• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据

    任影 钟大康 柳慧琳 梁婷 孙海涛 高崇龙 郑晓薇

    任影, 钟大康, 柳慧琳, 梁婷, 孙海涛, 高崇龙, 郑晓薇, 2018. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据. 地球科学, 43(11): 4066-4095. doi: 10.3799/dqkx.2017.590
    引用本文: 任影, 钟大康, 柳慧琳, 梁婷, 孙海涛, 高崇龙, 郑晓薇, 2018. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据. 地球科学, 43(11): 4066-4095. doi: 10.3799/dqkx.2017.590
    Ren Ying, Zhong Dakang, Liu Huilin, Liang Ting, Sun Haitao, Gao Chonglong, Zheng Xiaowei, 2018. Isotopic and Elemental Evidence for Paleoenvironmental Evolution of Cambrian Stage 4 Longwangmiao Formation, East Chongqing, China. Earth Science, 43(11): 4066-4095. doi: 10.3799/dqkx.2017.590
    Citation: Ren Ying, Zhong Dakang, Liu Huilin, Liang Ting, Sun Haitao, Gao Chonglong, Zheng Xiaowei, 2018. Isotopic and Elemental Evidence for Paleoenvironmental Evolution of Cambrian Stage 4 Longwangmiao Formation, East Chongqing, China. Earth Science, 43(11): 4066-4095. doi: 10.3799/dqkx.2017.590

    渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据

    doi: 10.3799/dqkx.2017.590
    基金项目: 

    国家自然科学基金项目"白音查干凹陷下白垩统腾格尔组白云岩成因机理研究" 41072104

    详细信息
      作者简介:

      任影(1989-), 女, 讲师, 主要从事沉积学与储层地质学研究

      通讯作者:

      钟大康(1961-)

    • 中图分类号: P595

    Isotopic and Elemental Evidence for Paleoenvironmental Evolution of Cambrian Stage 4 Longwangmiao Formation, East Chongqing, China

    • 摘要: 寒武系第四阶是生命演化史上重要的时间节点.渝东地区寒武系第四阶龙王庙组以碳酸盐岩为主要岩石类型,地层中、下部混积岩发育,生物化石发育程度低.∑(CaO+MgO+LOI)含量分布范围广(74.64%~99.18%),Na2O、K2O、Fe2O3与MnO含量较高(平均值分别为0.20%、0.27%、0.27%和0.014%),∑(SiO2+Al2O3+Fe2O3+P2O5+TiO2)在地层中下部具较高含量(最大值24.00%);Sr元素含量较低(135×10-6~407×10-6),∑REE+Y在地层中部含量较高,∑LREE/∑HREE分布在2~4,具显著正铈异常(δCe=5.6~6.2),配分曲线为平缓右倾模式.全岩与方解石的δ13C值分别为-1.5‰~1.1‰ VPDB、-3.4‰ ~+0.5‰ VPDB,δ18O值分别为-9.7‰ ~-3.5‰ VPDB、-9.8‰~-5.0‰ VPDB;垂向上,两者的δ13C值在地层中下部均以负值为主,中上部多为正值.依据δ13C、δ18O、MgO/CaO(0.03%~0.12%)、100×MgO/Al2O3(93.1~4 715.4)、B(278.7~1 494.2)、Sr/Ba(4.05~58.25)、1 000×Sr/Ca(5.41~14.43)、V/(V+Ni)(0.61~0.78)及U/Th(0.21~1.45)等与沉积环境的关系,推断龙王庙期水体温度在17~25℃,属半咸水-咸水环境;水体深度在早-中期波动频繁;以贫氧-缺氧环境为主,在早-中期、末期为阶段性富氧环境.整体上龙王庙组沉积早-中期受河流注入影响较为明显、陆源碎屑供给充足,具海陆过渡环境特征,沉积中后期为稳定的海相环境.咸水、缺氧的条件及海平面波动频繁并伴有大量陆源碎屑注入所产生的环境压力,是引发渝东地区寒武系第四阶生物消亡的主要环境因素.

       

    • 图  1  寒武纪重要的地质、生物与地球化学事件

      图央阶,伴随着三叶虫(RedlichiidOlenellid trilobites)的大量消亡,碳酸盐岩的δ13C值出现大幅负漂移.海平面变化曲线来源于Haq and Schutter (2008);生物多样性的种属数量来源于Ishikawa et al.(2014);主要的生物数量减少事件与相关的碳酸盐岩δ13C曲线来源于Zhu et al.(2006)

      Fig.  1.  Geological, biological and geochemical events during the Cambrian

      图  2  渝东地区位置、构造及龙王庙组地层、岩相古地理

      Fig.  2.  The location and structure of East Chongqing as well as the formation and lithofacies paleogeograohy of Longwangmiao Formation

      图  3  渝东地区龙王庙组野外露头与显微镜下照片

      岩性图例见图 2

      Fig.  3.  Field photos and thin section photomicrographs of Longwangmiao Formation at East Chongqing

      图  4  板凳沟剖面龙王庙组碳酸盐岩样品白云石、方解石、碎屑矿物百分含量

      岩性图例见图 2

      Fig.  4.  The dolomite, calcite and detrital mineral percentages of carbonates in Longwangmiao Formation at Bandenggou Section

      图  5  板凳沟剖面龙王庙组碳酸盐岩的δ13C-δ18O交互图

      空心圆表示受成岩改造强烈的无效样品

      Fig.  5.  Crossplot of δ13C-δ18O of carbonates in Longwangmiao Formation at Bandenggou Section

      图  6  板凳沟剖面龙王庙组碳酸盐岩δ13C值、δ18O值、Mn/Sr及MgO/CaO比值

      空心圆为依据相应判别标准确定的无效样品.岩性图例见图 2

      Fig.  6.  δ13C values, δ18O values, Mn/Sr molar ratios and MgO/CaO of carbonate in Longwangmiao Formation at Bandenggou Section

      图  7  板凳沟剖面龙王庙组碳酸盐岩的CaO-MgO、SiO2-CaO、Al2O3-CaO、SiO2-Al2O3、Mg/Ca-Na2O、Sr-Na2O、Na2O-SiO2、SiO2-Fe2O3、MnO-Fe2O3和CaO-Fe2O3交互图

      Fig.  7.  Crossplot of CaO-MgO, SiO2-CaO, Al2O3-CaO, SiO2-Al2O3, Mg/Ca-Na2O, Sr-Na2O, Na2O-SiO2, SiO2-Fe2O3, MnO-Fe2O3, CaO-Fe2O3of carbonates in Longwangmiao Formation at Bandenggou Section

      图  8  板凳沟剖面龙王庙组碳酸盐岩的Sr-CaO、Sr-SiO2、SiO2-Fe2O3、Sr-δ18O和SiO2-∑REE+Y交互图

      Fig.  8.  Crossplot of Sr-CaO, Sr-SiO2, SiO2-Fe2O3, Sr-δ18O and SiO2-∑REE+Y of carbonates in Longwangmiao Formation at Bandenggou Section

      图  9  板凳沟剖面龙王庙组碳酸盐岩的稀土元素(∑REE+Y)配分模式

      Fig.  9.  ∑REE+Y patterns of carbonates in Longwangmiao Formation at Bandenggou Section

      图  10  板凳沟剖面龙王庙组碳酸盐岩全岩及方解石、白云石组分的δ13C-δ18O交互图

      寒武纪海水与灰岩的δ13C与δ18O数据来源于Veizer et al.(1999)Montañez et al.(2000).全岩分析结果用圆形表示,方解石测试结果用三角形表示,白云石测试结果用四边形表示

      Fig.  10.  Crossplot of δ13C-δ18O of whole carbonates, calcites and dolomites in Longwangmiao Formation at Bandenggou Section

      图  11  板凳沟剖面龙王庙组部分同位素、元素计算结果及古环境特征

      岩性图例同见图 2

      Fig.  11.  Calculated results of isotopes and elements and palaeoenvironmental characteristics Longwangmiao Formation at Bandenggou Section

      图  12  渝东地区寒武系87Sr/ 86Sr比值变化

      数据来自黄思静等(2002)

      Fig.  12.  87Sr/ 86Sr value variations for the Cambrian, East Chongqing

      图  13  板凳沟剖面龙王庙组碳酸盐岩的V-总碎屑矿物、Ni-总碎屑矿物、U-总碎屑矿物、Th-总碎屑矿物、V/(V+Ni)-总碎屑矿物、U/Th-总碎屑矿物、V/(V+Ni)-∑(SiO2+Al2O3+Fe2O3+ P2O5+TiO2)和U/Th-∑(SiO2+Al2O3+Fe2O3+P2O5+TiO2)交互图

      Fig.  13.  Crossplots of V-∑detrital minerals, Ni-∑detrital minerals, U-∑detrital minerals, Th-∑detrital minerals, V/(V+Ni)-∑detrital minerals, U/Th-∑detrital minerals, V/(V+Ni)-∑(SiO2+Al2O3+Fe2O3+ P2O5+TiO2) and U/Th-∑(SiO2+Al2O3+Fe2O3+ P2O5+TiO2) of carbonates in Longwangmiao Formation at Bandenggou Section

      表  1  渝东地区板凳沟剖面龙王庙组矿物组成、主量元素含量、碳氧同位素组成及部分计算结果

      Table  1.   Mineral compositions, carbon and oxygen contents, major elements concentrations and calculated results of Longwangmiao Formation at Bandenggou Section, east Chongqing

