Petrography-Geochemistry and Source Significance of Western Canyon Channel of Northern South China Sea
-
摘要: 峡谷水道是南海北部琼东南盆地深水区主要储集层,乐东-陵水凹陷黄流组储集岩以粉、细砂岩为主,储层物性好.然而目前针对不同期水道主要物源供给及水道形成的母岩区性质、古风化程度等研究甚少.对中央峡谷西段水道的砂泥岩进行了岩石薄片与重矿物成分观察统计、岩石主量、微量/稀土元素分析,结果表明:岩石类型以岩屑石英砂岩和长石岩屑砂岩为主,崖城、陵水区重矿物分别为磁铁矿、白钛矿、锆石、电气石与白钛矿、石榴石、电气石、锆石的组合;地球化学特征表现为泥岩较砂岩SiO2含量低,Fe2O3、MgO、K2O、稀土含量偏高,与其含有高粘土矿物有关.砂、泥岩Al2O3/TiO2、K2O/Al2O3、K2O/Na2O比值说明物源区富石英、贫钾长石,分别为石英质沉积与中性火成岩源区;砂岩较泥岩具有较高SiO2/Al2O3比值、低ICV、CIA、CIW值,表明源区经历了低-中等程度的风化作用,是稳定构造环境再循环沉积而成,泥岩的形成环境较砂岩动荡.Abstract: Canyon channel is the main reservoir of the deepwater area in Qiongdongnan basin in the northern South China Sea. Reservoir stones have good physical properties since they are dominated by powder and fine sandstones. However, there are few studies on the main provenance supply, nature of the parent rock area in different periods of channel formation, and paleo-weathering degree. In this study, it is found that the rock types are mainly debris-quartz sandstone and feldspar-debris sandstone.The heavy mineral assemblages show that they are dominated by magnetite, ilmenite, zircon and tourmaline in Yacheng area, whereas they are dominated by ilmenite, garnet, tourmaline and zircon in Lingshui area. Geochemical characteristics of mudstone show significantly lower SiO2 content, but higher Fe2O3, MgO, K2O and the total amount of rare earth contents relating to high clay minerals than sandstone. Al2O3/TiO2, K2O/Al2O3 and K2O/Na2O ratios in mudstone and sandstone indicate that the source area is enriched in quartz and depleted in potassium feldspar, and is of quartz sediment source, and neutral igneous rock source respectively. The sandstone is characterized with higher SiO2/Al2O3 ratio, lower ICV, CIA and CIW values compared to mudstone, indicating that the source regions have experienced low to moderate weathering, and they are the deposition of recirculation in the stable tectonic environment, whereas the formation environment of mudstone is more active.
-
Key words:
- canyon channel /
- petrography /
- geochemistry /
- source significance /
- Huangliu Formation /
- deepwater area /
- Qiongdongnan basin
-
图 5 黄流组峡谷水道砂岩的lg(SiO2/Al2O3)-lg(Fe2O3/K2O)图解
图中A、B、C、D、E、F、G分别代表亚岩屑砂岩、亚长石砂岩、岩屑砂岩、长石砂岩、杂砂岩、页岩、铁页岩;据Herron(1988)
Fig. 5. Chemical classification of Huangliu Formation canyon channel
图 7 黄流组峡谷水道沉积母岩性质判别图解
图a据Saminpanya et al.(2014);图b据Roser and Korsch(1988);图c据Hayashi et al.(1997)
Fig. 7. Discrimination diagrams for provenance of Huangliu Formation canyon channel
表 1 黄流组峡谷水道砂、泥岩样品信息
Table 1. Data of samples from sandstone and mudstone from Huangliu Formation canyon channel
