Zircon U-Pb Dating, Geochemistry and Petrogenesis of Granodiorite from Wenguangling Pb-Zn-Cu Polymetallic Deposit in Guangdong Province
-
摘要: 广东省文光岭矿床是云开地区近年来新发现的铅锌铜多金属矿.以文光岭花岗闪长岩作为研究对象,对其开展了LA-ICP-MS锆石U-Pb同位素定年和地球化学特征研究.获得其锆石206Pb/238U同位素加权平均年龄为165.7±1.9 Ma(n=18,MSWD=3.1).花岗闪长岩属于准铝质Ⅰ型花岗岩,SiO2含量在64.11%~66.64%之间,Al2O3含量为14.9%~15.57%,MgO含量在1.39%~1.61%之间,K2O+Na2O含量介于6.5%~7.21%,K2O/Na2O=1.25~2.74,铝饱和指数A/CNK=0.93~1.11.轻、重稀土元素分馏作用明显,(La/Yb)N=13.03~17.83,具有弱的负铕异常(δEu为0.70~0.88),HFSE和LILE分异明显,富集Rb、Th、U、K等元素,亏损Nb、Ta、P和Ti等元素.结合区内已有资料,认为文光岭铅锌铜多金属矿床的形成与古太平洋板块的俯冲作用密切相关.
-
关键词:
- 文光岭铅锌铜多金属矿 /
- LA-ICP-MS锆石U-Pb定年 /
- 地球化学 /
- 云开地区
Abstract: The recently discovered Wenguangling deposit is a Pb-Zn-Cu polymetallic deposit, located in the Yunkai area. It was firstly investigated of the granodiorites from the Wenguangling deposit by integrating in situ zircon U-Pb dating and geochemical analysis. Eighteen zircons from sample WGL-02 yield excellently concordant results with a weighted mean 206Pb/238U age of 165.7±1.9 Ma (n=18, MSWD=3.1). The Wenguangling granodiorites belong to metaluminous Ⅰ-type granite. Their SiO2 and Al2O3 contents are 64.11%-66.64% and 14.9%-15.57%, respectively. The MgO contents are between 1.39% and 1.61%. The alkali (K2O+Na2O) contents range from 6.5% to 7.21%, with K2O/Na2O ratios from 1.25 to 2.74. Their aluminum indexes (A/CNK ratios) are 0.93-1.11. The granodiorites are also characterized by noteworthy fractionation between LREE and HREE ((La/Yb)N=13.03-17.83), with weak negative Eu anomalies (δEu=0.70-0.88). The trace element analyses show clear fractionation between HFSE and LILE, and the granodiorites are strongly enriched in Rb, Th, U and K but depleted in Nb, Ta, P and Ti. Based on the geochemistry, zircon U-Pb dating of the Wenguangling granodiorite and regional tectonic evolution, it is infered that the formation of the Wenguangling Pb-Zn-Cu polymetallic deposit is closely associated with the subduction of the Paleo-Pacific plate. -
图 4 广东省文光岭花岗闪长岩体的SiO2-K2O图解(a)及A/CNK-A/NK图解(b)
据Rickwood(1989)和Peccerillo and Taylor(1976)
Fig. 4. SiO2 versus K2O (a) and A/CNK versus A/NK (b) plots for the Wenguangling granodiorites in Guangdong Province
图 5 广东省文光岭花岗闪长岩体微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分曲线图(b)
Fig. 5. Primitive mantle-normalized trace element patterns (a) and chondrite-normalized REE patterns (b) diagrams of the Wenguangling granodiorites in Guangdong Province
图 6 广东省文光岭花岗闪长岩构造环境判别图
Syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;VAG.岛弧花岗岩;ORG.洋中脊花岗岩.底图据Pearce et al.(1984)
Fig. 6. Tectonic setting discrimination diagram of Wenguangling granodiorites in Guangdong Province
表 1 广东省文光岭花岗闪长岩体的主量(%)、微量和稀土元素(10-6)组成
Table 1. Major (%), trace (10-6) elements and REE (10-6) compositions of the Wenguangling granodiorite in Guangdong Province
样品 YGL-01 YGL-02 HB-01 HB-02 SiO2 66.25 64.11 66.28 66.64 TiO2 0.46 0.50 0.55 0.50 Al2O3 15.42 15.57 14.90 14.94 Fe2O3 4.13 3.85 4.77 4.35 MnO 0.10 0.24 0.11 0.08 MgO 1.41 1.39 1.61 1.42 CaO 2.51 3.51 3.97 3.75 Na2O 2.94 1.93 2.89 2.96 K2O 4.15 5.28 3.61 4.03 P2O5 0.14 0.18 0.18 0.17 LOI 1.84 2.61 0.96 0.56 Total 99.43 99.25 99.90 99.48 Be 2.2 3.0 2.3 2.1 Sc 7 8 7 7 V 73 81 83 77 Cr 23 32 24 21 Co 8 8 8 8 Ni 4 5 5 5 Cu < 1 4 < 1 1 Zn 37 73 46 34 Ga 19.0 17.7 18.6 17.7 As 5 6 9 9 Rb 218 351 187 202 Ba 613 656 521 627 Nb 10.5 10.8 12.5 11.1 Sr 420 292 468 453 Zr 155 151 173 140 Hf 4.4 4.2 5.1 3.9 Ti 2 757.7 2 997.5 3 297.3 2 997.5 La 46.1 52.7 46.9 40.5 Ce 66.4 83.3 79.2 69.3 Pr 7.08 8.67 8.34 7.45 Nd 24.3 29.2 29.3 25.3 Sm 4.40 5.13 5.51 4.82 Eu 1.23 1.14 1.29 1.24 Gd 3.94 4.63 4.51 3.76 Tb 0.58 0.69 0.72 0.58 Dy 3.49 3.82 3.96 3.31 Ho 0.65 0.78 0.74 0.75 Er 1.99 2.07 2.34 1.96 Tm 0.31 0.29 0.35 0.31 Yb 2.16 2.12 2.55 2.23 Lu 0.32 0.32 0.36 0.29 Y 17.5 20.9 21.4 19.6 K 34 450.4 43 830.9 29 967.7 33 454.2 Ta 0.9 1.0 1.1 0.9 P 611.04 785.63 785.63 741.98 Th 30 30 30 30 U 7.35 9.55 12.55 7.81 -
