• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀

    药彦辰 邱轩 王红梅 段勇

    药彦辰, 邱轩, 王红梅, 段勇, 2018. 不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀. 地球科学, 43(2): 449-458. doi: 10.3799/dqkx.2017.579
    引用本文: 药彦辰, 邱轩, 王红梅, 段勇, 2018. 不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀. 地球科学, 43(2): 449-458. doi: 10.3799/dqkx.2017.579
    Yao Yanchen, Qiu Xuan, Wang Hongmei, Duan Yong, 2018. Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres. Earth Science, 43(2): 449-458. doi: 10.3799/dqkx.2017.579
    Citation: Yao Yanchen, Qiu Xuan, Wang Hongmei, Duan Yong, 2018. Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres. Earth Science, 43(2): 449-458. doi: 10.3799/dqkx.2017.579

    不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀

    doi: 10.3799/dqkx.2017.579
    基金项目: 

    国家自然科学基金项目 41130207

    国家自然科学基金项目 41502317

    中国地质大学(武汉)生物地质与环境地质国家重点实验室开放基金 GBL21503

    详细信息
      作者简介:

      药彦辰(1993-), 硕士研究生, 主要研究微生物与矿物相互作用

      通讯作者:

      王红梅

    • 中图分类号: P571

    Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres

    • 摘要: 白云石是沉积岩中广泛存在的碳酸盐矿物,其成因机制一直备受关注.野外调研发现现生白云石多分布于高盐环境,模拟实验也表明嗜盐微生物能诱导形成白云石,但微生物诱导白云石沉淀的机理仍不明确.分别用嗜盐古菌Natrinema sp.J7-1对数后期的活细胞、失去代谢活性的J7-1完整细胞(经线粒体氧化磷酸化解偶联剂处理)、表面蛋白质变性的J7-1细胞(经多聚甲醛和戊二醛处理)和表面富含羧基的微球,在盐度为280‰的沉淀体系中诱导白云石沉淀.分别利用X射线衍射(XRD)分析矿物的物相,扫描电子显微镜(SEM)分析矿物、微生物以及羧基微球的形貌,傅立叶红外光谱(FT-IR)分析细胞变性前后表面的官能团.结果表明,失去代谢活性的J7-1细胞与正常的对数后期细胞均能够诱导原白云石形成;经过多聚甲醛/戊二醛固定后,细胞表面羧基含量降低,不能诱导白云石沉淀;羧基微球能够诱导形成原白云石.以上研究证实细胞表面的羧基可能是微生物促进白云石沉淀的一种关键因素,而细胞的生长代谢在本研究的条件下不是控制白云石沉淀的主要因素.

       

    • 图  1  不同处理下的Natrinema sp. J7-1细胞及其诱导形成的矿物

      a.对数后期的Natrinema sp. J7-1细胞;b.CCCP处理后的Natrinema sp. J7-1细胞;c.经1.5%多聚甲醛和2.5%戊二醛固定后的Natrinema sp. J7-1细胞;d.图a中细胞诱导形成的矿物;e.图b中细胞诱导形成的矿物;f.图c中细胞在沉淀体系中形成的矿物

      Fig.  1.  The Natrinema sp. J7-1 cells with different treatments and the precipitates they induced

      图  2  羧基微球及其诱导形成的矿物

      a.0.82 μm羧基微球;b.浓度为108个/ mL的羧基微球诱导形成的矿物

      Fig.  2.  Morphologies of carboxylated microspheres and the minerals they induced

      图  3  不同处理后的Natrinema sp. J7-1细胞及羧基微球诱导沉淀的矿物XRD图谱

      a.对数生长后期的正常细胞;b.CCCP处理后的失活细胞;c.经1.5%多聚甲醛和2.5%戊二醛固定后的变性细胞;d.羧基微球;e.空白对照

      Fig.  3.  Mineral XRD patterns of the precipitates induced by Natrinema sp. J7-1 with different treatments and carboxylated microspheres

