Petrogenesis and Its Relationship with Uranium Mineralization of Gabbro-Diorite in Changjiang Uranium Ore-Field, Northern Guangdong Province, China
-
摘要: 长江铀矿田深部赋矿辉长闪长岩的岩石成因制约着对铀成矿作用认识的深入.通过对辉长闪长岩开展锆石U-Pb定年、Lu-Hf同位素、矿物学和地球化学分析,探讨其岩石成因、成岩构造背景及其与铀成矿的关系.辉长闪长岩LA-ICP-MS锆石U-Pb年龄为150 Ma,形成于晚侏罗世,具板内玄武岩地球化学特征.环带斜长石与黑云母主量元素变化记录了岩浆由基性到中性的演化过程.锆石(~150 Ma)εHf(t)为-14.1~-8.6,tDM2为1.7~2.1 Ga.辉长闪长岩源区为遭受俯冲带流体交代改造的相对富集地幔,岩浆上升侵位过程与中元古代-古元古代壳源物质发生了不同程度的地壳混染,形成于地壳伸展拉张和岩石圈大规模减薄的构造背景.辉长闪长岩为铀成矿提供了更为有利的还原性环境,促使热液中U6+的还原沉淀.Abstract: Understanding for uranium mineralization was absolutely restricted by the petrogenesis of gabbro-diorite,which emplaced into the Yanshanian biotite granite at the deep part of Changjiang uranium ore-field. We provide LA-ICP-MS zircon UPb age,Lu-Hf isotopic,mineralogical and geochemical evidence to analyse the poetrogenesis,tectonic background and its relationship with uranium mineralization. Gabbro-diorite emplaced at the Late Jurassic (LA-ICP-MS zircon U-Pb isotopic age:150±1 Ma (n=17,MSWD=0.18)) and was geochemically characteristic of within-plate basalt. The magma evolution process (ranges from basic to neutral magma) has been effectively recorded by the transformation of major elements in zoned plagioclase and biotite from gabbro-diorite. The zircon εHf(t) values range from -14.1 to -8.6 and the two-stage model ages (tDM2) range from 1.7 Ga to 2.1 Ga. The magmatic source was the relatively enriched mantle changed by the metasomatism fluid originated from the subduction zone of Pacific Ocean Plate which started from the Middle Jurassic. Gabbro-diorite has undergone a variational degree crustal contamination with the Proterozoic-Palaoproterozoic crustal material in the process of emplacement during the Late Mesozoic large scale lithosphere thining tectonic background. Gabbro-diorite provides a better reductive environment than the granite for uranium mineralization,prompting U6+ been reduced to pitchblende in the ore forming hydrothermal fluid.
-
图 1 长江铀矿田地质简图
据Hu et al.(2008)和黄国龙等(2010).1.第四系; 2.燕山期中细粒二云母花岗岩; 3.燕山期中粒斑状黑云母花岗岩; 4.印支期粗粒二云母花岗岩; 5.印支期粗粒黑云母花岗岩; 6.加里东期花岗闪长岩; 7.中生代火山岩; 8.中生代花岗岩; 9.辉绿岩; 10.辉长闪长岩; 11.断裂构造带; 12.地质界线与推测地质界线; 13.铀矿床与名称; 14.乡镇
Fig. 1. Geological map of Changjiang uranium ore-field
图 3 辉长闪长岩与铀矿石野外与岩相学特征
a.辉绿岩侵位于辉长闪长岩; b.辉长闪长岩手标本; c.辉长闪长岩单偏光图像; d.辉长闪长岩正交偏光图像; e.辉长闪长岩钻井岩芯; f.辉长闪长岩侵位于燕山期黑云母花岗岩; g.含铀矿化的辉长闪长岩; h.细脉状的沥青油矿; i.沥青油矿与黄铁矿. βμ.辉绿岩; δ.辉长闪长岩; Qtz.石英; Hb.角闪石; Py.黄铁矿; Mt.赤铁矿; Di.透辉石; Bt.黑云母; Kfs.钾长石; Fl.萤石; Ura.沥青铀矿; Chl.绿泥石
Fig. 3. Feld phenomenon and petrography of gabbro-diorite and uranium ore
图 10 单斜辉石分类图解
据Morimoto(1998).a.透辉石; b.次透辉石; c.普通辉石
Fig. 10. Classification diagram of clinopyroxene
图 11 辉长闪长岩岩石类型(a)和岩石系列(b)判别图解
图a据Winhchester and Floyd (1977);图b据Hastie et al. (2007)
Fig. 11. Classification diagrams of Zr/TiO2-Nb/Y (a) and Th-Co (b) for gabbro-diorite
图 12 辉长闪长岩原始地幔标准化过渡元素蛛网图
标准值据Taylor and McLennan (1985)
Fig. 12. Primitive mantle normalized transition element spider diagram for gabbro-diorite
图 13 辉长闪长岩微量元素蛛网图(a)和稀土元素配分模式图(b)
图a标准值据Sun and McDonough(1989);图b标准值据Taylor and McLennan (1985).粤北同期中基性岩据Li and McCulloch (1998);大陆拉斑玄武岩据Wilson (1989)
Fig. 13. Primitive mantle normalized trace element spider diagram (a) and chondrite normalized REE pattern (b) for gabbro-diorite
图 17 (Hf/Sm)N-(Ta/La)N (a)与Th/Zr-Nb/Zr (b)图解
图a据la Flèche et al.(1998),图b据Kepezhinskas et al.(1997)
Fig. 17. (Hf/Sm)N-(Ta/La)N (a) and Th/Zr-Nb/Zr (b) diagrams
图 19 辉长闪长岩成岩构造环境判别图解