      样品 岩性 主量元素(%) Σ(CaO+
      MgO+LOI)
      (%)
      Σ(SiO2+Al2O3+
      Fe2O3+TiO2+
      P2O5)(%)
      MgO/CaO
      (%/%)
      Mn/Sr
      (mol/mol)
      稳定同位素(‰) 矿物组分(%)
      SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 LOI 总量 δ13C δ18O 方解石 白云石 硬石膏 石英 斜长石 正长石 菱铁矿 黏土
      L1 灰岩 6.34 0.51 0.17 1.27 51.04 0.073 0.115 0.008 0.026 0.010 40.59 100.1005 92.90 7.06 0.02 0.43 0.0 -10.3 1.6 87.8 0 10.5 0 0 0 0
      L2 白云岩 4.66 1.76 0.88 17.16 32.34 0.106 0.416 0.030 0.068 0.037 43.00 100.46 92.50 7.41 0.53 2.28 0.1 -6.9 79.5 16.2 0 2.1 0.7 0 0 1.5
      L3 白云岩 30.40 10.82 4.39 10.74 15.5 0.392 3.50 0.110 0.42 0.076 24.25 100.60 50.49 46.11 0.69 13.98 0.8 -4.8 54.1 1.2 0 13.6 1.0 2.3 0 27.8
      L4 灰岩 5.31 0.51 0.53 1.21 50.73 0.027 0.239 0.007 0.024 0.011 40.93 99.53 92.87 6.39 0.02 0.29 -2.4 -11.7 0 100.0 0 0 0 0 0 0
      L5 白云岩 10.99 2.05 0.90 19.17 26.21 0.059 0.586 0.017 0.09 0.024 39.85 99.95 85.23 14.05 0.73 2.03 -1.5 -5.3 85.6 2.6 0 10.1 0 0 0 1.7
      L6 灰岩 0.79 0.30 0.57 8.57 44.91 0.027 0.099 0.011 0.013 0.005 44.00 99.30 97.48 1.68 0.19 1.38 0.6 -7.7 47.3 51.2 0 1.5 0 0 0 0
      L7 灰岩 4.11 1.07 0.41 4.54 46.72 0.192 0.528 0.008 0.034 0.016 41.87 99.50 93.13 5.64 0.10 0.27 -1.2 -9.3 18.8 71.3 0 3.0 1.7 5.2 0 0
      L8 灰岩 7.75 2.26 0.87 18.08 29.07 0.868 0.427 0.019 0.142 0.037 41.24 100.76 88.39 11.06 0.62 2.69 -0.9 -8.1 0 66.8 0 33.2 0 0 0 0
      L9 白云岩 8.23 1.28 1.31 18.25 27.9 0.222 0.591 0.016 0.069 0.023 41.48 99.37 87.63 10.91 0.65 2.20 -0.5 -8.3 88.0 1.7 0 5.1 1.8 2.3 1.1 0
      L10 白云岩 4.24 0.76 0.69 19.39 29.49 0.049 0.558 0.022 0.04 0.019 44.32 99.58 93.20 5.75 0.66 2.60 -1.3 -6.1 94.6 1.5 0 1.8 2.1 0 0 0
      L11 灰岩 1.32 0.52 0.46 5.63 48.48 0.049 0.325 0.017 0.025 0.014 43.39 100.23 97.50 2.34 0.12 1.25 -1.5 -7.6 22.5 75.5 0 0 2.1 0 0 0
      L12 白云岩 26.10 4.57 1.63 10.92 23.86 0.867 1.58 0.025 0.175 0.058 30.73 100.59 65.51 32.60 0.46 4.48 -1.7 -5.9 52.5 18.5 0 20.0 1.8 0 0 7.2
      L13 白云岩 18.75 4.14 1.39 14.63 25.13 0.308 0.865 0.021 0.209 0.069 34.43 99.94 74.19 24.56 0.58 4.11 -1.1 -3.1 75.3 1.3 0 12.5 1.8 3.7 0 5.4
      L14 灰岩 3.40 0.74 0.24 0.53 52.2 0.282 0.157 0.014 0.036 0.011 41.79 99.40 94.52 4.43 0.01 0.67 -1.2 -13.4 0 91.0 0 0.3 8.8 0 0 0
      L15 灰岩 1.89 0.33 0.14 0.49 54.56 0.193 0.02 0.015 0.015 0.020 42.82 100.49 97.87 2.40 0.01 0.59 -1.5 -13.4 0 85.6 0 1.5 12.8 0 0 0
      L16 灰岩 8.14 1.59 0.41 2.58 46.23 0.849 0.108 0.018 0.055 0.040 39.30 99.32 88.11 10.24 0.06 0.86 -0.4 -9.3 12.1 55.2 0 6.1 26.7 0 0 0
      L17 灰岩 6.52 1.45 0.38 1.35 48.78 0.723 0.109 0.019 0.063 0.035 40.02 99.45 90.15 8.45 0.03 0.85 0.1 -3.5 6.3 80.5 0 7.3 5.9 0 0 0
      L18 灰岩 8.63 1.57 0.44 1.56 47.25 0.758 0.123 0.017 0.078 0.033 38.88 99.34 87.69 10.75 0.03 0.70 -0.2 -9.0 5.4 74.1 0 10.4 0 0 0 0
      L19 灰岩. 4.11 1.03 0.42 1.97 49.85 0.469 0.115 0.015 0.035 0.012 41.48 99.51 93.30 5.61 0.04 0.46 0.0 -11.8 9.6 76.8 0 3.7 9.9 0 0 0
      L20 混积岩 11.42 2.34 0.53 2.65 43.68 0.827 0.403 0.012 0.103 0.034 37.58 99.58 83.91 14.43 0.06 0.37 -0.6 -9.5 9.6 46.5 0 13.8 0 21.9 0 8.1
      L21 混积岩 16.08 4.14 1.50 11.80 28.15 1.600 0.736 0.025 0.175 0.057 35.41 99.67 75.36 21.95 0.42 2.17 0.2 -7.4 41.2 19.1 1 8.2 0 20.5 0 10.0
      L22 混积岩 11.26 2.66 0.98 7.45 37.34 1.070 0.366 0.019 0.124 0.032 38.11 99.41 82.90 15.06 0.20 0.59 0.4 -8.2 37.7 40.4 0.7 7.6 13.6 0 0 0
      L23 混积岩 10.74 2.24 0.86 6.41 39.66 1.080 0.184 0.020 0.105 0.036 38.22 99.56 84.29 13.98 0.16 0.63 0.5 -10.5 26.5 40.4 0.6 0 0 21.1 0 5.2
      L24 混积岩 13.13 2.76 1.18 9.31 34.46 1.320 0.232 0.026 0.155 0.040 37.07 99.68 80.84 17.27 0.27 1.57 0.6 -8.7 39.6 28.2 0.5 8.1 23.5 0 0 0
      L25 混积岩 11.46 2.29 0.83 7.08 39.94 1.200 0.152 0.021 0.097 0.034 37.68 100.78 84.70 14.71 0.18 1.06 0.1 -7.9 26.2 34.6 0 9.3 0 26.2 0 5.7
      L26 白云岩 9.75 1.79 1.50 17.53 26.91 0.943 0.109 0.037 0.087 0.027 40.98 99.66 85.42 13.15 0.65 4.50 0.2 -9.7 80.8 0.5 0 5.7 13 0 0 0
      L27 白云岩 16.05 3.46 1.21 16.36 24.35 1.410 0.264 0.025 0.169 0.054 37.01 100.36 77.72 20.94 0.67 4.11 -0.1 -4.8 64.1 0 0.4 7.4 24.8 0 0 3.3
      L28 混积岩 24.28 4.76 0.91 12.72 22.76 1.770 0.724 0.020 0.236 0.097 32.14 100.42 67.62 30.28 0.56 3.67 0.1 -3.3 48.1 1.9 1 12 0 34.7 0 2.4
      L29 混积岩 27.85 3.76 1.05 6.73 29.21 0.862 0.44 0.020 0.257 0.119 30.43 100.73 66.37 33.04 0.23 5.14 -3.2 -6.4 35.3 32.5 0 29.6 0 2.7 0 0
      L30 白云岩 19.73 6.31 2.14 17.3 20.31 0.177 1.59 0.030 0.338 0.066 32.25 100.24 69.86 28.58 0.85 3.85 -9.1 -7.2 63.9 0 0 12.5 1.4 1.1 0 21
      L31 灰岩 20.09 2.43 0.89 2.82 38.88 0.042 0.528 0.017 0.169 0.101 33.28 99.25 74.98 23.68 0.07 13.09 -7.5 -5.0 3.5 74.3 0 19.1 0 0 0 3.2
      L32 白云岩 18.36 4.46 1.27 18.57 22.58 0.053 0.885 0.028 0.233 0.073 34.19 100.70 75.34 24.40 0.82 4.33 -1.6 -6.2 70.6 4.2 0 14 1.3 0 0 9.8
      L33 白云岩 26.45 4.00 1.65 15.09 19.35 0.345 1.29 0.027 0.208 0.086 30.81 99.31 65.25 32.39 0.78 3.82 -1.4 -6.1 68.2 0 0 23.9 3.4 1.3 0 3.3
      L34 白云岩 16.72 4.37 1.62 16.97 22.64 0.121 1.27 0.027 0.209 0.064 35.31 99.32 74.92 22.98 0.75 3.45 -1.2 -4.9 71.2 1.2 0 11.1 0.9 0 0 15.6
      L35 白云岩 15.09 3.76 1.35 18.2 23.3 0.110 0.958 0.027 0.164 0.045 36.83 99.83 78.33 20.41 0.78 3.19 -1.2 -6.2 81.8 0 0 12.8 1.1 0 0 4.4
      L36 灰岩 6.54 1.29 0.81 1.52 48.86 0.140 0.357 0.043 0.046 0.023 39.81 99.44 90.19 8.71 0.03 3.05 -1.3 -10.5 5.3 82.7 0 10.9 0 1.1 0 0
      L37 白云岩 10.33 2.97 2.64 17.01 25.45 0.073 1.18 0.054 0.166 0.063 39.33 99.27 81.79 16.17 0.67 6.78 -2.5 -11.4 83.7 0 0 7.2 1 0 0 8.1
      L38 白云岩 4.29 1.00 2.82 14.14 34.08 0.220 0.283 0.098 0.05 0.024 42.21 99.22 90.43 8.18 0.41 11.35 -0.3 -7.9 75.6 14.7 0 5.5 0 3.1 1.1 0
      L39 混积岩 39.66 6.63 1.41 2.44 24.08 0.412 3.594 0.024 0.397 0.178 20.62 99.45 47.14 48.28 0.10 3.25 -2.1 -10.4 6.1 35.1 0 21.5 20.5 5 0 11.7
      L40 碎屑岩 59.94 7.63 2.00 2.24 12.45 0.181 3.522 0.022 0.524 0.288 11.49 100.29 26.18 70.38 0.18 4.07 -4.3 -8.5 0 21.8 0 53.4 5.7 0 0 19