      图  4  正常Natrinema sp. J7-1细胞和经固定处理后Natrinema sp. J7-1细胞的FT-IR图谱

      Fig.  4.  FT-IR spectra of normal cells and fixed cells of Natrinema sp. J7-1

      表  1  不同处理的样品的ATP测量值

      Table  1.   ATP values of samples with different treatments

      样品 ATP值(RLU's)
      A B C 平均值
      无菌水 0 0 0 0
      280‰洗液 0 0 0 0
      细胞培养液 686 604 624 638
      细胞重悬液 13 780 14 516 16 067 14 788
      CCCP处理的细胞重悬液 0 0 0 0
      下载: 导出CSV

      表  2  细胞固定前后FT-IR特征峰红外波长及其对应的官能团

      Table  2.   The infrared wave lengths of the typical peaks on the FTIR spectra of normal cells and fixed cells and the corresponding functional groups

      吸收带 波数(cm-1) 官能团
      1 3 500~3 400 酰胺类化合物中的N-H伸缩振动(Benning et al., 2004)
      2 ~1 638 酰胺Ⅰ峰的C=O伸缩振动(Yee et al., 2004Tourney et al., 2008)
      3 ~1 554 酰胺Ⅱ峰的N-H变形振动(Yee et al., 2004Tourney et al., 2008)
      4 ~1 400 羧基官能团中的C=O对称伸缩振动(Yee et al., 2004Dittrich and Sibler, 2005Heinrich et al., 2007Leone et al., 2007)
      5 ~1 242 磷酰基中的P=O非对称伸缩振动(Dittrich and Sibler, 2005)
      6 1 200~900 多糖和脂类中的C-O-C,C-O-P,P-O-P振动(Dittrich and Sibler, 2005Hadjoudja et al., 2010Liu et al., 2015)
      7 ~1 100 磷酰基中的P=O非对称伸缩振动和多糖中的C-OH伸缩振动(Jiang et al., 2004Dittrich and Sibler, 2005)
      下载: 导出CSV
    • [1] Adams, J.E., Rhodes, M.L., 1960.Dolomitization by Seepage Refluxion.AAPG Bulletin, 44(12):1912-1920. https://doi.org/10.1306/0bda6263-16bd-11d7-8645000102c1865d
      [2] Al-Aasm, I.S., Abdallah, H., 2006.The Origin of Dolomite Associated with Salt Diapirs in Central Tunisia:Preliminary Investigations of Field Relationships and Geochemistry.Journal of Geochemical Exploration, 89(1-3):5-9. https://doi.org/10.1016/j.gexplo.2005.11.069
      [3] Albers, S.V., Meyer, B.H., 2011.The Archaeal Cell Envelope.Nature Reviews Microbiology, 9(6):414-426. https://doi.org/10.1038/nrmicro2576
      [4] Benning, L.G., Phoenix, V.R., Yee, N., et al., 2004.The Dynamics of Cyanobacterial Silicification:An Infrared Micro-Spectroscopic Investigation.Geochimica et Cosmochimica Acta, 68(4):743-757. https://doi.org/10.1016/s0016-7037(03)00488-5
      [5] Bian, Y.Y., Chen, D.F., 2014.Research Progress of Dolomite in Seep Carbonates.Bulletin of Mineralogy Petrology and Geochemistry, 33(2):238-246 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201402013.htm
      [6] Bontognali, T.R.R., McKenzie, J.A., Warthmann, R.J., et al., 2013.Microbially Influenced Formation of Mg-Calcite and Ca-Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate-Reducing Bacteria.Terra Nova, 26(1):72-77. https://doi.org/10.1111/ter.12072
      [7] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2010.Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates).Sedimentology, 57(3):824-844. https://doi.org/10.1111/j.1365-3091.2009.01121.x
      [8] Deng, S.C., Dong, H.L., Lü, G., et al., 2010.Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria:Results from Qinghai Lake, Tibetan Plateau, NW China.Chemical Geology, 278(3-4):151-159. https://doi.org/10.1016/j.chemgeo.2010.09.008
      [9] Diaz-Pulido, G., Nash, M.C., Anthony, K.R.N., et al., 2014.Greenhouse Conditions Induce Mineralogical Changes and Dolomite Accumulation in Coralline Algae on Tropical Reefs.Nature Communications, 5:3310. https://doi.org/10.1038/ncomms4310