图a据Meschede (1986);图b据Pearce and Norry (1979);图c据Floyd and Winchester (1975);图d据Pearce (1983).WPA.板内碱性玄武岩; WPT.板内拉斑玄武岩; VAB.火山弧玄武岩
Fig. 19. Discriminated diagrams of tectonic setting for gabbro-diorite
-
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Bai, Z. J., Zhu, W. G., Zhong, H., et al., 2015. Petrogenesis and Tectonic Implications of the Early Jurassic Fe-Ti Oxide-Bearing Xialan Mafic Intrusion in SE China: Constraints from Zircon Hf-O Isotopes, Mineral Compositions and Whole-Rock Geochemistry. Lithos, 212-215: 59-73. https://doi.org/10.1016/j.lithos.2014.09.032 [3] Black, L, P., Gulson, B, L., 1978.The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227-232. https://doi.org/10.1016/j.epsl.2008.06.010 [4] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [5] Cao, H.J., Huang, G.L., Xu, L.L., et al., 2013.The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton.Acta Geologica Sinica, 87(7):957-966 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201307005 [6] Chen, P. R., Hua, R. M., Zhang, B. T., et al., 2002. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region. Science China Earth Sciences, 45(8): 755-768. https://doi.org/10.1007/bf02878432 [7] Chen, W., Zhang, W. Q., Simonetti, A., et al., 2016. Mineral Chemistry of Melanite from Calcitic Ijolite, the Oka Carbonatite Complex, Canada: Implications for Multi-Pulse Magma Mixing. Journal of Earth Science, 27(4): 599-610. https://doi.org/10.1007/s12583-016-0715-3 [8] Deng, P., Ren, J.S., Ling, H.F., et al., 2012. SHRIMP Zircon U-Pb Ages and Tectonic Implications for Indosinian Granitoids of Southern Zhuguangshan Granitc Composite, South China. Chinese Science Bulletin, 57(14): 1231-1241 (in Chinese). doi: 10.1360/csb2012-57-14-1231 [9] Deng, P., Shen, W.Z., Ling, H.F., et al., 2003.Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield.Geochimica, 32(6):520-528 (in Chinese with English abstract). [10] Fitton, J. G., James, D., Kempton, P. D., et al., 1988. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. Journal of Petrology, 82(1): 331-349. https://doi.org/10.1093/petrology/special_volume.1.331 [11] Feng, Z.J., Lai, Z.X., Mo, J.H., et al., 2016.A Study of Metallogenic Mechanism of " Intersection" Type Uranium Deposit and Exploration Thinking of Xiazhuang OreField.Mineral Deposits, 35(5):1047-1061 (in Chinese with English abstract). [12] Floyd, P. A., Winchester, J. A., 1975. Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, 27(2): 211-218. https://doi.org/10.1016/0012-821x(75)90031-x [13] Foster, M.D., 1960. Interpretation of the Composition of Trioctahedral Micas. U.S. Geol. Surv. Prof. Paper, B 354: 1-49. [14] Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5 [15] Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons: Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany. Earth and Planetary Science Letters, 249(1-2): 47-61. https://doi.org/10.1016/j.epsl.2006.06.039 [16] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LA-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [17] Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062 [18] Hu, F.F., Fan, H.R., Yang, J.H., et al., 2007.Petrogenesis of Gongjia Gabbro-Diorite in the Kunyushan Area, Jiaodong Peninsula:Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotopes.Acta Petrologica Sinica, 23(2):369-380 (in Chinese with English abstract). [19] Hu, R.Z., Bi, X.W., Peng, J.T., et al., 2007.Some Problems Concerning Relationship between Mesozoic-Cenozoic Lithospheric Extension and Uranium Metallogenesis in