      L41 灰岩 1.38 0.53 0.36 5.09 48.17 0.058 0.154 0.013 0.022 0.008 43.67 99.46 96.93 2.30 0.11 0.78 0.6 -10.7 28.6 70.4 0 1 0 0 0 0
      L42 碎屑岩 54.30 12.68 4.50 4.15 8.8 0.202 4.51 0.023 0.771 0.162 10.34 100.42 23.27 72.41 0.47 7.16 -1.7 -7.9 0 12 0 53 6 1.2 0 27.8
      L43 灰岩 18.43 3.67 1.62 3.99 37.23 0.415 1.43 0.035 0.211 0.075 33.42 100.53 74.64 24.01 0.11 1.76 -0.7 -9.7 0 95.8 0 0 0 0 0 4.2
      L44 灰岩 12.69 3.49 1.26 3.33 41.2 0.193 1.23 0.031 0.18 0.046 35.75 99.40 80.28 17.67 0.08 1.24 -0.5 -12.7 9.7 59 0 13.8 3.3 5.6 0 8.6
      L45 灰岩 15.75 4.23 1.56 5.16 36.54 0.312 1.46 0.031 0.212 0.044 34.22 99.52 75.92 21.80 0.14 1.48 -0.2 -9.3 21.7 51 0 9.8 2.8 4.1 0 10.6
      L46 灰岩 6.30 1.81 0.86 2.50 47.38 0.165 0.681 0.023 0.091 0.023 39.43 99.26 89.31 9.08 0.05 0.77 0.1 -9.0 11.2 73.9 0 6.3 3.8 1.7 0 3.1
      L47 灰岩 13.41 3.02 0.87 2.12 43.05 0.106 1.33 0.022 0.152 0.041 35.52 99.64 80.69 17.49 0.05 0.70 -0.4 -11.5 6.7 69.1 0 17.8 2.5 0 0 4
      L48 碎屑岩 47.54 11.36 2.28 2.65 15.13 0.314 4.96 0.019 0.586 0.109 14.53 99.48 32.31 61.88 0.18 2.77 -1.7 -12.2 2.9 18.1 0 25.8 13.4 2.6 0 37.2
      L49 白云岩 5.30 1.66 1.28 12.24 35.82 0.354 0.538 0.032 0.053 0.024 42.16 99.46 90.22 8.32 0.34 2.42 0.8 -7.4 68.9 24.8 0 2.2 0 4 0 0
      L50 灰岩 4.53 1.12 0.36 1.28 50.55 0.121 0.453 0.015 0.05 0.019 40.93 99.43 92.76 6.08 0.03 0.50 -0.5 -11.7 6.4 87.4 0 2.6 2 1.7 0 0
      L51 灰岩 2.69 0.85 0.35 1.27 52.95 0.146 0.253 0.014 0.033 0.016 42.09 100.66 96.31 3.94 0.02 0.59 -0.1 -11.7 5.1 92.8 0 0.7 0 1.4 0 0
      L52 灰岩 1.80 0.54 0.40 3.7 49.56 0.070 0.165 0.014 0.018 0.009 42.99 99.27 96.25 2.77 0.07 0.73 0.6 -7.6 0 89.1 0 0 0 0 10.9 0
      L53 灰岩 0.88 0.43 0.30 4.37 49.64 0.080 0.088 0.013 0.013 0.006 43.5 99.32 97.51 1.63 0.09 0.64 0.3 -7.9 22.4 77.4 0 0.2 0 0 0 0
      L54 灰岩 0.73 0.73 0.38 0.59 54.25 0.021 0.054 0.006 0.022 0.102 42.75 99.64 97.59 1.96 0.01 2.57 -1.9 -8.4 0 99.7 0 0.3 0 0 0 0
      L55 白云岩. 0.75 0.41 0.40 10.56 42.62 0.032 0.126 0.016 0.017 0.006 44.55 99.49 97.73 1.58 0.25 1.26 0.5 -11.9 56.9 42.4 0 0.7 0 0 0 0
      L56 灰岩 2.81 1.06 0.49 7.67 44.31 0.032 0.383 0.013 0.029 0.016 42.48 99.29 94.46 4.41 0.17 0.83 0.6 -11.2 40.9 54.2 0 4.9 0 0 0 0
      L57 灰岩 1.67 0.55 0.65 2.80 51.63 0.029 0.175 0.014 0.02 0.009 42.44 99.99 96.87 2.90 0.05 0.69 0.5 -8.7 9 90.5 0 0.5 0 0 0 0
      L58 灰岩 0.87 0.33 0.61 4.71 49.45 0.034 0.091 0.017 0.01 0.006 43.28 99.41 97.44 1.83 0.10 1.17 0.4 -10.4 26.7 71.2 0 2.1 0 0 0 0
      L59 灰岩 2.04 0.47 0.34 2.63 52.01 0.030 0.156 0.020 0.015 0.013 42.45 100.17 97.09 2.88 0.05 1.14 0.2 -9.2 16.1 79.8 0 4.1 0 0 0 0
      L60 灰岩 1.51 0.58 0.59 8.48 44.53 0.036 0.189 0.024 0.019 0.009 43.56 99.53 96.57 2.71 0.19 2.02 0.4 -2.0 43.8 52.7 0 3.5 0 0 0 0
      L61 灰岩 0.51 0.31 0.29 6.98 47.26 0.036 0.098 0.011 0.012 0.005 43.87 99.38 98.11 1.13 0.15 0.95 0.0 -9.0 34.1 65.1 0 0.8 0 0 0 0
      L62 灰岩. 1.09 0.47 0.34 5.45 48.32 0.033 0.117 0.014 0.014 0.007 43.63 99.49 97.4 1.92 0.11 0.95 0.3 -11.3 37.3 61.7 0 1 0 0 0 0
      L63 灰岩 1.10 0.35 0.27 4.02 50.68 0.029 0.09 0.012 0.011 0.005 43.39 99.96 98.09 1.74 0.08 0.95 -0.1 -9.0 21.4 70.7 0 7.9 0 0 0 0
      L64 灰岩 0.76 0.35 0.29 6.82 48.39 0.027 0.114 0.012 0.015 0.004 43.76 100.54 98.97 1.42 0.14 1.17 0.3 -12.0 46.2 52.9 0 0.9 0 0 0 0
      L65 灰岩 2.30 0.46 0.17 2.17 51.63 0.025 0.171 0.007 0.019 0.008 42.44 99.40 96.24 2.96 0.04 0.50 0.7 -8.3 8.5 89.8 0 1.7 0 0 0 0
      L66 灰岩 0.33 0.13 0.31 6.13 49.15 0.019 0.035 0.012 0.006 0.003 43.9 100.03 99.18 0.78 0.12 0.89 0.7 -8.3 31.8 67.9 0 0.3 0 0 0 0
      L67 白云岩. 2.16 0.51 0.36 10.73 42.13 0.025 0.185 0.013 0.02 0.009 43.61 99.75 96.47 3.06 0.25 1.67 1.9 -6.8 60.9 35.4 0 3.7 0 0 0 0
      L68 灰岩 2.04 0.43 0.17 0.48 54.98 0.019 0.146 0.008 0.017 0.008 42.13 100.43 97.59 2.67 0.01 0.60 0.9 -9.0 0 94.6 0 5.4 0 0 0 0
      L69 白云岩. 28.01 1.88 0.53 13.49 22.2 0.083 1.21 0.019 0.039 0.034 32.14 99.64 67.83 30.49 0.61 3.99 2.0 -6.7 69.7 3.8 0 22.2 4.3 0 0 0
      L70 灰岩 5.52 0.23 0.13 4.55 47.52 0.021 0.061 0.011 0.009 0.005 42.68 100.74 94.75 5.89 0.10 0.90 0.0 -8.7 25.3 74.7 0 0 0 0 0 0
      L71 灰岩 1.71 0.26 0.35 8.11 45.37 0.031 0.078 0.016 0.009 0.005 43.59 99.53 97.07 2.33 0.18 1.47 0.5 -8.6 0 98.1 0 1.9 0 0 0 0
      L72 白云岩 5.71 0.66 0.68 11.74 38.54 0.037 0.24 0.023 0.019 0.011 42.3 99.96 92.58 7.08 0.30 2.23 1.1 -7.4 61.6 33.8 0 4.6 0 0 0 0
      L73 灰岩 1.86 0.40 0.28 2.16 51.79 0.022 0.14 0.015 0.013 0.005 42.61 99.30 96.56 2.56 0.04 0.79 0.2 -8.4 20.9 77.9 0 1.2 0 0 0 0
      L74 白云岩 1.34 0.37 0.42 13.70 38.74 0.053 0.072 0.019 0.01 0.009 45.06 99.79 97.5 2.15 0.35 1.61 0.5 -2.2 64.1 35.6 0 0.3 0 0 0 0
      L75 白云岩 4.67 0.55 0.45 19.76 29.56 0.032 0.182 0.014 0.017 0.010 44.10 99.35 93.42 5.70 0.67 1.87 0.7 -5.2 94.3 1.5 0 4.1 0 0.2 0 0
      L76 白云岩 0.48 0.25 1.66 19.21 31.84 0.048 0.094 0.058 0.011 0.004 46.03 99.69 97.08 2.41 0.60 6.78 -3.5 -7.5 95.1 4.2 0 0 0.7 0 0 0
      L77 白云岩 20.5 3.46 1.25 7.19 32.25 0.724 0.533 0.029 0.071 0.039 33.77 99.82 73.21 25.32 0.22 2.70 0.0 -8.7 35 30.1 0 11.7 3.5 12.6 0 7.2
      L78 灰岩 1.62 0.22 0.51 4.54 49.34 0.030 0.074 0.015 0.008 0.003 43.21 99.57 97.09 2.36 0.09 1.38 0.5 -8.5 30.7 68.7 0 0.5 0 0 0 0
      L79 灰岩 0.35 0.27 0.64 6.84 47.36 0.053 0.085 0.017 0.011 0.004 43.92 99.55 98.12 1.28 0.14 1.63 2.7 -2.3 0 100 0 0 0 0 0 0
      L80 灰岩 0.38 0.14 0.09 0.92 55.57 0.018 0.049 0.006 0.005 0.004 42.22 99.40 98.71 0.62 0.02 0.44 -0.5 -8.5 7 92.2 0 0.8 0 0 0 0
      L81 灰岩 3.56 0.97 0.42 3.97 48.3 0.032 0.377 0.010 0.031 0.015 41.93 99.62 94.2 5.00 0.08 0.79 0.6 -8.6 0 98.4 1.6 0 0 0 0 0
      L82 白云岩 0.83 0.22 0.73 9.36 44.33 0.063 0.063 0.019 0.01 0.005 44.4 100.03 98.09 1.80 0.21 2.14 0.8 -7.1 57.6 42.4 0 0 0 0 0 0
      L83 灰岩 6.04 1.09 0.31 3.11 48.05 0.035 0.488 0.008 0.034 0.023 40.13 99.32 91.29 7.50 0.06 0.64 1.1 -8.1 23.8 67.4 0 8.8 0 0 0 0
      注:受成岩改造明显的样品用蓝色字体标注,对应的主量元素数据不能用来进行古海洋环境的分析。
      下载: 导出CSV