[1] An, G.Y., 2012.Geological Features and Space-Time Distribution of Mineral Deposits in the Yunkai Region, Guangxi.Acta Geologica Sichuan, 32(3):281-285(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB201203008.htm [2] Ayers, J., 1998.Trace Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones.Contributions to Mineralogy and Petrology, 132(4):390-404. https://doi.org/10.1007/s004100050431 [3] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 [4] Cai, M.H., Zhan, M.G., Peng, S.B., et al., 2002.Study of Mesozoic Metallogenic Geological Setting and Dynamic Mechanism in Yunkai Area.Mineral Deposits, 21(3):264-269(in Chinese with English abstract). [5] Chappell, B.W., 1999.Aluminium Saturation in Ⅰ- and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [6] Chappell, B.W., White, A.J.R., 1974.Two Contrasting Granite Types.Pacific Geology, 8:173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/ [7] Chappell, B.W., White, A.J.R., 1992.Ⅰ- and S-Type Granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720 [8] Chen, M.H., Huang, Z.Z., Li, B., et al., 2012.Geochemistry of Granitoid Rocks of Shedong W-Mo Deposit District in Cangwu County, Guangxi and Its Relation to Mineralization.Acta Petrologica Sinica, 28(1):199-212(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201015 [9] Chen, M.H., Li, Z.Y., Li, Q., et al., 2015.A Preliminary Study of Multi-stage Granitoids and Related Metallogenic Series in Dayaoshan Area of Guangxi, China.Earth Science Frontiers, 22(2):41-53(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201502004 [10] Chu, K.L., 2013.The Diagenesis and Metallogeneses Studies on Yuanzhuding Porphyry Cu-Mo Deposit in Guangdong (Dissertation).Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [11] Gill, J.B., 1981.Orogenic Andesites and Plate Tectonics.Springer-Verlag, New York, 390. [12] Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986.Nb and Pb in Oceanic Basalts:New Constraints on Mantle Evolution.Earth and Planetary Science Letters, 79(1-2):33-45. https://doi.org/10.1016/0012-821x(86)90038-5 [13] Hoskin, P.W.O., Black, L.P., 2002.Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon.Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [14] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005.Three Major Metallogenic Events in Mesozoic in South China.Mineral Deposits, 24(2):99-107(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200502001.htm [15] Kelemen, P.B., Hanghø, J.K., Greene, A.R., 2003.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 3:593-659. https://www.sciencedirect.com/science/article/pii/B0080437516030358 [16] Li, W., Bi, S.J., Yang, Z., et al., 2015.Zircon U-Pb Age and Hf Isotope Characterization of Sheshan Granodiorite in Southern Edge of Dayaoshan, Guidong:Constraints on Caledonian Diagenesis and Mineralization.Earth Science, 40(1):17-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501002.htm [17] Liang, Y.H., Zhang, Q.F., Yang, S.Y., et al., 1998.Metallogenic Regularities and Prediction of Yunkai Uplifted Region.Geological Publishing House, Beijing (in Chinese). [18] Liégeois, J.P., Navez, J., Hertogen, J., et al., 1998.Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids.The Use of Sliding Normalization.Lithos, 45(1-4):1-28. https://doi.org/10.1016/s0024-4937(98)00023-1 [19] Liu, S., Wang, C.L., Huang, W.T., et al., 2012.LA-ICP-MS Zircon U-Pb Age and Dynamic Background of the Dabaoshan Porphyry Associated with Mo-W Mineralization in Northern Guangdong Province.Geotectonica et Metallogenia, 36(3):440-449(in Chinese with English abstract). [20] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.Special Publication / Berkeley Geochronology Center, Berkeley. [21] Mao, J.W., Chen, M.H., Yuan, S.D., et al., 2011.Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits.Acta Geologica Sinica, 85(5):636-658(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201105006.htm [22] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2007.Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China:Metallogenic Ages and Corresponding Geodynamic Processes.Acta Petrologica Sinica, 23(10):2329-2338(in Chinese with English abstract). [23] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2008.Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings.Geological Journal of China Universities, 14(4):510-526(in Chinese with English abstract). [24] Mao, J.W., Xie, G.Q., Li X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401002.htm [25] Mao, W., Li, X.F., Yang, F.C., 2013.Zircon LA-ICP-MS U-Pb Ages of Granites at Dabaoshan Polymetallic Deposit and Its Geological Significance, Guangdong, South China.Acta Petrologica Sinica, 29(12):4104-4120(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312005 [26] Maruyama, S., Send, T., 1986.Orogeny and Relative Plate Motions:Example of the Japanese Islands.Tectonophysics, 127(3-4):305-329. https://doi.org/10.1016/0040-1951(86)90067-3 [27] Meng, Q.F., Yu, X.F., Zheng, W., 2016.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Quartz Monzonite from the Jidetun Molybdenum Deposit in Jilin Province.Acta Geologica Sinica, 90(5):917-932(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201605008.htm [28] Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?.The Journal of Geology, 93(6):673-689. https://doi.org/10.1086/628995 [29] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [30] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58:63-81. doi: 10.1007/BF00384745 [31] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145(3-4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 [32] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements.Lithos, 22:247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [33] Shen, R.W., Hai, T., Liu, C.M., 2010.Analysis of Potential Polymetallic Deposits in the Yangchun Basin in Guangdong Province.Geology and Exploration, 46(Suppl.):1249-1255(in Chinese with English abstract). [34] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Process.In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basin.Geological Society Special Publication, 42: 313-345. [35] Taylor, S.R., McLenann, S.M., 1985.The Continental Crust: Its Composition and Evolution.Blackwell, Oxford. [36] Thirlwall, M.F., Smith, T.E., Graham, A.M., et al., 1994.High Field Strength Element Anomalies in Arc Lavas:Source or Process?.Journal of Petrology, 35(3):819-838. https://doi.org/10.1093/petrology/35.3.819 [37] Wan, T.F., Zhu, H., 2002.Tectonics and Environment Change of Meso-Cenozoic in China Continent and Its Adjacent Areas.Geoscience, 16(2):107-120(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xddz200202000.htm [38] Wang, L., Hu, M.A., Qu, W.J., et al., 2012.Zircon LA-ICP-MS U-Pb and Molybdenite Re-Os Dating of the Dabaoshan Polymetallic Deposit in Northern Guangdong Province and Its Geological Implications.Geology in China, 39(1):29-42(in Chinese with English abstract). [39] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [40] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). [41] Yang, G., Xiao, L., Wang, G.C., et al., 2015.Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar.Earth Science, 40(3):548-562(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201503014.htm [42] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province.Earth Science, 40(1):61-76(in Chinese with English abstract). [43] Zheng, W., 2016.The Yanshanian Minerogenetic Series and Mineralization of Polymetallic Deposit in the Yangchun Basin of Yunkai Area, South China (Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). [44] Zheng, W., Chen, M.H., Zhao, H.J., et al., 2012.Characteristics of Sulfides and S-Pb Isotope Composition in the Tiantang Cu-Pb-Zn Polymetallic Deposit of Guangdong Province and Their Geological Implications.Geology in China, 39(6):1830-1846(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201206026.htm [45] Zheng, W., Mao, J.W., Pirajno, F., et al., 2015.Geochronology and Geochemistry of the Shilu Cu-Mo Deposit in the Yunkai Area, Guangdong Province, South China and Its Implication.Ore Geology Reviews, 67:382-398. doi: 10.1016/j.oregeorev.2014.12.009 [46] Zheng, W., Mao, J.W., Zhao, C.S., et al., 2018.Early Cretaceous Magmatism and Associated Polymetallic Mineralization in South China:The Tiantang Example.International Geology Review, 60(11-14):1560-1580. doi: 10.1080/00206814.2017.1326180 [47] Zheng, W., Mao, J.W., Zhao, H.J., et al., 2017a.Two Late Cretaceous A-Type Granites Related to the Yingwuling W-Sn Polymetallic Mineralization in Guangdong Province, South China:Implications for Petrogenesis, Geodynamic Setting, and Mineralization.Lithos, 274-275:106-122. doi: 10.1016/j.lithos.2017.01.002 [48] Zheng, W., Mao, J.W., Zhao, H.J., et al., 2017b.Geochemistry, Sr-Nd-Pb-Hf Isotopes Systematics and Geochronological Constrains on Petrogenesis of the Xishan A-Type Granite and Associated W-Sn Mineralization in Guangdong Province, South China.Ore Geology Reviews, 88:739-752. doi: 10.1016/j.oregeorev.2016.12.021 [49] Zheng, W., Zhao, H.J., Chen, M.H., et al., 2013a.Re-Os Isotopic Dating of Molybdenites from the Yingwuling Polymetallic Deposit in Guangdong Province and Its Geological Significance.Journal of Mineralogy and Petrology, 33(3):38-46(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201303007 [50] Zheng, W., Chen, M.H., Zhao, H.J., et al., 2013b.Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Yingwuling Tungsten Polymetallic Deposit in Guangdong Province and Its Geological Significance.Acta Petrologica Sinica, 29(12):4121-4135(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312006 [51] Zheng, W., Chen, M.H., Xu, L.G., et al., 2013c.Rb-Sr Isochron Age of Tiantang Cu-Pb-Zn Polymetallic Deposit in Guangdong Province and Its Geological Significance.Mineral Deposits, 32(2):259-272(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201401008.htm [52] Zheng, W., Ouyang, Z.X., Chen, Y.L., et al., 2018a.Re-Os Age of Molybdenite and Ore-Forming Material Source of the Qiguling Cu-W-Mo Polymetallic Deposit in the Southern Section of the Qinghang Metallogenic Belt.Acta Geologica Sinica, 92(1):94-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201801007.htm [53] Zheng, W., Mao, J.W., Ouyang, Z.X., et al., 2018b.Geochronology of Potoumian Cu Polymetallic Deposit in Yangchun Basin, Zircon Trace Element and Geological Implications.Acta Petrologica Sinica, 34(9):2671-2686(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201809011 [54] Zheng, W., Mao, J.W., Zhao, H.J., et al., 2015.A Preliminary Study of Minerogenetic Series and Geodynamic Background of Polymetallic Deposits in Yangchun Basin of Western Guangdong Province.Mineral Deposits, 34(3):465-487(in Chinese with English abstract). [55] Zheng, W., Ouyang, H.G., Zhao, H.J., et al., 2017.Re-Os Dating for the Molybdenite from the Xiping Mo-Cu Polymetallic Deposit in Guangdong Province and Its Geological Significance.Acta Petrologica Sinica, 33(3):843-858(in Chinese with English abstract). [56] 安国英, 2012.广西云开地区矿产特征及时空分布规律.