      [10] Dittrich, M., Sibler, S., 2005.Cell Surface Groups of Two Picocyanobacteria Strains Studied by Zeta Potential Investigations, Potentiometric Titration, and Infrared Spectroscopy.Journal of Colloid and Interface Science, 286(2):487-495. https://doi.org/10.1016/j.jcis.2005.01.029
      [11] Duan, Y., Yao, Y.C., Qiu, X., et al., 2017.Dolomite Formation Facilitated by Three Halophilic Archaea.Earth Science, 42(3):389-396 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.029
      [12] Graziano, G., Merlino, A., 2014.Molecular Bases of Protein Halotolerance.Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1844(4):850-858. https://doi.org/10.1016/j.bbapap.2014.02.018
      [13] Gregg, J.M., Bish, D.L., Kaczmarek, S.E., et al., 2015.Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment:A Review.Sedimentology, 62(6):1749-1769. https://doi.org/10.1111/sed.12202
      [14] Hadjoudja, S., Deluchat, V., Baudu, M., 2010.Cell Surface Characterisation of Microcystis Aeruginosa and Chlorella Vulgaris.Journal of Colloid and Interface Science, 342(2):293-299. https://doi.org/10.1016/j.jcis.2009.10.078
      [15] Heinrich, H.T.M., Bremer, P.J., Daughney, C.J., et al., 2007.Acid-Base Titrations of Functional Groups on the Surface of the Thermophilic BacteriumAnoxybacillusflavithermus:Comparing a Chemical Equilibrium Model with ATR-IR Spectroscopic Data.Langmuir, 23(5):2731-2740. https://doi.org/10.1021/la062401j
      [16] Hendry, J.P., Gregg, J.M., Shelton, K.L., et al., 2014.Origin, Characteristics and Distribution of Fault-Related and Fracture-Related Dolomitization:Insights from Mississippian Carbonates, Isle of Man.Sedimentology, 62(3):717-752. https://doi.org/10.1111/sed.12160
      [17] Huang, S.J., Huang, K.K., Lv, J., et al., 2014.The Relationship between Dolomite Textures and Their Formation Temperature:ACase Study from the Permian-Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin.Petroleum Science, 11(1):39-51. https://doi.org/10.1007/s12182-014-0316-7
      [18] Jiang, W., Saxena, A., Song, B., et al., 2004.Elucidation of Functional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces Using Infrared Spectroscopy.Langmuir, 20(26):11433-11442. https://doi.org/10.1021/la049043+
      [19] Kenward, P.A., Fowle, D.A., Goldstein, R.H., et al., 2013.Ordered Low-Temperature Dolomite Mediated by Carboxyl-Group Density of Microbial Cell Walls.AAPG Bulletin, 97(11):2113-2125. https://doi.org/10.1306/05171312168
      [20] Kenward, P.A., Goldstein, R.H., González, L.A., et al., 2009.Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium:The Role of Methanogenic Archaea.Geobiology, 7(5):556-565. https://doi.org/10.1111/j.1472-4669.2009.00210.x
      [21] Land, L.S., 1998.Failure to Precipitate Dolomite at 25℃ fromDilute Solution Despite 1000-Fold Oversaturation after 32 Years.Aquatic Geochemistry, 4(3-4):361-368. https://doi.org/10.1023/a:1009688315854
      [22] Leone, L., Ferri, D., Manfredi, C., et al., 2007.Modeling the Acid-Base Properties of Bacterial Surfaces:A Combined Spectroscopic and Potentiometric Study of the Gram-Positive Bacterium Bacillus Subtilis.Environmental Science & Technology, 41(18):6465-6471. https://doi.org/10.1021/es070996e
      [23] Li, B., Yan, J.X., Liu, X.T., et al., 2010.The Organogenic Dolomite Model:Mechanism, Progress and Significance.Journal of Palaeogeography, 12(6):699-710 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201006009.htm