      表  2  板凳沟剖面龙王庙组碳酸盐岩方解石、白云石组分的碳氧同位素组成

      Table  2.   δ13C and δ18O values of calcites and dolomites of carbonate in Longwangmiao Formation at Bandenggou Section

      样品 方解石 白云石 样品 方解石 白云石
      δ13C δ18O δ13C δ18O δ13C δ18O δ13C δ18O
      L2 -1.4 -8.7 0.1 -6.9 L61 0.0 -9.0 1.2 -7.3
      L5 -3.4 -6.2 -1.5 -5.3 67 0.3 -9.1 1.9 -6.8
      L20 -0.6 -9.5 0.5 -6.6 L69 0.1 -8.5 2.0 -6.8
      L32 -1.9 -5.9 -1.2 -6.2 L72 -0.5 -9.1 1.1 -7.4
      L38 -1.3 -9.1 -0.3 -7.9 L75 -0.2 -5.0 0.7 -5.2
      L41 0.4 -8.7 1.3 -6.9 L76 -0.1 -9.8 1.1 -8.0
      L49 -0.4 -9.1 0.8 -7.4 L83 0.5 -9.1 1.7 -7.4
      L54 0.4 -9.2 0.8 -8.3
      下载: 导出CSV

      表  3  渝东地区板凳沟剖面龙王庙组微量元素含量及部分计算结果

      Table  3.   Trace element concentrations and calculated results of Longwangmiao Formation at Bandenggou Section, East Chongqing