South China. Mineral Deposits, 26(2):139-152 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200702001 [20] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583 [21] Huang, G.L., Cao, H.J., Ling, H.F., et al., 2012.Zircon SHRIMP U-Pb Age, Geochemistry and Genesis of the Youdong Granite in Northern Guangdong. Acta Geologica Sinica, 86(4):577-586 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201204004 [22] Huang, G.L., Liu, X.Y., Sun, L.Q., et al., 2014.Zircon U-Pb Dating, Geochemical Characteristic and Genesis of the Changjiang Granite in Northern Guangdong. Acta Geologica Sinica, 88(5):836-849 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405003 [23] Huang, G.L., Yin, Z.P., Ling, H.F., et al., 2010.Formation Age, Geochemical Characteristics and Genesis of Pitchblende from No.302 Uranium Deposit in Northern Guangdong. Mineral Deposits, 29(2):352-360 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201002017 [24] Ibrahim, M. E., El-Tokhi, M. M., Saleh, G. M., et al., 2007. Geochemistry of Lamprophyres Associated with Uranium Mineralization, Southeastern Desert, Egypt. Chinese Journal of Geochemistry, 26(4): 356-365. https://doi.org/10.1007/s11631-007-0356-4 [25] Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [26] Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/s0016-7037(96)00349-3 [27] la Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3 [28] Lai, Z.X., 2015.The Geochemical Character of Intermediate-Basic Dikes and Its Control on Uranium Deposits in Xiazhuang Ore Field.Uranium Geology, 31(3):370-376(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201503003 [29] Leroy, J., 1978. The Margnac and Fanay Uranium Deposits of the La Crouzille District (Western Massif Central, France); Geologic and Fluid Inclusion Studies. Economic Geology, 73(8): 1611-1634. https://doi.org/10.2113/gsecongeo.73.8.1611 [30] Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7 [31] Li, X.H., Li, W.X., Li, Z.X., 2007. Rediscussion on Genetic Type and Tectonic Significance for Early Yanshanian Granite in Nanling.Chinese Science Bulletin, 52(9):981-991 (in Chinese). doi: 10.1360/csb2007-52-9-981 [32] Li, X. H., McCulloch, M. T., 1998. Geochemical Characteristics of Cretaceous Mafic Dikes from Northern Guangdong, SE China: Age, Origin and Tectonic Significance. Geodynamics Series, 27: 405-419. https://doi.org/10.1029/gd027p0405 [33] Li, X. W., Li, J., Bader, T., et al., 2015. Evidence for Crustal Contamination in Intra-Continental OIB-Like Basalts from West Qinling, Central China: A Re-Os Perspective. Journal of Asian Earth Sciences, 98: 436-445. https://doi.org/10.1016/j.jseaes.2014.11.027 [34] Lin, W.W., Peng, L.J., 1994. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EPMA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract). [35] Ling, H. F., Shen, W. Z., Deng, P., et al., 2005. Geochemical Characteristics and Genesis of the Luxi-Xianrenzhang Diabase Dikes in Xiazhuang Uranium Orefield, Northern Guangdong Province. Acta Geologica Sinica (English Edition), 79(4): 497-506. https://doi.org/10.1111/j.1755-6724.2005.tb00916.x [36] Lu, J.J., Wu, L.Q., Ling, H.F., et al., 2006.The Origin of the Huangpi-Zhangguangying Diabase-Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province:Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes.Acta Petrologica Sinica, 22(2):397-406. [37] Ludwing, K.R., 2003. User's Manual for Isoplot 3.75: A Geocheonological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. [38] Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016 [39] Mao, J. W., Xie, G. Q., Li, X. F., et al., 2006. Mesozoic Large-Scale Mineralization and Multiple Lithospheric Extensions in South China. Acta Geologica Sinica(English Edition), 80(3): 420-431. https://doi.org/10.1111/j.1755-6724.2006.tb00259.x [40] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [41] Morimoto, K., Mori, T., Ishiguro, S., et al., 1998. Perioperative Changes in Plasma Brain Natriuretic Peptide Concentrations in Patients Undergoing Cardiac Surgery. Surgery Today, 28(1): 23-29. https://doi.org/10.1007/s005950050072 [42] Ormerod, D. S., Hawkesworth, C. J., Rogers, N. W., et al., 1988. Tectonic and Magmatic Transitions in the Western Great Basin, USA. Nature, 333(6171): 349-353. https://doi.org/10.1038/333349a0 [43] Pearce, J.A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. Continental Basalts & Mantle Xenoliths, 147(6):2162-2173. [44] Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192 [45] Qiu, Z.W., Wang, H., Yan, Q.H., et al., 2016.Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Quartz Porphyry in the Changpu Sn Polymetallic Deposit, Guangdong Province, SE China and Their Geological Significance.Geochimica, 45(4):374-386 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201604003 [46] Quan, T.J., Wang, G., Zhong, J.L., et al., 2013. Petrogenesis of Granodiorites in Tongshanling Deposit of Hunan Province: Constraints from Petrogeochemistry Zircon U-Pb Chronology and Hf Isotope.Journal of Mineralogy and Petrology, 33(1):43-52(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201301007 [47] Ruzicka, V., 1993. Vein Uranium Deposits. Ore Geology Reviews, 8(3-4): 247-276. https://doi.org/10.1016/0169-1368(93)90019-u [48] Shu, L.S., Deng, P., Wang, B., et al., 2004. The Mesozoic Basin Mountain Evolution of Nanxiong-Zhuguang Area: Constraint from Petrogeochemistry, Kinematics and Chronology. Science in China (Series D), 34(1):1-13(in Chinese). [49] Shu, L. S., Wang, Y., Sha, J. G., et al., 2009. Jurassic Sedimentary Features and Tectonic Settings of Southeastern China. Science China Earth Sciences, 52(12): 1969-1978. https://doi.org/10.1007/s11430-009-0159-z [50] Shu, L.S., Zhou, X.M., Deng, P., et al., 2006.Principal Geological Features of Nanling Tectonic Belt, South China.Geological Review, 52(2):251-265 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004971 [51] Song, M. J., Shu, L. S., Santosh, M., 2016. Early Mesozoic Granites in the Nanling Belt, South China: Implications for Intracontinental Tectonics Associated with Stress Regime Transformation. Tectonophysics, 676: 148-169. https://doi.org/10.1016/j.tecto.2016.03.023 [52] Stolz, A. J., Jochum, K. P., Spettel, B., et al., 1996. Fluid- and Melt-Related Enrichment in the Subarc Mantle: Evidence from Nb/Ta Variations in Island-Arc Basalts. Geology, 24(7): 587-590.https://doi.org/10.1130/0091-7613(1996)024 < 0587:famrei > 2.3.co; 2 doi: 10.1130/0091-7613(1996)024<0587:famrei>2.3.co;2 [53] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [54] Tappa, M.J., Ayuso, R. A., Bodnar, R. J., et al., 2014. Age of Host Rocks at the Coles Hill Uranium Deposit, Pittsylvania County, Virginia, Based on Zircon U-Pb Geochronology. Economic Geology, 109(2):513-530. https://doi.org/10.2113/econgeo.109.2.513 [55] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London, 57-72. [56] Tian, X.L., 2016. Geochemistry Characteristics and Relationship with Uranium Deposit of Zhuguang Mountain and Guidong, China. China University of Geosciences, Beijing (in Chinese). [57] van Achterbergh, E., Ryan, C.G., Griffin, W.L., 1999. GLITTER: On-line Intensity Reduction for the Laser Ablation Inductively Coupled Plasma Spectrometry. Abstr. 