      [24] Li, H., Liu, Y.Q., 2013."Dolomite Problem" and Research of Ancient Lacustrine Dolostones.Acta Sedimentologica Sinica, 31(2):302-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201302009.htm
      [25] Li, H., Liu, Y.Q., Li, W.H., et al., 2013.The Microbial Precipitation of Lacustrine Dolomite from Permian Formation, Urumchi, Xinjiang, China.Geological Bulletin of China, 32(4):661-670 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201304015.htm
      [26] Liu, Y.X, Alessi, D.S., Owttrim, G.W., et al., 2015.Cell Surface Reactivity of Synechococcus Sp.PCC 7002:Implications for Metal Sorption from Seawater.Geochimica et Cosmochimica Acta, 169:30-44. https://doi.org/10.1016/j.gca.2015.07.033
      [27] Mckenzie, J.A., Vasconcelos, C., 2009.Dolomite Mountains and the Origin of the Dolomite Rock of WhichThey Mainly Consist:Historical Developments and New Perspectives.Sedimentology, 56(1):205-219. https://doi.org/10.1111/j.1365-3091.2008.01027.x
      [28] Mei, M.X., 2012.Brief Introduction of "Dolostone Problem" in Sedimentology according to Three Scientific Ideas.Journal of Palaeogeography, 14(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201201003.htm
      [29] Mei, Y.J., He, C.C., Huang, Y.C., et al., 2015.Salinity Regulation of the Interaction of Halovirus SNJ1 with Its Host and Alteration of the Halovirus Replication Strategy to Adapt to the Variable Ecosystem.PLoS ONE, 10(4):e0123874. https://doi.org/10.1371/journal.pone.0123874
      [30] Qiu, X., Wang, H.M., Liu, D., et al., 2012.The Physiological Response ofSynechococcusElongatusto Salinity:A Potential Biomarker for Ancient Salinity in Evaporative Environments.Geomicrobiology Journal, 29(5):477-483. https://doi.org/10.1080/01490451.2011.581331
      [31] Ries, J.B., 2010.Review:Geological and Experimental Evidence for Ssecular Variation in Seawater Mg/Ca(Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification.Biogeosciences, 7(9):2795-2849. https://doi.org/10.5194/bg-7-2795-2010
      [32] Rivers, J.M., Kurt Kyser, T., James, N.P., 2012.Salinity Reflux and Dolomitization of Southern Australian Slope Sediments:The Importance of Low Carbonate Saturation Levels.Sedimentology, 59:445-465. https://doi.org/10.1111/j.1365-3091.2011.01260.x
      [33] Roberts, J.A., Bennett, P.C., González, L.A., et al., 2004.Microbial Precipitation of Dolomite in Methanogenic Groundwater.Geology, 32(4):277-280. https://doi.org/10.1130/g20246.2
      [34] Roberts, J.A., Kenward, P.A., Fowle, D.A., et al., 2013.Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature.Proceedings of the National Academy of Sciences of the United States of America, 110(36):14540-14545. https://doi.org/10.1073/pnas.1305403110
      [35] Sánchez-Román, M., McKenzie, J.A., de Luca Rebello Wagener, A., et al., 2009.Presence of Sulfate Does Not Inhibit Low-Temperature Dolomite Precipitation.Earth and Planetary Science Letters, 285(1-2):131-139. https://doi.org/10.1016/j.epsl.2009.06.003
      [36] Saum, S.H., Sydow, J.F., Palm, P., et al., 2006.Biochemical and Molecular Characterization of the Biosynthesis of Glutamine and Glutamate, Two Major Compatible Solutes in the Moderately Halophilic Bacterium Halobacillus Halophilus.Journal of Bacteriology, 188(19):6808-6815. https://doi.org/10.1128/jb.00781-06