      样品 微量元素(10-6) ΣREE L/H δCe δEu
      V Ni Sr B Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Cr Co
      L7 7.35 3.98 363 0.32 31.00 6.79 10.40 1.23 4.16 0.76 0.12 0.62 0.11 0.50 0.11 0.28 0.06 0.29 0.04 3.15 9.95 1.25 30.07 3.55 6.08 0.77
      L11 5.61 2.81 168 0.15 17.20 7.61 12.10 1.48 5.24 1.04 0.22 0.98 0.19 1.02 0.22 0.60 0.10 0.59 0.08 6.84 6.83 0.88 39.4 2.36 6.06 0.98
      L16 10.70 2.96 258 0.26 16.40 9.93 15.90 1.94 6.87 1.26 0.21 1.01 0.17 0.81 0.16 0.45 0.08 0.43 0.06 4.94 11.10 1.02 46.09 3.62 6.09 0.82
      L17 8.82 3.70 277 0.13 17.00 9.74 15.60 1.91 6.76 1.26 0.21 1.02 0.18 0.87 0.18 0.49 0.09 0.47 0.07 5.32 10.90 1.37 46.00 3.37 6.08 0.81
      L18 10.10 5.07 303 0.11 20.40 10.10 17.00 2.14 7.61 1.45 0.23 1.18 0.21 1.03 0.21 0.60 0.10 0.58 0.08 6.15 12.40 2.04 50.81 3.14 6.10 0.77
      L20 14.00 6.04 407 0.35 44.10 7.64 12.80 1.63 5.91 1.14 0.18 0.90 0.17 0.85 0.18 0.52 0.10 0.58 0.08 5.19 16.00 2.35 40.69 2.57 6.05 0.78
      L43 21.30 10.20 246 0.81 94.50 21.20 35.40 4.31 15.80 2.95 0.33 2.42 0.45 2.22 0.46 1.30 0.22 1.21 0.17 14.30 21.20 6.53 106.86 2.98 6.20 0.54
      L46 11.70 6.64 371 0.50 45.90 8.19 13.50 1.84 6.90 1.41 0.25 1.05 0.21 1.06 0.22 0.62 0.11 0.61 0.09 6.65 13.80 2.94 45.55 2.38 5.77 0.89
      L52 4.60 2.65 237 0.02 12.40 2.83 4.32 0.53 1.81 0.34 0.08 0.27 0.05 0.24 0.05 0.13 0.03 0.16 0.02 1.52 6.69 0.68 13.50 2.76 5.95 1.15
      L53 3.52 2.24 253 0.12 9.78 5.56 8.60 1.09 3.91 0.83 0.14 0.66 0.13 0.59 0.11 0.27 0.04 0.21 0.03 3.76 5.35 0.47 27.06 2.90 5.87 0.83
      L57 5.30 3.14 250 0.27 11.50 5.13 7.50 0.97 3.46 0.67 0.12 0.52 0.10 0.52 0.11 0.29 0.06 0.29 0.04 3.24 5.55 1.01 24.34 2.75 5.67 0.89
      L59 7.82 3.08 218 0.05 9.07 5.20 8.15 0.99 3.31 0.57 0.16 0.45 0.08 0.37 0.07 0.18 0.03 0.15 0.02 2.26 5.82 0.47 23.02 3.96 6.05 1.38
      L60 6.26 3.41 147 0.10 18.70 4.38 6.76 0.84 2.94 0.56 0.11 0.43 0.08 0.38 0.08 0.20 0.04 0.18 0.02 2.44 5.94 0.3 21.22 2.80 5.57 0.93
      L63 4.60 2.10 157 0.16 7.85 4.53 6.53 0.86 3.03 0.58 0.11 0.46 0.09 0.46 0.09 0.24 0.04 0.20 0.03 3.05 5.93 0.47 17.76 2.65 6.15 0.85
      L65 6.93 2.23 172 0.10 9.50 3.34 5.68 0.71 2.53 0.54 0.09 0.38 0.08 0.40 0.08 0.22 0.04 0.24 0.04 2.31 4.32 0.21 10.84 3.11 5.74 1.20
      L66 3.50 1.84 167 0.16 5.15 2.43 3.47 0.43 1.51 0.29 0.07 0.22 0.04 0.19 0.04 0.11 0.02 0.12 0.02 1.22 5.43 0.47 22.41 2.58 5.75 0.77
      L68 4.95 2.02 166 0.02 13.10 4.52 6.82 0.88 3.18 0.65 0.10 0.48 0.11 0.52 0.11 0.29 0.05 0.27 0.04 3.28 4.47 0.07 13.36 3.93 5.87 1.23
      L70 3.30 1.16 151 0.08 5.37 3.21 4.60 0.55 1.89 0.32 0.08 0.25 0.04 0.18 0.04 0.09 0.02 0.10 0.02 1.12 5.85 0.14 28.28 5.02 6.07 1.01
      L73 4.31 1.51 235 0.13 7.77 5.11 10.20 1.43 5.48 1.14 0.22 0.73 0.13 0.48 0.08 0.17 0.03 0.14 0.02 2.11 4.72 0.32 13.24 3.66 5.90 1.10
      L78 3.11 1.94 135 0.02 6.68 2.75 4.46 0.58 2.10 0.42 0.09 0.29 0.05 0.24 0.05 0.11 0.02 0.12 0.02 1.28 4.53 0.18 11.16 3.54 5.99 1.10
      L80 2.72 1.53 168 0.37 4.49 2.37 3.81 0.48 1.64 0.33 0.07 0.22 0.04 0.18 0.04 0.10 0.02 0.11 0.02 1.11 8.26 1.04 22.27 2.50 6.08 0.74
      L81 9.71 3.19 156 0.29 18.00 3.95 6.92 0.90 3.34 0.69 0.10 0.48 0.1 0.50 0.11 0.29 0.06 0.29 0.04 2.99 7.19 1.01 24.97 2.34 6.18 0.72
      L83 8.52 2.94 154 0.32 21.70 4.17 7.71 1.01 3.72 0.78 0.11 0.55 0.12 0.62 0.13 0.39 0.07 0.42 0.06 3.67 30.07 3.55 6.08 0.77
      海水 3.57 0.79 0.51 2.34 0.46 0.12 0.71 0.12 0.860 0.25 0.83 0.12 0.82 0.16 18.400
      下载: 导出CSV
    • [1] Baker, P.A., Burns, S.J., 1985.Occurrence and Formation of Dolomite in Organic-Rich Continental Margin Sediments.AAPG Bulletin, 69(11):1917-1930. http://cn.bing.com/academic/profile?id=8cccbfd6a064cecd49e59ab2c57765bf&encoded=0&v=paper_preview&mkt=zh-cn
      [2] Banner, J.L., Hanson, G.N., 1990.Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis.Geochimica et Cosmochimica Acta, 54(11):3123-3137. doi: 10.1016/0016-7037(90)90128-8
      [3] Brasier, M.D., 1993.Towards a Carbon Isotope Stratigraphy of the Cambrian System:Potential of the Great Basin Succession.Geological Society, London, Special Publications, 70(1):341-350. doi: 10.1144/GSL.SP.1993.070.01.22
      [4] Brasier, M.D., Corfield, R.M., Derry, L.A., et al., 1994.Multiple δ13C Excursions Spanning the Cambrian Explosion to the Botomian Crisis in Siberia.Geology, 22(5):455-458. doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2
      [5] Brasier, M.D., Shields, G., Kuleshov, V.N., et al., 1996.Integrated Chemo- and Biostratigraphic Calibration of Early Animal Evolution:Neoproterozoic-Early Cambrian of Southwest Mongolia.Geological Magazine, 133(4):445-485. doi: 10.1017/S0016756800007603
      [6] Brasier, M.D., Sukhov, S.S., 1998.The Falling Amplitude of Carbon Isotopic Oscillations through the Lower to Middle Cambrian:Northern Siberia Data.Canadian Journal of Earth Sciences, 35(4):353-373. doi: 10.1139/e97-122
      [7] Budd, D.A., 1997.Cenozoic Dolomites of Carbonate Islands:Their Attributes and Origin.Earth-Science Reviews, 42(1-2):1-47. doi: 10.1016/S0012-8252(96)00051-7
      [8] Cai, C.F., Zhang, C.M., He, H., et al., 2013.Carbon Isotope Fractionation during Methane-Dominated TSR in East Sichuan Basin Gasfields, China:A Review.Marine and Petroleum Geology, 48:100-110. doi: 10.1016/j.marpetgeo.2013.08.006
      [9] Cao, T.T., Xu, S.H., Wang, Y., et al., 2011.Geobiological Conditions for the Formation of the Lower Cambrian Source Rocks in Yangba Area of Nanjiang County in the Sichuan Basin.Oil & Gas Geology, 32(1):11-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201101002
      [10] Chen, D.Z., Wang, J.G., Qing, H.R., et al., 2009.Hydrothermal Venting Activities in the Early Cambrian, South China:Petrological, Geochronological and Stable Isotopic Constraints.Chemical Geology, 258(3-4):168-181. doi: 10.1016/j.chemgeo.2008.10.016
      [11] Churnet, H.G., Misra, K.C., 1981.Genetic Implications of the Trace Element Distribution Pattern in the Upper Knox Carbonate Rocks, Copper Ridge District, East Tennessee.Sedimentary Geology, 30(3):173-194. doi: 10.1016/0037-0738(81)90039-7
      [12] Cioni, R., Innocenti, F., Mazzuoli, R., et al., 1973.Sr-Distribution and Carbonate Mineralogy in the "Calcare Maaiccio" Formation of Non-Metamorphic Tuscan, North of Auno River.Mechanisms of Development, 93(1-2):363-389.
      [13] Derry, L.A., Brasier, M.D., Corfield, R.M., et al., 1994.Sr and C Isotopes in Lower Cambrian Carbonates from the Siberian Craton:A Paleoenvironmental Record during the 'Cambrian Explosion'.Earth and Planetary Science Letters, 128(3-4):678-681. http://www.sciencedirect.com/science/article/pii/0012821X94901783
      [14] Derry, L.A., Kaufman, A.J., Jacobsen, S.B., 1992.Sedimentary Cycling and Environmental Change in the Late Proterozoic:Evidence from Stable and Radiogenic Isotopes.Geochimica et Cosmochimica Acta, 56(3):1317-1329. doi: 10.1016/0016-7037(92)90064-P
      [15] Dilliard, K.A., Pope, M.C., Coniglio, M., et al., 2007.Stable Isotope Geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada:Implications for Ocean Chemistry and Secular Curve Generation.Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4):174-194. doi: 10.1016/j.palaeo.2007.02.031
      [16] Donnelly, T.H., Shergold, J.H., Southgate, P.N., 1988.Anomalous Geochemical Signals from Phosphatic Middle Cambrian Rocks in the Southern Georgina Basin, Australia.Sedimentology, 35(4):549-570. doi: 10.1111/sed.1988.35.issue-4
      [17] Elderfield, H., Greaves, M.J., 1982.The Rare Earth Elements in Seawater.Nature, 296(5854):214-219. doi: 10.1038/296214a0
      [18] Feng, L.J., Li, C., Huang, J., et al., 2014.A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca.529-521 Ma) Yangtze Platform, South China.Precambrian Research, 246:123-133. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501009004.htm
      [19] Frank, T.D., Lyons, T.W., 2012.The Integrity of δ18O Records in Precambrian Carbonates, a Mesoproterozoic Case Study.Society for Sedimentary Geology, 67:315-326.
      [20] Friedman, I., O'Neil, J.R., 1977.Compilation of Stable Isotope Fractionation Factors of Geochemical Interest.In: Fleischer, M.ed., Data of Geochemistry.U.S.Geological Survey Professional Paper.United States Gowernment Printing Office, Washington D.C., 440-KK: KK1-KK12