四川地质学报, 32(3):281-285. doi: 10.3969/j.issn.1006-0995.2012.03.007 [57] 蔡明海, 战明国, 彭松柏, 等, 2002.云开地区中生代成矿地质背景及成矿动力学机制研究.矿床地质, 21(3):264-269. doi: 10.3969/j.issn.0258-7106.2002.03.007 [58] 陈懋弘, 黄智忠, 李斌, 等, 2012.广西苍梧社洞钨钼矿床花岗岩类岩石的地球化学特征及其与成矿关系.岩石学报, 28(1):199-212. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201015 [59] 陈懋弘, 李忠阳, 李青, 等, 2015.初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列.地学前缘, 22(2):41-53. http://d.old.wanfangdata.com.cn/Periodical/dxqy201502004 [60] 楚克磊, 2013.广东圆珠顶斑岩型铜钼矿床成岩成矿作用研究(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1013233493.htm [61] 华仁民, 陈培荣, 张文兰, 等, 2005.论华南地区中生代3次大规模成矿作用.矿床地质, 24(2):99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002 [62] 李巍, 毕诗健, 杨振, 等, 2015.桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征:对区内加里东期成岩成矿作用的制约.地球科学, 40(1):17-33. http://earth-science.net/WebPage/Article.aspx?id=3016 [63] 梁约翰, 张启富, 杨世义, 等, 1998.云开隆起区成矿规律与成矿预测.北京:地质出版社. [64] 刘莎, 王春龙, 黄文婷, 等, 2012.粤北大宝山斑岩钼钨矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄与矿床形成动力学背景分析.大地构造与成矿学, 36(3):440-449. doi: 10.3969/j.issn.1001-1552.2012.03.018 [65] 毛景文, 陈懋弘, 袁顺达, 等, 2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报, 85(5):636-658. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105004 [66] 毛景文, 谢桂青, 郭春丽, 等, 2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报, 23(10):2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002 [67] 毛景文, 谢桂青, 郭春丽, 等, 2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报, 14(4):510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005 [68] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 [69] 毛伟, 李晓峰, 杨富初, 2013.广东大宝山多金属矿床花岗岩锆石LA-ICP-MSU-Pb定年及其地质意义.岩石学报, 29(12):4104-4120. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201312005.htm [70] 孟庆丰, 于晓飞, 郑伟, 2016.吉林季德屯钼矿区石英二长岩SIMS锆石U-Pb年代学、地球化学特征及其成因.地质学报, 90(5):917-932. doi: 10.3969/j.issn.0001-5717.2016.05.007 [71] 沈睿文, 海涛, 刘昌明.2010.广东阳春盆地多金属找矿潜力浅析.地质与勘探(增刊), 46:1249-1255. [72] 万天丰, 朱鸿, 2002.中国大陆及邻区中生代-新生代大地构造与环境变迁.现代地质, 16(2):107-120. doi: 10.3969/j.issn.1000-8527.2002.02.001 [73] 王磊, 胡明安, 屈文俊, 等, 2012.粤北大宝山多金属矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os定年及其地质意义.中国地质, 39(1):29-42. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201201004 [74] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [75] 杨钢, 肖龙, 王国灿, 等, 2015.西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义.地球科学, 40(3):548-562. http://earth-science.net/WebPage/Article.aspx?id=3236 [76] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1):61-76. http://earth-science.net/WebPage/Article.aspx?id=3025 [77] 郑伟, 2016.云开地区阳春盆地燕山期多金属矿床成矿系列(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067637.htm [78] 郑伟, 陈懋弘, 徐林刚, 等, 2013c.广东天堂铜铅锌多金属矿床Rb-Sr等时线年龄及其地质意义.矿床地质, 32(2):259-272. http://d.old.wanfangdata.com.cn/Periodical/kcdz201302003 [79] 郑伟, 陈懋弘, 赵海杰, 等, 2012.广东天堂铜铅锌多金属矿床矿物学、硫化物S-Pb同位素特征及地质意义.中国地质, 39(6):1830-1846. doi: 10.3969/j.issn.1000-3657.2012.06.027 [80] 郑伟, 陈懋弘, 赵海杰, 等, 2013b.广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义.岩石学报, 29(12):4121-4135. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201312006 [81] 郑伟, 毛景文, 欧阳志侠, 等, 2018b.阳春盆地陂头面铜多金属矿床成岩成矿年代学、锆石微量元素及地质意义.岩石学报, 34(9):2671-2686. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201809011 [82] 郑伟, 毛景文, 赵海杰, 等, 2015.粤西阳春盆地多金属矿床成矿系列及动力学背景.矿床地质, 34(3):465-487. http://d.old.wanfangdata.com.cn/Periodical/kcdz201503003 [83] 郑伟, 欧阳荷根, 赵海杰, 等, 2017.广东锡坪钼铜多金属矿床辉钼矿Re-Os同位素定年及其地质意义.岩石学报, 33(3):843-858. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703013 [84] 郑伟, 欧阳志侠, 陈友良, 等, 2018a.钦杭成矿带南段旗鼓岭铜钨钼多金属矿床的辉钼矿Re-Os同位素年龄及成矿物质来源.地质学报, 92(1):94-106. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201801007 [85] 郑伟, 赵海杰, 陈懋弘, 等, 2013a.广东鹦鹉岭多金属矿床辉钼矿的Re-Os同位素定年及其意义.矿物岩石, 33(3):38-46. http://d.old.wanfangdata.com.cn/Periodical/kwys201303007