chinese with English abstract). https://www.researchgate.net/publication/287783793_Heterogeneity_of_the_Paleozoic_tight_sandstone_reservoirs_in_Gaoqiao_Area_of_Ordos_Basin [19] Wang, G.T., He, D.B., Wang, S.F., et al., 2013.Characteristics of the Pore Structure and Storage Capability of Sulige Tight Sandstone Gasfield.Acta Petrolei Sinica, 34(4):660-666 (in Chinese with English abstract). https://www.researchgate.net/publication/288126708_Characteristics_of_the_pore_structure_and_storage_capability_of_Sulige_tight_sandstone_gasfield [20] Wang, G.Y., Liu, J.P., Jian, X.L., et al., 2016.Characteristics and Genetic Mechanism of Tight Sandstone Reservoirs of Lower Crataceous in North Yellow Sea Basin.Earth Science, 41(3):523-532 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603018.htm [21] Wang, M., Sun, Y.F., Wang, W.G., et al., 2014.Gas Generation Characteristics and Resource Potential of the Deep Source Rock in Xujiaweizi Fault Depression, Northern Songliao Basin.Natural Gas Geoscience, 25(7):1011-1018 (in Chinese with English abstract). https://www.researchgate.net/publication/286884585_Gas_generation_characteristics_and_resource_potential_of_the_deep_source_rock_in_Xujiaweizi_fault_depression_Northern_Songliao_Basin [22] Ye, S.J., Li, R., Yang, K.M., et, al., 2015.Characteristics and Quantitative Prediction of Tight Sand Gas Reservoirs in Superimposed Tight Sandstone Gas-Bearing Area, Western Sichuan Depression.Acta Petrolei Sinica, 36(12):1484-1494 (in Chinese with English abstract). https://www.researchgate.net/publication/292462571_Characteristics_and_quantitative_prediction_of_tight_sand_gas_reservoirs_in_superimposed_tight_sandstone_gas-bearing_area_western_Sichuan_depression [23] Yin, J.Y., Liu, H.F., Chi, H.J., 2002.Evolution and Gas-Accumulation of Xujiaweizi Depression in Songliao Basin.Acta Petrolei Sinica, 23(2):26-29 (in Chinese with English abstract). [24] Ying, F. X., He, D. B., Long, Y. M., et al., 2003. SY/T5477-2003. The Division of Diagenetic Stages in Clastic Rocks. Petroleum Industry Press, Beijing, 1-5 (in Chinese). [25] Zhang, C.J., 2014.Characteristics and Main Controlling Factors for the Glutenite Reservoir of Shahezi Formation in Xujiaweizi Fault Depression.Petroleum Geology and Oilfield Development in Daqing, 33(2):22-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK201402005.htm [26] Zhang, D.Z., Zhang, X.D., Yang, B.Z., 2015.Comprehensive Evaluation of Geological Sweet Point of Tight Gas of Shahezi Formation in Xujiaweizi Fault Depression.Lithologic Reservoirs, 27(5):98-103 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yxyqc201505017 [27] Zhang, X.D., Yu, J., Zhang, D.Z., et al., 2014.Tight Gas Accumulation Conditions and Exploration Prospects in Shehezi Formation of Xujiaweizi Fault Depression.Petroleum Geology and Oilfield Development in Daqing, 33(5):86-91 (in Chinese with English abstract). [28] Zhang, X.L., Tian, J.C., Wang, F., et al., 2014.Diagenetic Characteristics and Quantitative Porosity Estimation of Tight Sandstone Reservoirs:A Case from the 8th Member of Permian Xiashihezi Formation in the Gaoqiao Region, Ordos Basin.Oil & Gas Geology, 35(2):212-217 (in Chinese with English abstract). https://www.researchgate.net/publication/286756532_Diagenetic_characteristics_and_quantitative_porosity_estimation_of_tight_sandstone_reservoirs_a_case_from_the_8th_Member_of_Permian_Xiashihezi_Formation_in_the_Gaoqiao_region_Ordos_Basin [29] Zhou, X., He, S., Chen, Z.Y., et al., 2016.Diagenesis and Diagenetic Facies of Low Porosity and Permeability Sandstone in Member 8 of the Yanchang Formation in Daijiaping Area, Ordos Basin.Oil & Gas Geology, 37(2):155-164 (in Chinese with English abstract). [30] Zou, C.N., Tao, S.Z., Bai, B., et al., 2015.Differences and Relations between Unconventional and Conventional Oil and Gas.China Petroleum Exploration, 20(1):1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201501001.htm [31] Zou, C.N., Tao, S.Z., Yuan, X.J., et al., 2009.Global Importance of "Continuous" Petroleum Reservoirs:Accumulation, Distribution and Evaluation.Petroleum Exploration and Development, 36(6):669-682 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60001-8 [32] Zou, C.N, Zhang, G.Y., Tao, S.Z., et al., 2010.Geological Features, Major Discoveries and Unconventional Petroleum Geology in the Global Petroleum Exploration.Petroleum Exploration and Development, 37(2):129-145 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60021-3 [33] 陈大友, 朱玉双, 夏勇, 等, 2015.