      [21] Gould, S.J., 1989.Wonderful Life:The Burgess Shale and the Nature of History.Cambridge Univ.Press, Cambridge, 347.
      [22] Guo, Q.J., Strauss, H., Zhu M.Y., et al., 2013.High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China:Implications for the Ediacaran-Cambrian Transition.Precambrian Research, 225:209-217. doi: 10.1016/j.precamres.2011.10.003
      [23] Haq, B.U., Schutter, S.R., 2008.A Chronology of Paleozoic Sea-Level Changes.Science, 322(5898):64-69. doi: 10.1126/science.1161648
      [24] Hatch, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A..Chemical Geology, 99(1-3):65-82. doi: 10.1016/0009-2541(92)90031-Y
      [25] Horacek, M., Brandner, R., Abart, R., 2007.Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps:Evidence for Rapid Changes in Storage of Organic Carbon.Paleogeography, Paleoclimatology, Paleoecology, 252(1-2):347-354. doi: 10.1016/j.palaeo.2006.11.049
      [26] Huang, S.J., Shi, H., Mao X.D., et al., 2002.Evolution of Sr Isotopes of the Cambrian Section in Xiushan, Chongqing, and Related Global Correlation.Geological Review, 48(5):509-516 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005885
      [27] Ishikawa, T., Ueno, Y., Shu, D., et al., 2014.The δ13C Excursions Spanning the Cambrian Explosion to the Canglangpuian Mass Extinction in the Three Gorges Area, South China.Gondwana Research, 25:1045-1056. doi: 10.1016/j.gr.2013.03.010
      [28] Jiang, G.Q., Wang, X.Q., Shi, X.Y., et al., 2012.The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca.542-520 Ma) Yangtze Platform.Earth and Planetary Science Letters, 317-318:96-110. doi: 10.1016/j.epsl.2011.11.018
      [29] Jin, C.S., Li, C., Algeo, T.J., et al., 2016.A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (~529-514 Ma), Implications for Biota-Environment Co-Evolution.Earth and Planetary Science Letters, 441:38-51. doi: 10.1016/j.epsl.2016.02.019
      [30] Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129. doi: 10.1016/0009-2541(94)90085-X
      [31] Kaufman, A.J., Hayes, J.M., Knoll, A.H., et al., 1991.Isotopic Compositions of Carbonates and Organic Carbon from Upper Proterozoic Successions in Namibia:Stratigraphic Variation and the Effects of Diagenesis and Metamorphism.Precambrian Research, 49(3-4):301-327. doi: 10.1016/0301-9268(91)90039-D
      [32] Kaufman, A.J., Knoll A.H., 1995.Neoproterozoic Variations in the C-Isotopic Composition of Seawater:Stratigraphic and Biogeochemical Implications.Precambrian Research, 73(1-4):27-49. doi: 10.1016/0301-9268(94)00070-8
      [33] Kawabe, I., Toriumi, T., Ohta, A., et al., 1998.Monoisotopic REE Abundances in Seawater and the Origin of Seawater Tetrad Effect.Geochemical Journal, 32(4):213-229. doi: 10.2343/geochemj.32.213
      [34] Kinaman, D.J.J., 1969.Interpretation of Sr2+ Concentrations in Carbonate Minerals and Rocks.Journal of Sedimentary Petrology, 39(2):486-508. http://cn.bing.com/academic/profile?id=9eb9f2610d9e19d12fc367580cb5f1a6&encoded=0&v=paper_preview&mkt=zh-cn
      [35] Kirschvink, J., Magaritz, M., Ripperdan, R.L., et al., 1991.The Precambrian-Cambrian Boundary:Magnetostratigraphy and Carbon Isotopes Resolve Correlation Problems between Siberia, Morocco, and South China.GSA Today, 1(4):69-71,87,91. http://cn.bing.com/academic/profile?id=87394b9d561fd3e25aa732d7f9ef6733&encoded=0&v=paper_preview&mkt=zh-cn
      [36] Knauth, L.P., Kennedy, M.J., 2009.The Late Precambrian Greening of the Earth.Nature, 460:728-732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0b981aeed9775946c4f4ae961409bc8
      [37] Knoll, A.H., Walter, M.R., 1992.Latest Proterozoic Stratigraphy and Earth History.Nature, 356:673-678. doi: 10.1038/356673a0
      [38] Komiya, T., Hirata, T., Kitajima, K., et al., 2008.Evolution of the Composition of Seawater through Geologic Time and Its Influence on the Evolution of Life.Gondwana Research, 14(1-2):159-174. doi: 10.1016/j.gr.2007.10.006
      [39] Kumar, B., Sharma, S.D., Sreenivas, B., et al., 2002.Carbon, Oxygen and Strontium Isotope Geochemistry of Proterozoic Carbonate Rocks of the Vindhyan Basin, Central India.Precambrian Research, 113(1-2):43-63. doi: 10.1016/S0301-9268(01)00199-1
      [40] Kump, L.P., 1991.Interpreting Carbon-Isotope Excursions, Strangelove Oceans.Geology, 19:299-302. doi: 10.1130/0091-7613(1991)019<0299:ICIESO>2.3.CO;2
      [41] Land, S.L., Hoops, G.K., 1973.Sodium in Carbonate Sediments and Rocks:A Possible Index to the Salinity of Diagenetic Solutions.Journal of Sedimentary Petrology, 43(3):614-617. http://cn.bing.com/academic/profile?id=3ed899c80215abc71f1d84c578da193d&encoded=0&v=paper_preview&mkt=zh-cn
      [42] Leng, M.J., 2006.Isotopes in Palaeoenvironmental Research.Springer, Nertherlands Dordrecht, 227-257. doi: 10.1029/2007EO070007/full
      [43] Li, D., Ling, H.F., Shields-Zhou, G.A., et al., 2013.Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran-Cambrian Transition:Evidence from the Xiaotan Section, NE Yunnan, South China.Precambrian Research, 225:128-147. doi: 10.1016/j.precamres.2012.01.002
      [44] Li, J.H., Han, X.Q., Mao, X., 2014.The Structure Atlas of the World.Geological Publishing House, Beijing, 38-46 (in Chinese).
      [45] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break-up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210. doi: 10.1016/j.precamres.2007.04.021
      [46] Lindsay, J.F., Kruse, P.D., Green O.R., et al., 2005.The Neoproterozoic-Cambrian Record in Australia:A Stable Isotope Study.Precambrian Research, 143:113-133. doi: 10.1016/j.precamres.2005.10.002
      [47] Ling, H.F., Chen, X., Li D., et al., 2013.Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China:Implications for Oxygenation of Coeval Shallow Seawater.Precambrian Research, 225:110-127. doi: 10.1016/j.precamres.2011.10.011
      [48] Liu, B.J., Zeng, Y.F., 1985.The Basic and Working Method of the Lithofacies Paleogeography.Geological Publishing House, Beijing, 73-82 (in Chinese).
      [49] Liu, C., Xie, Q.B., Wang, G.W., et al., 2017.Rare Earth Element Characteristics of the Carboniferous Huanglong Formation Dolomites in Eastern Sichuan Basin, Southwest China:Implications for Origins of Dolomitizing and Diagenetic Fluids.Marine and Petroleum Geology, 81:33-49. doi: 10.1016/j.marpetgeo.2016.12.030
      [50] Liu, J.Q., Chen, W.B., Yang, P., et al., 2008.The Longeni-Angdanrco Paelo-Oil Dolomite Geochemical Characteristics in Southern Part of the Central Uplift Zone of Qiangtang Basin and It's Significance.Acta Petrologica Sinica, 24(6):1379-1389 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200806022.htm
      [51] Lu, F.H., Meyers, W.J., 1998.Massive Dolomitization of a Late Miocene Carbonate Platform:A Case of Mixed Evaporative Brines with Meteoric Water, Nijar, Spain.Sedimentology, 45(2):263-277. doi: 10.1046/j.1365-3091.1998.0142e.x
      [52] Ma, Z.X., Li, B., Liu, X.T., et al., 2015.Geochemical Characteristics and Implications for the Evolution of Sedimentary Environments of Early Cambrian Qingxudong Formation in Eastern Guizhou, Southwestern China.Geological Science and Technology Information, 34(2):71-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201502011.htm
      [53] Machel, H.G.Anderson, J.H., 1989.Pervasive Subsurface Dolomitization of the Nisku Formation in Central Alberta.SEPM Journal of Sedimentary Research, 59:891-911. http://cn.bing.com/academic/profile?id=c08ca1fa8f5141555f319d5380a38d15&encoded=0&v=paper_preview&mkt=zh-cn
      [54] Mclennan, S.M., 1989.Rare-Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes.Rev.Mineralogy, 21 (8):169-200. http://cn.bing.com/academic/profile?id=91c0512cdcfae055cb0720632560b9e6&encoded=0&v=paper_preview&mkt=zh-cn
      [55] Meng, H., Ren, Y., Zhong, D.K., et al., 2016.Geochemical Characteristic and Its Paleoenvironmental Implication of Cambrian Longwangmiao Formation in Eastern Sichuan Basin, China.Natural Gas Geoscience, 27(7):1299-1311 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201607015
      [56] Miliman, J.D., 1978.Marine Carbonates.Translated by Institute of Geology, Chinese Academy of Sciences.Science Press, Beijing, 121-126 (in Chinese).
      [57] Mitchell, J.T., Land, L.S., Miser, D.E., 1987.Modern Marine Dolomite Cement in a North Jamaican Fringing Reef.Geology, 15(6):557-560. doi: 10.1130/0091-7613(1987)15<557:MMDCIA>2.0.CO;2