岩性井号 泥岩 岩屑石英砂岩 钙质砂岩 A-1 Z-1 X-7 X-8 X-4 X-1 A-1 Z-1 X-8 X-4 X-1 X-7 样品深度(m)样品类型 MS1 MS2 MS3 MS4 MS5 MS6 MS7 MS8 SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 4 254 4 353 3 750 3 962.5 3 467.8 3 398 3 234.85 3 344.9 4 273 3 833 3 890.5 3 436.8 3 258.2 3 344.2 3 345.41 3 489.4 壁心 岩心 壁心 岩心 壁心 表 2 黄流组峡谷水道砂、泥岩样品主量元素(%)、微量元素(10-6)、稀土元素(10-6)分析结果
Table 2. Results of major elements (%), trace elements (10-6) and rare earth elements (10-6) from sandstone and mudstone from Huangliu Formation canyon channel
样品 MS1 MS2 MS3 MS4 MS5 MS6 MS7 MS8 SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 TiO2 0.7 0.7 0.8 0.7 0.7 0.7 0.6 0.8 0.5 0.4 0.5 0.4 0.4 0.4 0.4 0.3 Al2O3 16.8 17.0 15.9 14.7 15.7 16.4 13.1 14.7 7.5 6.6 7.6 6.7 7.3 7.5 7.4 5.5 Fe2O3 6.2 6.6 6.9 6.1 6.2 6.4 5.2 6.7 4.2 5.9 4.4 4.7 4.7 4.1 4.2 3.7 MnO 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.8 MgO 2.3 2.5 2.7 2.6 2.4 2.4 2.0 2.6 1.3 1.2 1.7 1.2 1.3 1.3 1.3 1.1 CaO 6.5 6.6 3.5 6.6 9.9 5.2 14.7 6.3 1.6 2.5 4.9 2.5 3.1 2.3 2.3 15.6 Na2O 1.0 1.0 1.2 0.7 1.1 1.3 1.1 1.4 1.5 0.9 0.8 1.3 1.1 1.3 1.2 0.8 K2O 3.7 4.1 3.3 3.0 3.2 3.3 2.7 3.0 1.4 2.2 1.7 1.9 2.2 2.2 2.2 1.7 SiO2 47.7 46.4 50.7 50.5 45.6 49.2 45.5 49.4 71.8 70.2 68.2 71.1 69.9 70.7 71.0 60.5 SiO2/Al2O3 2.8 2.7 3.2 3.4 2.9 3.0 3.5 3.4 9.6 10.6 8.9 10.6 9.6 9.4 9.6 11.8 Al2O3/TiO2 24.0 24.3 19.9 21.0 22.4 23.4 21.8 18.4 15.0 16.5 15.2 16.8 18.3 18.8 18.5 18.3 K2O/Na2O 3.7 4.1 2.8 4.3 2.9 2.5 2.5 2.1 0.9 2.4 2.1 1.5 2.0 1.7 1.8 2.1 K2O/Al2O3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 CIA 60.0 59.2 66.5 58.6 52.6 62.5 41.6 58.0 62.4 54.1 50.7 54.0 53.2 56.4 56.6 23.1 CIW 69.2 69.0 77.0 66.5 58.8 71.5 45.5 65.6 71.0 66.1 57.2 63.9 63.4 67.5 67.9 24.9 ICV 1.2 1.3 1.2 1.4 1.5 1.2 2.0 1.4 1.4 2.0 1.9 1.8 1.8 1.6 1.6 4.4 Sc 16.8 17.4 16.6 14.6 16.5 17 12.8 14 6.46 5.15 6.48 5.53 5.31 4.12 5.99 4.51 V 122 130 132 123 124 140 105 123 58 54.5 60 54.1 53 57.2 57 42.2 Cr 169 273 288 284 116 226 128 113 284 1840 1441 388 933 261 387 451 Co 15.2 16.3 16.9 14.7 13.2 14.6 12.4 14.2 9.81 17.5 12.8 9.35 11.8 9.48 9.9 8.98 Ni 66 99.4 90.6 99.4 48.8 72.8 42 41.1 72.5 648 448 62.7 272 63.5 101 217 Cu 55.4 110 115 171 108 66.4 148 157 151 357 128 330 63.4 72.6 60.6 175 Zn 132 158 160 193 164 126 173 186 317 153 114 467 79.6 98.4 86.6 138 Sr 280 296 176 298 322 237 452 273 645 91.8 132 760 134 131 130 463 Y 20.3 23.2 24.3 22.8 28.7 25.8 24.5 24.2 13.4 17.9 17.9 16.3 17.4 17.2 18 20.2 Zr 225 238 303 264 280 296 242 285 137 140 232 143 157 164 173 90.4 Nb 13.8 15.7 16.5 12.4 15.6 15.9 10.9 17.7 9.17 1.84 8.44 8.81 5.26 7.94 8.72 4.87 Ba 1573 569 437 589 523 1094 682 441 5315 274 330 5477 328 1059 780 520 Th 15.7 15.9 16.4 14.9 15.7 16.7 13.3 15.1 11.3 12 12.3 9.73 10.3 10.3 14.2 8.68 U 2.36 2.66 2.88 2.65 2.46 2.64 2.27 2.49 2.1 1.56 1.9 1.68 1.38 1.54 1.58 1 Pb 52 96.7 31.4 25.6 23.8 31.1 24.4 22 623 24.2 68.2 551 17.8 33.2 30.9 18.4 Th/U 6.65 5.98 5.69 5.62 6.38 6.33 5.86 6.06 5.38 7.69 6.47 5.79 