鄂尔多斯盆地高桥地区盒8段砂岩储层致密成因.沉积学报, 33(6):1217-1223. http://www.cqvip.com/QK/95994X/201506/666978584.html [34] 陈海峰, 2016.基于核Fisher方法的致密储层含气性识别——以徐家围子断陷沙河子组为例.中国矿业大学学报, 45(3):521-526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201603013 [35] 戴金星, 倪云燕, 吴小奇, 2012.中国致密砂岩气及在勘探开发上的重要意义.石油勘探与开发, 39(3):257-264. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm [36] 冯子辉, 印长海, 陆加敏, 等, 2013.致密砂砾岩气形成主控因素与富集规律——以松辽盆地徐家围子断陷下白垩统营城组为例.石油勘探与开发, 40(6):650-656. doi: 10.11698/PED.2013.06.02 [37] 付晶, 吴胜和, 付金华, 等, 2013.鄂尔多斯盆地陇东地区延长组储层定量成岩相研究.地学前缘, 20(2):86-97. http://mall.cnki.net/magazine/Article/DXQY201302013.htm [38] 郭小文, 刘可禹, 宋岩, 等, 2016.库车前陆盆地大北地区砂岩储层致密化与油气充注的关系.地球科学, 41(3):394-402. http://www.earth-science.net/WebPage/Article.aspx?id=3270 [39] 姜振学, 林世国, 庞雄奇, 等, 2006.两种类型致密砂岩气藏对比.石油实验地质, 28(3):210-214, 219. doi: 10.11781/sysydz200603210 [40] 李峰, 姜振学, 李卓, 等, 2015.库车坳陷迪北地区下侏罗统天然气富集机制.地球科学, 40(9):1538-1548. http://www.earth-science.net/WebPage/Article.aspx?id=3157 [41] 李景坤, 刘伟, 宋兰斌, 2006.徐家围子断陷深层烃源岩生烃条件.天然气工业, 26(6):21-24. http://www.oalib.com/paper/4982989 [42] 林小兵, 刘莉萍, 田景春, 等, 2014.川西坳陷中部须家河组五段致密砂岩储层特征及主控因素.石油与天然气地质, 35(2):224-230. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201402010.htm [43] 刘春燕, 2015.致密碎屑岩储层"甜点"形成及保持机理——以鄂尔多斯盆地西南部镇泾地区延长组长8油层组为例.石油与天然气地质, 36(6):873-879. doi: 10.11743/ogg20150601 [44] 孟元林, 胡安文, 乔德武, 等, 2012.松辽盆地徐家围子断陷深层区域成岩规律和成岩作用对致密储层含气性的控制.地质学报, 86(2):325-334. http://www.cqvip.com/QK/95080X/201202/40977535.html [45] 庞雄奇, 周新源, 董月霞, 等, 2013.含油气盆地致密砂岩类油气藏成因机制与资源潜力.中国石油大学学报, 37(5):28-37. http://mall.cnki.net/magazine/Article/SYDX201305006.htm [46] 田景春, 刘伟伟, 王峰, 等, 2014.鄂尔多斯盆地高桥地区上古生界致密砂岩储层非均质性特征.石油与天然气地质, 35(2):183-189. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402003.htm [47] 王国亭, 何东博, 王少飞, 等, 2013.苏里格致密砂岩气田储层岩石孔隙结构及储集性能特征.石油学报, 34(4):660-666. doi: 10.7623/syxb201304005 [48] 王改云, 刘金萍, 简晓玲, 等, 2016.北黄海盆地下白垩统致密砂岩储层特征及成因.地球科学, 41(3):523-532. http://www.earth-science.net/WebPage/Article.aspx?id=3267 [49] 王民, 孙业峰, 王文广, 等, 2014.松辽盆地北部徐家围子断陷深层烃源岩生气特征及天然气资源潜力.天然气地球科学, 25(7):1011-1018. doi: 10.11764/j.issn.1672-1926.2014.07.1011 [50] 叶素娟, 李嵘, 杨克明, 等, 2015.川西坳陷叠覆型致密砂岩气区储层特征及定量预测评价.石油学报, 36(12):1484-1494. doi: 10.7623/syxb201512003 [51] 殷进垠, 刘和甫, 迟海江, 2002.松辽盆地徐家围子断陷构造演化石油学报, 23(2):26-29. doi: 10.7623/syxb200202006 [52] 应凤祥, 何东博, 龙玉梅, 等, 2003. SY/T5477-2003. 中华人民共和国石油天然气行业标准并碎屑岩成岩阶段划分. 北京: 石油工业出版社, 1-5. [53] 张常久, 2014.徐家围子断陷沙河子组砂砾岩储层特征及主控因素.大庆石油地质与开发, 33(2):22-26. doi: 10.3969/J.ISSN.1000-3754.2014.02.005 [54] 张大智, 张晓东, 杨步增, 2015.徐家围子断陷沙河子组致密气地质甜点综合评价.岩性油气藏, 27(5):98-103. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yxyqc201505017 [55] 张晓东, 于晶, 张大智, 等, 2014.徐家围子断陷沙河子组致密气成藏条件及勘探前景.大庆石油地质与开发, 33(5):86-91. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqsydzykf201405015 [56] 张兴良, 田景春, 王峰, 等, 2014.致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例.石油与天然气地质, 35(2):212-217. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201402008.htm [57] 周翔, 何生, 陈召佑, 等, 2016.鄂尔多斯盆地代家坪地区延长组8段低孔渗砂岩成岩作用及成岩相.石油与天然气地质, 37(2):155-164. doi: 10.11743/ogg20160202 [58] 邹才能, 陶士振, 白斌, 等, 2015.论非常规油气与常规油气的区别和联系.中国石油勘探, 20(1):1-16. http://mall.cnki.net/magazine/Article/KTSY201501001.htm [59] 邹才能, 陶士振, 袁选俊, 等, 2009."连续型"油气藏及其在全球的重要性:成藏、分布与评价.石油勘探与开发, 36(6):669-682. http://mall.cnki.net/magazine/Article/SKYK200906003.htm [60] 邹才能, 张光亚, 陶士振, 等, 2010.全球油气勘探领域地质特征、重大发现及非常规石油地质.石油勘探与开发, 37(2):129-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201002001&f=datatang