      [58] Montañez, I.P., Osleger, D.A., Mack, L.E., et al., 2000.Evolution of the Sr and C Isotope Composition of Cambrian Oceans.GSA Today, 10 (5):1-7. http://cn.bing.com/academic/profile?id=60d50424a0d01290559abd3fb23d20e8&encoded=0&v=paper_preview&mkt=zh-cn
      [59] Pagès, A., Schmid, S., Edwards, D., et al., 2016.A Molecular and Isotopic Study of Palaeoenvironmental Conditions through the Middle Cambrian in the Georgina Basin, Central Australia.Earth and Planetary Science Letters, 447:21-32. doi: 10.1016/j.epsl.2016.04.032
      [60] Qiu, J.X., Lin, J.Q., 1993.Lithochemistry.Geological Publishing House, Beijing, 235-238 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gjsdz201206001
      [61] Ren, Y., Zhong, D.K., Gao, C.L., et al., 2015.Characteristics and Controlling Factors of the Lower Cambrian Longwangmiao Formation Reservoirs in Eastern Sichuan Basin and Its Adjacent Areas.Journal of Palaeogeography, 17(6):829-840 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201506009
      [62] Ren, Y., Zhong, D.K., Gao, C.L., et al., 2016.Geochemical Characteristics, Genesis and Hydrocarbon Significance of Dolomite in the Cambrian Longwangmiao Formation, Eastern Sichuan Basin.Acta Petrolei Sinica, 37(9):1102-1115 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201609004
      [63] Ren, Y., Zhong, D.K., Gao, C.L., et al., 2018.High-Resolutions Carbon Isotopic Records of Carbonates of Lower Cambrian Longwangmiao Formation in East Chongqing, China and Its Palaeoenvironment Significance.Acta Geologica Sinica, 92(2):359-377 (in Chinese with English abstract).
      [64] Rimmer, S.M., Thompson, J.A., Goodnight, S.A., et al., 2004.Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales:Geochemical and Petrographic Evidence.Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2):125-154. doi: 10.1016/S0031-0182(04)00466-3
      [65] Shi, H., Huang, S.J., Shen, L.C., et al., 2003.Strontium Isotope Composition of the Cambrian Luojiagou Section in Xiushan, Chongqing and Its Stratigraphic Significance.Journal of Stratigrphy, 27(1):71-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200301013.htm
      [66] Shimura, T., Kon, Y., Sawaki, Y., et al., 2014.In-Situ Analyses of Phosphorus Contents of Carbonate Minerals:Reconstruction of Phosphorus Contents of Seawater from the Ediacaran to Early Cambrian.Gondwana Research, 25:1090-1107. doi: 10.1016/j.gr.2013.08.001
      [67] Sholkovitz, E.R., Elderfield, H., Szymczak, R., et al., 1999.Island Weathering:River Sources of Rare Earth Elements to the Western Pacific Ocean.Marine Chemistry, 68(1-2):39-57. doi: 10.1016/S0304-4203(99)00064-X
      [68] Song, J.M., Liu, S.G., Zhao, Y.H., et al., 2016.Characteristics and Sedimentary Geological Significances of Lower-Middle Cambrian Tempestites in Central Sichuan Basin.Acta Petrolei Sinica, 37(1):30-42 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201601003
      [69] Tahata, M., Ueno, Y., Ishikawa, T., et al., 2013.Carbon and Oxygen Isotope Chemostratigraphies of the Yangtze Platform, South China:Decoding Temperature and Environmental Changes through the Ediacaran.Gondwana Research, 23:333-353. doi: 10.1016/j.gr.2012.04.005
      [70] Thomas, J.A., Maynard, J.B., 2004.Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems.Chemical Geology, 206(3-4):289-318. doi: 10.1016/j.chemgeo.2003.12.009
      [71] Tian, Y., Zhao, X.M., Wang, L.Z., et al., 2014.Geochemical Characteristics and Its Paleoenvironmental Implication of Permian Qixia Formation in Shizhu, Chongqing.Acta Sedimentologica Sinica, 32(6):1035-1045 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201406005
      [72] Tian, Y.H., Liu, S.G., Zhao, Y.H., et al., 2014.Diagenesis of Lower Cambrian Longwangmiao Formation Reservoirs in Central Area of Sichuan Basin, China.Journal of Chengdu University of Technology (Science & Technology Edition), 41(6):671-683 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201406002
      [73] Tribovillard, N., Algeo, T.J., Lyons T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012
      [74] Tucker, M.E., 1989.Carbon Isotopes and Precambrian-Cambrian Boundary Geology, South Australia:Ocean Basin Formation, Seawater Chemistry and Organic Evolution.Terra Nova, 1(6):573-582. doi: 10.1111/ter.1989.1.issue-6
      [75] Vandeginste, V., Swennen, R., Gleeson, S.A., et al., 2005.Zebra Dolomitization as a Result of Focused Fluid Flow in the Rocky Mountains Fold and Thrust Belt, Canada.Sedimentology, 52(5):1067-1095. doi: 10.1111/sed.2005.52.issue-5
      [76] Vasconcelos, C., McKenzie, J.A., Warthmann, R., et al., 2005.Calibration of the δ18O Paleo-Thermometer for Dolomite Precipitated in Microbial Cultures and Natural Environments.Geology, 33(4):317-320. doi: 10.1130/G20992.1
      [77] Veizer, J., 1983.Chemical Diagenesis of Carbonates: Theory and Application of Trace Element Technique.In: Arthur, M.A., Anderson, T.F., Kaplan I.R., eds., Stable Isotopes in Sedimentary Geology (Vol.10).Mineral Short Course, Soc.Econ.Paleont, 3-1-3-100.
      [78] Veizer, J., Ala, D., Azmy, K., et al., 1999.87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater.Chemical Geology, 161:59-88. doi: 10.1016/S0009-2541(99)00081-9
      [79] Veizer, J., Goddéris, Y., François, L.M., 2000.Evidence for Decoupling of Atmospheric CO2 and Global Climate during the Phanerozoic Eon.Nature, 408:698-701. doi: 10.1038/35047044
      [80] Wallmann, K., 2001.Controls on the Cretaceous and Cenozoic Evolution of Seawater Composition, Atmospheric CO2 and Climate.Geochimica et Cosmochimica Acta, 65(18):3005-3025. doi: 10.1016/S0016-7037(01)00638-X
      [81] Wang, J.G., Chen, D.Z., Yan, D.T., et al., 2012.Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation.Chemical Geology, 306-307:129-138. doi: 10.1016/j.chemgeo.2012.03.005
      [82] Wang, K.M., Luo, S.S., 2009a.Geochemical Characteristics and Environmental Significance of Gaoyuzhuang and Yangzhuang Formations in Yanshan Region.Bulletin of Mineralogy, Petrology and Geochemistry, 28(4):356-364 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200904007
      [83] Wang, K.M., Luo, S.S., 2009b.Geochemical Characters of Carbonates and Indicative Significance of Sedimentary Environment-An Example from the Gaoyuzhuang Formation of the Changcheng System in the Northern Hebei Depression.Oil & Gas Geology, 30(3):343-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200903014.htm
      [84] Wang, L.C., Hu, W.X., Wang, X.L., et al., 2014.Seawater Normalized REE Patterns of Dolomites in Geshan and Panlongdong Sections, China:Implications for Tracing Dolomitization and Diagenetic Fluids.Marine and Petroleum Geology, 56:63-73. doi: 10.1016/j.marpetgeo.2014.02.018
      [85] Wang, S.F., Zou, C.N., Dong, D.Z., et al., 2015a.Multiple Controls on the Paleoenvironment of the Early Cambrian Marine Black Shales in the Sichuan Basin, SW China:Geochemical and Organic Carbon Isotopic Evidence.Marine and Petroleum Geology, 66:660-672. doi: 10.1016/j.marpetgeo.2015.07.009
      [86] Wang, X.L., Hu, W.X., Yao, S.P., et al., 2011.Carbon and Strontium Isotopes and Global Correlation of Cambrian Series 2-Series 3 Carbonate Rocks in the Keping Area of the Northwestern Tarim Basin, NW China.Marine and Petroleum Geology, 28(5):992-1002. doi: 10.1016/j.marpetgeo.2011.01.006
      [87] Wang, X.Q., Shi, X.Y., Zhao, X.K., et al., 2015b.Increase of Seawater Mo Inventory and Ocean Oxygenation during the Early Cambrian.Palaeogeography, Palaeoclimatology, Palaeoecology, 440:621-631. doi: 10.1016/j.palaeo.2015.09.003
      [88] Webb, G.E., Kamber, B.S., 2000.Rare Earth Elements in Holocene Reefal Microbialites:A New Shallow Seawater Proxy.Geochimica et Cosmochimica Acta, 64(9):1557-1565. doi: 10.1016/S0016-7037(99)00400-7
      [89] Wei, W., Zhu, X.M., Zhu, S.F., et al., 2017.Origin of Lacustrine Dolomitic Rocks of the Lower Cretaceous Tengge'er Formation in Anan Sag, Erlian Basin.Earth Science, 42(2):258-272 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702007
      [90] Wen, H.J., Carignan, J., Chu, X.L., et al., 2014.Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian.Chemical Geology, 390:164-172. doi: 10.1016/j.chemgeo.2014.10.022