7.46 6.69 8.99 8.68 Th/Sc 0.93 0.91 0.99 1.02 0.95 0.98 1.04 1.08 1.75 2.33 1.90 1.76 1.94 2.50 2.37 1.92 La 38.8 40.7 43.4 39 45 44.6 37.9 39.4 31.6 32.3 35.4 27.3 30.2 36.6 36.2 25.7 Ce 70.7 78 84.2 71 81 86 67.7 75 63.1 63.5 67.5 59.2 57.6 77 68.7 47.4 Pr 8.8 9.28 10.1 8.59 10.1 9.88 8.46 8.87 7.42 7.5 8.04 6.46 6.97 8.61 8.22 5.68 Nd 33.6 35.6 39.1 33.2 39.4 37.8 33 34.6 29.3 30 31.5 26 28 33.9 32.6 22.3 Sm 6.18 6.59 7.38 6.11 7.23 7.04 6.12 6.4 5.49 5.82 5.84 5.16 5.43 6.13 6.17 4.29 Eu 1.41 1.31 1.43 1.22 1.48 1.48 1.26 1.24 1.82 1.02 0.99 1.9 1.03 1.28 1.14 0.84 Gd 4.99 5.25 6.05 4.96 5.91 5.64 4.41 4.86 4.71 4.68 4.44 4.73 4.4 4.93 4.92 3.45 Tb 0.77 0.86 0.95 0.8 0.97 0.9 0.79 0.82 0.62 0.72 0.68 0.65 0.7 0.73 0.74 0.6 Dy 4.08 4.61 5.05 4.37 5.31 4.97 4.36 4.51 3.05 3.71 3.49 3.35 3.63 3.66 3.81 3.29 Ho 0.77 0.87 0.94 0.84 1.02 0.95 0.83 0.87 0.53 0.66 0.65 0.61 0.66 0.66 0.68 0.65 Er 2.12 2.38 2.63 2.34 2.88 2.69 2.42 2.52 1.42 1.75 1.78 1.63 1.76 1.75 1.82 1.79 Tm 0.4 0.44 0.5 0.44 0.53 0.5 0.45 0.48 0.27 0.31 0.33 0.31 0.31 0.32 0.32 0.32 Yb 2.33 2.61 2.95 2.63 3.02 2.93 2.52 2.77 1.66 1.7 1.9 1.87 1.72 1.82 1.87 1.77 Lu 0.36 0.37 0.43 0.4 0.46 0.44 0.39 0.41 0.33 0.25 0.28 0.35 0.26 0.28 0.28 0.26 ∑REE 175.3 188.9 205.1 175.9 204.3 205.8 170.6 182.8 151.3 153.9 162.8 139.5 142.7 177.7 167.5 118.3 LREE/HREE 10.1 9.9 9.5 9.5 9.2 9.8 9.6 9.6 11.0 10.2 11.0 9.3 9.6 11.6 10.6 8.8 -
[1] Gao, D., Chen, R.H., Shen, Y.J., et al., 2016.Southwestern Provenance-Sedimentary System and Provenance Tectonic Setting of Eastern Sag in the North Yellow Sea Basin.Earth Science, 41(7):1171-1187 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.095 [2] Guo, C.T., Gao, J., Li, Z., et.al., 2017.Deposotional and Provenance Records of Upper Devonian to Lower Carboniferous Sandstones from Bachu Area, Northwestern Tarim Basin:Implications for Tectonic Evolution.Earth Science, 42(3):421-434 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.032 [3] He, Y.L., Xie, X.N., Li, J.L., et al., 2010.Depositional Characteristics and Controlling Factors of Continental Slope System in the Qiongdongnan Basin.Geological Science and Technology Information, 29(2):118-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201002022.htm [4] Herron, M.M., 1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.Journal of Sedimentary Research, 58:820-883. https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/58/5/820/98094/geochemical-classification-of-terrigenous-sands [5] Hu, G.H., Zhou, Y.Y., Zhao, T.P., 2012.Geochemistry of Proterozoic Wufoshan Group Sedimentary Rocks in the Songshan Area, Henan Province:Implications for Provenance and Tectonic Setting.Acta Petrologica Sinica, 28(11):3692-3704(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211021.htm [6] Jian, X., Guan, P., Zhang, W., et al., 2013.Geochemistry of Mesozoic and Cenozoic Sediments in the Northern Qaidam Basin, Northeastern Tibetan Plateau:Implications for Provenance and Weathering.Chemical Geology, 360-361:74-88. https://doi.org/10.1016/j.chemgeo.2013.10.011 [7] Lei, C., Ren, J.Y., Li, X.S., et al., 2011a.Structural Characteristics and Petroleum Exploration Potential in the Deep-Water Area of the Qiongdongnan Basin, South China Sea.Petroleum Exploration and Development, 38(5):560-569 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201105008.htm [8] Lei, C., Ren, J.Y., Pei, J.X., et al., 2011b.Tectonic Framework and Multiple Episode Tectonic Evolution in Deepwater Area of Qiongdongnan Basin, Northern Continental Margin of South China Sea.Earth Science, 36(1):151-162(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.016 [9] Li, D., Wang, Y.M., Wang, Y.F., et al., 2011.The Sedimentary and Foreground of Prospect for Levee-Overbank in Central Canyon, Qiongdongnan Basin.Acta Sedimentologica Sinica, 29(4):689-694 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201104008.htm [10] Li, D., Xu, Q., Wang, Y.F., 2015.Provenance Analysis of the Pliocene Central Canyon in Qiongdongnan Basin and Its Implications.Acta Sedimentologica Sinica, 33(4):659-664 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201504004.htm [11] Li, D., Xu, Q., Wang, Y.F., et al., 2013.Filling Evolution and Sand Distribution in the West Part of Central Canyon, Qiongdongnan Basin.Oil Geophysical Prospecting, 48(5):799-803 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYDQ201305021.htm [12] Liu, H.L., Yao, Y.J., Shen, B.Y., et al., 2015.On Linkage of Western Boundary Faults of the South China Sea.Earth Science, 40(4):615-632(in Chinese with English abstract). https://doi.org/10.3799/dqke.2015.049 [13] Mao, G.Z., Liu, C.Y., 2011.Application of Geochemistry in Provenance and Depositional Setting Analysis.Journal of Earth Sciences and Environment, 33(4):337-348(in Chinese with English abstract). http://www.doc88.com/p-2307739494153.html [14] Perri, F., 2014.Composition, Provenance and Source Weathering of Mesozoic Sandstones from Western-Central Mediterranean Alpine Chains.Journal of African Earth Sciences, 91:32-43. https://doi.org/10.1016/j.jafrearsci.2013.12.002 [15] Roser, B.P., Korsch, R.J., 1988.Provenances Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major Elements Data.Chemical Geology, 67:119-139. https://doi.org/10.1016/0009-2541(88)90010-1 [16] Saminpanya, S., Duangkrayom, J., Jintasakul, P., et al., 2014.Petrography, Mineralogy and Geochemistry of Cretaceous Sediment Samples from Western Khorat Plateau, Thailand, and Considerations on Their Provenance.Journal of Asian Earth Sciences, 83:13-34. https://doi.org/10.1016/j.jseaes.2014.01.007 [17] Srivastava, A.K., Randive, K.R., Khare, N., 2013.Mineralogical and Geochemical Studies of Glacial Sediments from Schirmacher Oasis, East Antarctica.Quaternary International, 292:205-216. https://doi.org/10.1016/j.quaint.2012.07.028 [18] Su, M., Xie, X.N., Wang, Z.F., et al., 2013.Sedimentary Evolution of the Central Canyon System in Qiongdongnan Basin, Northern South China Sea.Acta Petrolei Sinica, 34(3):467-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201303008.htm [19] Su, M., Zhang, C., Xie, X.N., et al, 2014.Controlling Factors on the Submarine Canyon System:A Case Study of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea.Science China Earth Sciences, 44(8):1807-1820 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201410018&dbname=CJFD&dbcode=CJFQ [20] Tao, H.F., Sun, S., Wang, Q.C., et al., 2014.Petrography and Geochemistry of Lower Carboniferous Greywacke and Mudstones in Northeast Junggar, China:Implications for Provenance, Source Weathering, and Tectonic Setting.Journal of Asian Earth Sciences, 87:11-25. https://doi.org/10.1016/j.jseaes.2014.02.007 [21] Wang, C., Liang, X.Q., Tong, C.X., et al., 2014.Characteristics and Geological Implications of Heavy Minerals from Seven Rivers in Adjacent Areas of Northeastern Yinggehai Basin.Acta Sedimentologica Sinica, 32(2):228-237 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201402006.htm [22] Wang, Y.F., Wang, Y.M., Li, D., et al., 2011.Features and Source Analysis on Early Pliocene Sedimentary Rare Earth Element (REE) in Central Canyon of Qiongdongnan Basin.Journal of Oil and Gas Technology (J.JPI), 33(6):50-52, 68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201106011.htm [23] Wang, Z.F., 2012.Important Deepwater Hydrocarbon Reservoirs:The Central Canyon System in the Qiongdongnan Basin.Acta Sedimentologica Sinica, 30(4):646-653 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201204004.htm [24] Xiao, B., 2014.Geochemistry of Sandstones from Bayin Gebi Formation and Suhongtu Formation of Lower Cretaceous in Chagan Sag of Yin-E Basin.Bulletin of Mineralogy, Petrology and Geochemistry, 33(4):517-525 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201404017.htm [25] Xie, Y.H., 2014.A Major Breakthrough in Deepwater Natural Gas Exploration in a Self-Run Oil/Gas Field in the Northern South China Sea and Its Enlightenment.Natural Gas Industry, 34(10):1-8 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-TRQG201410001.htm [26] Yang, J.H., Du, Y.S., Cawood, P.A., et al., 2012.Modal and Geochemical Compositions of the Lower Silurian Clastic Rocks in North Qilian, Nw China:Implications for Provenance, Chemical Weathering, and Tectonic Setting.Journal of Sedimentary Research, 82(2):92-103. https://doi.org/10.2110/jsr.2012.6 [27] Yao, Z., Wang, Z.F., Zuo, Q.M., et al., 