9th Goldschmidt Conf. LPI, Boston. [58] Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008 [59] Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263 [60] Wang, Y.L., Zhang, C.J., Xiu, S.Z., et al., 2001.Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts.Acta Petrologica Sinica, 17(3):413-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [61] Wang, Z.G., Yu, X.Y., Zhao, Z.H., et al., 1989. REE Geochemistry. Science Press, Beijing (in Chinese). [62] Wang, Z.Q., Li, Z.Y., Wu, L.Q., et al., 2010.Geochemical Evidences for Mantle-Derived Uranium Metallogenesis:A Case Study of Xiaoshui Intersection-Type Uranium Deposit in Xiazhuang Area.Uranium Geology, 26(1):24-34 (in Chinese with English abstract). [63] Wilson, M. G., Nikpoor, N., Aliabadi, P., et al., 1989. The Fate of Acetabular Allografts after Bipolar Revision Arthroplasty of the Hip. A Radiographic Review. The Journal of Bone and Joint Surgery, 71(10): 1469-1479. https://doi.org/10.2106/00004623-198971100-00004 [64] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London. [65] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [66] Woodhead, J. D., McCulloch, M.T., 1989. Ancient Seafloor Signals in Pitcairn Island Lavas and Evidence for Large Amplitude, Small Length-Scale Mantle Heterogeneities. Earth and Planetary Science Letters, 94(3-4): 257-273. https://doi.org/10.1016/0012-821x(89)90145-3 [67] Xie, G. Q., Hu, R. Z., Mao, J. W., et al., 2005. Geological and Geochemical Characteristics of Early Cretaceous Mafic Dikes in Northern Jiangxi Province, SE China and Their Geodynamic Implications. Acta Geologica Sinica (English Edition), 79(2): 201-210. https://doi.org/10.1111/j.1755-6724.2005.tb00882.x [68] Xu, Z. Q., Song, H., Li, P., et al., 2014. Diabase Dykes in Sanqisan Uranium Deposit and Its Relation with Uranium Mineralization, Guangxi. Acta Geologica Sinica(English Edition), 88(S2): 1414-1415. https://doi.org/10.1111/1755-6724.12381_36 [69] Zhang, G. Q., Hu, R. Z., Bi, X. W., et al., 2007. REE Geochemical Characteristics of the No. 302 Uranium Deposit in Northern Guangdong, South China. Chinese Journal of Geochemistry, 26(4): 425-433. https://doi.org/10.1007/s11631-007-0425-8 [70] Zhang, G.S., Wen, H.J., Qiu, Y.Z., et al., 2004.Geochemistry of the Late Mesozoic Mafic Dikes in Western Fujian Province.Geochimica, 33(3):243-253 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200403003 [71] Zhang, Y.X., 1982. Geological Characteristics and Origin of Yangchuling Porphyry W-Mo-Deposit. Geochimica, 11(2):122-132, 217 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005176351 [72] Zhao, Z.H., Bao, Z.W., Zhang, B.Y., 1998. Geochemical Characteristics of Mesozoic Basalts in Central South Hunan. Science in China (Series D), (S2): 8-15(in Chinese). [73] Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2015a. Two Types of the Crust-Mantle Interaction in Continental Subduction Zones. Science China Earth Sciences, 58(8): 1269-1283. https://doi.org/10.1007/s11430-015-5136-0 [74] Zhao, Z. F., Gao, P., Zheng, Y. F., 2015b. The Source of Mesozoic Granitoids in South China: Integrated Geochemical Constraints from the Taoshan Batholith in the Nanling Range. Chemical Geology, 395: 11-26. https://doi.org/10.1016/j.chemgeo.2014.11.028 [75] Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated Ⅰ-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3 [76] Zhu, X.Y., Wang, J.B., Liu, S.B., et al., 2013.Metallogenica Age of Mississippi Valley Type Pb-Zn Deposit in Fankou, Guangdong:Evidence from SHRIMP U-Pb Zircon Dating of Diabase. Acta Geologica Sinica, 87(2):167-177 (in Chinese with English abstract). [77] 曹豪杰, 黄国龙, 许丽丽, 等, 2013.诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征.地质学报, 87(7):957-966. doi: 10.3969/j.issn.0001-5717.2013.07.005 [78] 邓平, 任纪舜, 凌洪飞, 等, 2012.诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义.科学通报, 57(14):1231-1241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201214007 [79] 邓平, 沈渭洲, 凌洪飞, 等, 2003.地幔流体与铀成矿作用:以下庄矿田仙石铀矿床为例.地球化学, 32(6):520-528. doi: 10.3321/j.issn:0379-1726.2003.06.002 [80] 冯志军, 赖中信, 莫济海, 等, 2016.下庄矿田"交点"型铀矿床成矿机理研究及勘查思路探讨.矿床地质, 35(5):1047-1061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201605012 [81] 胡瑞忠, 毕献武, 彭建堂, 等, 2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题.矿床地质, 26(2):139-152. doi: 10.3969/j.issn.0258-7106.2007.02.001 [82] 胡芳芳, 范宏瑞, 杨进辉, 等, 2007.鲁东昆嵛山地区宫家辉长闪长岩成因:岩石地球化学、锆石U-Pb年代学与Hf同位素制约.岩石学报, 23(2):369-380. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702016 [83] 黄国龙, 曹豪杰, 凌洪飞, 等, 2012.粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究.地质学报, 86(4):577-586. doi: 10.3969/j.issn.0001-5717.2012.04.004 [84] 黄国龙, 刘鑫扬, 孙立强, 等, 2014.粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究.地质学报, 88(5):836-849. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201405003 [85] 黄国龙, 尹征平, 凌洪飞, 等, 2010.粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究.矿床地质, 29(2):352-360. doi: 10.3969/j.issn.0258-7106.2010.02.017 [86] 赖中信, 2015.下庄铀矿田中基性脉岩地球化学特征及其控矿作用.铀矿地质, 31(3):370-376. doi: 10.3969/j.issn.1000-0658.2015.03.003 [87] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [88] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2): 155-162. [89] 陆建军, 吴烈勤, 凌洪飞, 等, 2006.粤北下庄铀矿田黄陂-张光营辉绿岩脉的成因:元素地球化学和Nd-Sr-Pb-O同位素证据.岩石学报, 22(2):397-406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200602012 [90] 丘增旺, 王核, 闫庆贺, 等, 2016.广东长埔锡多金属矿床石英斑岩锆石U-Pb年代学、Hf同位素组成及其地质意义.地球化学, 45(4):374-386. doi: 10.3969/j.issn.0379-1726.2016.04.003 [91] 全铁军, 王高, 钟江临, 等, 2013.湖南铜山岭矿区花岗闪长岩岩石成因:岩石地球化学、U-Pb年代学及Hf同位素制约.矿物岩石, 33(1):43-52. http://d.old.wanfangdata.com.cn/Periodical/kwys201301007 [92] 舒良树, 邓平, 王彬, 等, 2004.南雄-诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约.中国科学(D辑), 34(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200401001 [93] 舒良树, 周新民, 邓平, 等, 2006.南岭构造带的基本地质特征.地质论评, 52(2):251-265. doi: 10.3321/j.issn:0371-5736.2006.02.016 [94] 田晓龙, 2016.诸广山-贵东地区基性岩脉的地球化学特征及其与铀矿的关系(硕士学位论文).北京: 中国地质大学. [95] 汪云亮, 张成江, 修淑芝, 等, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3):413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [96] 王中刚, 于学元, 赵振华, 等, 1989.稀土元素地球化学.北京:科学出版社. [97] 王正其, 李子颖, 吴烈勤, 等, 2010.幔源铀成矿作用的地球化学证据——以下庄小水"交点型"铀矿床为例.铀矿地质, 26(1):24-34. doi: 10.3969/j.issn.1000-0658.2010.01.004 [98] 张贵山, 温汉捷, 裘愉卓, 等, 2004.闽西晚中生代基性岩脉的地球化学研究.地球化学, 33(3):243-253. doi: 10.3321/j.issn:0379-1726.2004.03.003 [99] 张玉学, 1982.阳储岭斑岩钨钼矿床地质地球化学特征及其成因探讨.地球化学, 11(2):122-132, 217. doi: 10.3321/j.issn:0379-1726.1982.02.002 [100] 赵振华, 包志伟, 张伯友, 1998.湘南中生代玄武岩类地球化学特征.中国科学(D辑), (S2):8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800285924 [101] 祝新友, 王京彬, 刘慎波, 等, 2013.广东凡口MVT铅锌矿床成矿年代——来自辉绿岩锆石SHRIMP定年证据.地质学报, 87(2):167-177. doi: 10.3969/j.issn.0001-5717.2013.02.003 -
dqkx-44-9-3042-Table1-6.docx