      [91] Wen, H.J., Fan, H.F., Zhang, Y.X., et al., 2015.Reconstruction of Early Cambrian Ocean Chemistry from Mo Isotopes.Geochimica et Cosmochimica Acta, 164:1-16. doi: 10.1016/j.gca.2015.05.008
      [92] Wotte, T., Alvaro, J.J., Shields, G.A., et al., 2007.C-, O- and Sr-Isotope Stratigraphy across the Lower-Middle Cambrian Transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana.Palaeogeography, Palaeoclimatology, Palaeoecology, 256(1-2):47-70. doi: 10.1016/j.palaeo.2007.09.002
      [93] Wotte, T., Strauss, H., Sundberg, F.A., 2011.Carbon and Sulfur Isotopes from the Cambrian Series 2-Cambrian Series 3 of Laurentia and Siberia.In:Hollingsworth, J.S., Sundberg, F.A., Foster, J.R., eds., Cambrian Stratigraphy and Paleontology of Northern Arizona and Southern Nevada.Museum of Northern Arizona Bulletin, 67:43-63.
      [94] Wu, C.J., Zhang, M.F., Ma, W.Y., et al., 2014.Organic Matter Characteristic and Sedimentary Environment of the Lower Cambrian Niutitang Shale in Southeastern Chongqing.Natural Gas Geoscience, 25(8):1267-1274 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201408018
      [95] Yang, A.H., Zhu, M.Y., Zhang, J.M., 2005.Stratigraphic Distribution and Palaeogeographic Control on the Early Cambiran Eodiscoids in Yangtze Platform.Journal of Palaeography, 7(2):219-233 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5546c21e1bedb3e488121c968eeed7c8&encoded=0&v=paper_preview&mkt=zh-cn
      [96] Yang, X.F., Wang, X.Z., Yang, Y.M., et al., 2015.Diagenesis of the Dolomite Reservoir in Lower Cambrian Longwangmiao Formation in Central Sichuan Basin.Geological Science and Technology Information, 34(1):35-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201406002
      [97] Yang, Z.Y., Shen, W.Z., Zheng, L.D., 2009.Elements and Isotopic Geochemistry of Guadalupian-Lopinggian Boundary Profile at the Penglaitan Section of Laibin, Guangxi Province, and Its Geological Implications.Acta Geologica Sinica, 83 (1):1-15 (in Chinese with English abstract). doi: 10.1111/acgs.2009.83.issue-1
      [98] Zhang, J., Nozaki, Y., 1996.Rare Earth Elements and Yttrium in Seawater:ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean.Geochimica et Cosmochimica Acta, 60(23):4631-4644. doi: 10.1016/S0016-7037(96)00276-1
      [99] Zhang, M.Z., Peng, S.B., Zhang, L., et al., 2016.New Recognition of Carbonate Nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication.Earth Science, 41(12):1977-1994 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201612001
      [100] Zhang, P., Hua, H., Liu, W.G., 2014.Isotopic and REE Evidence for the Paleoenvironmental Evolution of the Late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China.Precambrian Research, 242:96-111. doi: 10.1016/j.precamres.2013.12.011
      [101] Zhang, X.L., 1985.Relationship Between Carbon and Oxygen Stable Isotope in Carbonate Rocks and Paleosalinity and Paleotempreature of Seawater.Acta Sedimentologica Sinica, 3(4):17-30 (in Chinese with English abstract).
      [102] Zhang, X.L., Liu, W., Zhao, Y.L, 2008.Cambrian Burgess Shale-Type Lagerstätten in South China:Distribution and Significance.Gondwana Research, 14(1-2):255-262. doi: 10.1016/j.gr.2007.06.008
      [103] Zhang, Z.F., Zhang, Z.L., Guo, X.L., et al., 2016.The Cambrian Brachiopod Fauna from the First-Trilobite Age Shuijingtuo Formation in the Three Gorges Area of China.Palaeoworld, 25(3):333-355. doi: 10.1016/j.palwor.2015.10.001
      [104] Zhao, Y.Y., Zheng, Y.F., Chen, F.K., 2009.Trace Element and Strontium Isotope Constraints on Sedimentary Environment of Ediacaran Carbonates in Southern Anhui, South China.Chemical Geology, 265(3-4):345-362. doi: 10.1016/j.chemgeo.2009.04.015
      [105] Zhou, G.S., Zhu, M.Y., 2013.Biogeochemical Changes across the Ediacaran-Cambrian Transition in South China.Precambrian Research, 225:1-6. doi: 10.1016/j.precamres.2012.10.011
      [106] Zhou, J.G., Xu, C.C., Yao, G.S., et al., 2015.Genesis and Evolution of Lower Cambrian Longwangmiao Formation Reservoirs, Sichuan Basin, SW China.Petroleum Exploration and Development, 42(2):159-166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201502004
      [107] Zhu, M.Y., Babcock, L.E., Peng, S.C., 2006.Advances in Cambrian Stratigraphy and Paleontology:Integrating Correlation Techniques, Paleobiology, Taphonomy and Paleoenvironmental Reconstruction.Palaeoworld, 15(3-4):217-222. doi: 10.1016/j.palwor.2006.10.016
      [108] Zhu, M.Y., Zhang, J.M., Guo, X.L., et al., 2004.Evolution of C Isotopes in the Cambrian of China:Implications for Cambrian Subdivision and Trilobite Mass Extinctions.Geobios, 37(2):287-301. doi: 10.1016/j.geobios.2003.06.001
      [109] 曹婷婷, 徐思煌, 王约, 等, 2011.四川盆地南江杨坝地区下寒武统烃源岩形成的地球生物学条件.石油与天然气地质, 32(1):11-16. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201101002
      [110] 黄思静, 石和, 毛晓冬, 等, 2002.重庆秀山寒武系锶同位素演化曲线及全球对比.地质论评, 48(5):509-516. doi: 10.3321/j.issn:0371-5736.2002.05.009
      [111] 李江海, 韩喜球, 毛翔, 2014.全球构造图集.北京:地质出版社, 38-46.
      [112] 刘宝珺, 曾允孚, 1985.岩相古地理基础和工作方法.北京:地质出版社, 73-82.
      [113] 刘建清, 陈文斌, 杨平, 等, 2008.羌塘盆地中央隆起带南侧额尼-昂达尔错古油藏白云岩地球化学特征及成因意义.岩石学报, 24(6):1379-1389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806021
      [114] 马志鑫, 李波, 刘喜停, 等, 2015.黔东下寒武统清虚洞组地球化学特征及其对沉积环境演化的指示.地质科技情报, 34(2):71-77. http://www.cqvip.com/QK/93477A/201502/664355501.html
      [115] 孟昊, 任影, 钟大康, 等, 2016.四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义.天然气地球科学, 27(7):1299-1311. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201607015
      [116] 米利曼, J.D., 1978.海洋碳酸盐.中国科学院地质研究所译.北京:科学出版社, 121-126. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb201304006
      [117] 邱家骧, 林景仟, 1993.岩石化学.北京:地质出版社, 235-238.
      [118] 任影, 钟大康, 高崇龙, 等, 2015.川东及期周缘地区下寒武统龙王庙组储集层特征与控制因素.古地理学报, 17(6):829-840. http://d.wanfangdata.com.cn/Periodical/gdlxb201506009
      [119] 任影, 钟大康, 高崇龙, 等, 2016.川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义.石油学报, 37(9):1102-1115. http://d.old.wanfangdata.com.cn/Periodical/syxb201609004
      [120] 任影, 钟大康, 高崇龙, 等, 2018.渝东地区寒武系龙王庙组高分辨率碳酸盐岩碳同位素记录及其古海洋学意义.地质学报, 92(2):359-377. doi: 10.3969/j.issn.0001-5717.2018.02.011
      [121] 石和, 黄思静, 沈立成, 等, 2003.重庆秀山寒武纪海相碳酸盐岩的锶同位素组成及其地层学意义.地层学杂志, 27(1):71-76. doi: 10.3969/j.issn.0253-4959.2003.01.013
      [122] 宋金民, 刘树根, 赵异华, 等, 2016.川中地区中下寒武统风暴岩特征及其沉积地质意义.石油学报, 37(1):30-42. doi: 10.3969/j.issn.1671-4067.2016.01.011
      [123] 田洋, 赵小明, 王令占, 等, 2014.重庆石柱二叠纪栖霞组地球化学特征及其环境意义.沉积学报, 32(6):1035-1045. http://d.old.wanfangdata.com.cn/Periodical/cjxb201406005
      [124] 田艳红, 刘树根, 赵异华, 等.2014.四川盆地中部龙王庙组储层成岩作用.成都理工大学学报(自然科学版), 41(6):671-683. doi: 10.3969/j.issn.1671-9727.2014.06.02
      [125] 汪凯明, 罗顺社, 2009a.燕山地区中元古界高于庄组和杨庄组地球化学特征及环境意义.矿物岩石地球化学通报, 28(4):356-364. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200904007
      [126] 汪凯明, 罗顺社, 2009b.碳酸盐岩地球化学特征与沉积环境判别意义——以冀北坳陷长城系高于庄组为例.石油与天然气地质, 30(3):343-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200903014
      [127] 魏巍, 朱筱敏, 朱世发, 等, 2017.二连盆地阿南凹陷下白垩统腾格尔组湖相云质岩成因.地球科学, 42(2):258-272. http://earth-science.net/WebPage/Article.aspx?id=3428
      [128] 吴陈君, 张明峰, 马万云, 等, 2014.渝东南牛蹄塘组有机质特征及沉积环境研究.天然气地球科学, 25(8):1267-1274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201408018
      [129] 杨爱华, 朱茂炎, 张俊明, 2005.扬子地台早寒武世古盘虫类的地层分布及其古地理控制.古地理学报, 7(2):219-232. doi: 10.3969/j.issn.1671-1505.2005.02.007
      [130] 杨雪飞, 王兴志, 杨跃明, 2015.川中地区下寒武统龙王庙组白云岩储层成岩作用.地质科技情报, 34(1):35-41. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501006.htm
      [131] 杨振宇, 沈渭洲, 郑连弟, 等, 2009.广西来宾蓬莱滩二叠纪瓜德鲁普统-乐平统界线剖面元素和同位素地球化学研究及地质意义.地质学报, 83(1):1-15. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200901001
      [132] 张明正, 彭松柏, 张利, 等, 2016.秭归地区震旦系陡山沱组碳酸盐岩结核成因新认识及其地质意义.地球科学, 41(12):1977-1994. http://d.old.wanfangdata.com.cn/Periodical/dqkx201612001
      [133] 张秀莲, 1985.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系.沉积学报, 3(4):17-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000029780
      [134] 周进高, 徐春春, 姚根顺, 等, 2015.四川盆地下寒武统龙王庙组储集层形成与演化.石油勘探与开发, 42(2):159-166. http://d.old.wanfangdata.com.cn/Periodical/syktykf201502004
    • 加载中
    图(13) / 表(3)
    计量
    • 文章访问数:  2465
    • HTML全文浏览量:  890
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-22
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回