2015a.Critical Factors for the Formation of Large-Scale Deepwater Gas Field in Central Canyon System of Southeast Hainan Basin and Its Exploration Potential.Acta Petrolei Sinica, 36(11):1358-1366 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201511005.htm [28] Yao, Z., Zhu, J.T., Zuo, Q.M., et al., 2015b.Gravity Flow Sedimentary System and Petroleum Exploration Prospect of Deepwater Area in the Qiongdongnan Basin, South China Sea.Natural Gas Industry, 35(10):21-30 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201510006.htm [29] You, L., Liu, C., Zhong, J., et al., 2017.Petrography-Geochemistry and Source Significance of Submarine Fan from West Area of Qiongdongnan Basin.Earth Science, 42(9):1531-1540 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.503 [30] You, L., Wang, Z.F., Zhong, J., et al., 2015.Reservoir Characteristics and Influential Factors of the Huangliu Formation Canyon Channel in the Ledong-Lingshui Sag, Qiongdongnan Basin.Natural Gas Industry, 35(10):31-38 (in Chinese with English abstract). http://www.cngascn.com:81/ngi_wk/EN/Y2015/V35/I10/31 [31] Zhang, H.L., Xie, J.Y., Liu, Y, et al., 2014.Controlling Factors of Storage Capacity Differences of Huangliu Formation Sandstone in XF Area of the Yinggehai Basin and Their Geologic Significance.Nature Gas Industry, 34(5):43-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201405005.htm [32] Zhao, M., Shao, L., Liang, J.S., et al., 2013.REE Character of Sediment from the Paleo-Red River and Its Implication of Provenance.Earth Science, 38(Suppl.1):61-69 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.S10.007 [33] Zuo, Q.M., Zhang, D.J., He, W.J., et al., 2015.Provenance Analysis of Huangliu Formation of the Central Canyon System in the Deepwater Area of the Qiongdongnan Basin.Haiyang Xuebao, 37(5):15-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201505002.htm [34] 高丹, 程日辉, 沈艳杰, 等, 2016.北黄海盆地东部拗陷侏罗纪西南物源-沉积体系与源区构造背景.地球科学, 41(7):1171-1187. https://doi.org/10.3799/dqkx.2016.095 [35] 郭春涛, 高剑、李忠, 等, 2017.塔里木盆地巴楚地区上泥盆统-下石炭统沉积-物源记录及其构造演化.地球科学, 42(3):421-434. https://doi.org/10.3799/dqkx.2017.032 [36] 何云龙, 解习农, 李俊良, 等, 2010.琼东南盆地陆坡体系发育特征及其控制因素.地质科技情报, 29(2):118-122. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201002022&dbname=CJFD&dbcode=CJFQ [37] 胡国辉, 周艳艳, 赵太平, 2012.河南嵩山地区元古宙五佛山群沉积岩的地球化学特征及其对物源区和构造环境的制约.岩石学报, 28(11):3692-3704. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201211021&dbname=CJFD&dbcode=CJFQ [38] 雷超, 任建业, 李绪深, 等, 2011a.琼东南盆地深水区结构构造特征与油气勘探潜力.石油勘探与开发, 38(5):560-569. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=skyk201105008&dbname=CJFD&dbcode=CJFQ [39] 雷超, 任建业, 裴健翔, 等, 2011b.琼东南盆地深水区构造格局和幕式演化过程.地球科学, 36(1):151-162. https://doi.org/10.3799/dqkx.2011.016 [40] 李冬, 王英民, 王永凤, 等, 2011.琼东南盆地中央峡谷深水天然堤-溢岸沉积.沉积学报, 29(4):689-694. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201104008&dbname=CJFD&dbcode=CJFQ [41] 李冬, 徐强, 王永凤, 2015.琼东南盆地上新世中央峡谷物源分析及其意义.沉积学报, 33(4):659-664. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001507.htm [42] 李冬, 徐强, 王永凤, 等, 2013.琼东南盆地中央峡谷西段充填体系沉积演化与砂体分布.石油地球物理勘探, 48(5):799-803. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sydq201305021&dbname=CJFD&dbcode=CJFQ [43] 刘海龄, 姚永坚, 沈宝云, 等, 2015.南海西缘结合带的贯通性.地球科学, 40(4):615-632. https://doi.org/10.3799/dqkx.2015.049 [44] 毛光周, 刘池洋, 2011.地球化学在物源及沉积背景分析中的应用.地球科学与环境学报, 33(4):337-348. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xagx201104001&dbname=CJFD&dbcode=CJFQ [45] 苏明, 解习农, 王振峰, 等, 2013.南海北部琼东南盆地中央峡谷体系沉积演化.石油学报, 34(3):467-478. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lzhb201609034&dbname=CJFD&dbcode=CJFQ [46] 苏明, 张成, 解习农, 等, 2014.深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例.中国科学:地球科学, 44(8):1807-1820. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201408019&dbname=CJFD&dbcode=CJFQ [47] 王策, 梁新权, 童传新, 等, 2014.莺歌海盆地东北部邻区7条主要入海河流重砂矿物特征及其地质意义.沉积学报, 32(2):228-237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201402006&dbname=CJFD&dbcode=CJFQ [48] 王永凤, 王英民, 李冬, 等, 2011.琼东南盆地中央峡谷早上新世沉积物稀土元素特征及物源分析.石油天然气学报(江汉石油学院学报), 33(6):50-52, 68. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jhsx201106011&dbname=CJFD&dbcode=CJFQ [49] 王振峰, 2012.深水重要油气储层——琼东南盆地中央峡谷体系.沉积学报, 30(4):646-653. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201204004&dbname=CJFD&dbcode=CJFQ [50] 肖斌, 2014.银额盆地查干凹陷下白垩统巴音戈壁组-苏红图组砂岩地球化学.矿物岩石地球化学通报, 33(4):517-525. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kydh201404017&dbname=CJFD&dbcode=CJFQ [51] 谢玉洪, 2014.南海北部自营深水天然气勘探重大突破及其启示.天然气工业, 34(10):1-8. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqg201410001&dbname=CJFD&dbcode=CJFQ [52] 姚哲, 王振峰, 左倩媚, 等, 2015a.琼东南盆地中央峡谷深水大气田形成关键要素与勘探前景.石油学报, 36(11):1358-1366. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syxb201511005&dbname=CJFD&dbcode=CJFQ [53] 姚哲, 朱继田, 左倩媚, 等, 2015b.琼东南盆地深水区重力流沉积体系及油气勘探前景.天然气工业, 35(10):21-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqg201510006&dbname=CJFD&dbcode=CJFQ [54] 尤丽, 刘才, 钟佳, 等, 2017.琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义.地球科学, 42(9):1531-1540. https://doi.org/10.3799/dqkx.2017.503 [55] 尤丽, 王振峰, 钟佳, 等, 2015.乐东-陵水凹陷黄流组峡谷水道储层特征及影响因素.天然气工业, 35(10):31-38. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqg201510007&dbname=CJFD&dbcode=CJFQ [56] 张伙兰, 谢金有, 刘亿, 等, 2014.莺歌海盆地XF区黄流组砂岩储集性能差异的控制因素及其地质意义.天然气工业, 34(5):43-48. http://www.trqgy.cn/EN/abstract/abstract16998.shtml [57] 赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(增刊1):61-69. https://doi.org/10.3799/dqkx.2013.S10.007 [58] 左倩媚, 张道军, 何卫军, 等, 2015.琼东南盆地深水区中央峡谷黄流组物源特征.海洋学报, 37(5):15-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=seac201505002&dbname=CJFD&dbcode=CJFQ