      [37] Sleytr, U.B., Schuster, B., Egelseer, E.M., et al., 2014.S-Layers:Principles and Applications.FEMS Microbiology Reviews, 38(5):823-864. https://doi.org/10.1111/1574-6976.12063
      [38] Sumper, M., Berg, E., Mengele, R., et al., 1990.Primary Structure and Glycosylation of the S-Layer Protein of Haloferax Volcanii.Journal of Bacteriology, 172(12):7111-7118. https://doi.org/10.1128/jb.172.12.7111-7118.1990
      [39] Tourney, J., Ngwenya, B.T., Fred Mosselmans, J.W., et al., 2008.The Effect of Extracellular Polymers (EPS) on the Proton Adsorption Characteristics of the Thermophile Bacillus licheniformis S-86.Chemical Geology, 247(1-2):1-15. https://doi.org/10.1016/j.chemgeo.2007.09.012
      [40] van Lith, Y., Vasconcelos, C., Warthmann, R., et al., 2002.Bacterial Sulfate Reduction and Salinity:Two Controls on Dolomite Precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil).Hydrobiologia, 485:35-49. https://doi.org/10.1023/A:1021323425591
      [41] Vasconcelos, C., McKenzie, J.A., 1997.Microbial Mediation of Modern Dolomite Precipitation and Diagenesis under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil).Journal of Sedimentary Research, 67(3):378-390.https://doi.org/1073-130x/97/067-0378
      [42] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., et al., 1995.Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature, 377(6546):220-222. https://doi.org/10.1038/377220a0
      [43] Voegerl, R. S., 2014. Quantifying the Carboxyl Group Density of Microbial Cell Surfaces as a Function of Salinity: Insights Into Microbial Precipitation of Low-Temperature Dolomite (Dissertation). University of Kansas, Lawrence.
      [44] Wang, D.B., Wallace, A.F., De Yoreo, J.J., et al., 2009.Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates during Calcification.Proceedings of the National Academy of Sciences of the United States of America, 106(51):21511-21516. https://doi.org/10.1073/pnas.0906741106
      [45] Wang, H.M., Wu, X.P., Qiu, X., et al., 2013.Microbially Induced Carbonate Precipitation:A Review.Microbiology China, 40(1):180-189 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WSWT201301020.htm
      [46] Wang, W.W., Tang, H.Z., Xu, P., 2015.Salt-Tolerance Related Genes in Halophilic Bacteria andArchaea.Microbiology China, 42(3):550-558(in Chinese with English abstract).
      [47] Wang, X.L., Chou, I.M., Hu, W.X., et al., 2016.Kinetic Inhibition of Dolomite Precipitation:Insights from Raman Spectroscopy of Mg2+-SO42- Ion Pairing in MgSO4/MgCl2/NaCl Solutions at Temperatures of 25 to 200℃.Chemical Geology, 435:10-21. https://doi.org/10.1016/j.chemgeo.2016.04.020
      [48] Wang, Y., 2006.Dolomite Problem and Precambrian Enigma.Advances in Earth Science, 21(8):857-862(in Chinese with English abstract).
      [49] Warren, J., 2000.Dolomite:Occurrence, Evolution and Economically Important Associations.Earth-Science Reviews, 52(1-3):1-81. https://doi.org/10.1016/s0012-8252(00)00022-2
      [50] Warthmann, R., Vasconcelos, C., Sass, H., et al., 2005.Desulfovibrio BrasiliensisSp.Nov., a Moderate Halophilic Sulfate-Reducing Bacterium from Lagoa Vermelha (Brazil) Mediating Dolomite Formation.Extremophiles, 9(3):255-261. https://doi.org/10.1007/s00792-005-0441-8
      [51] Wright, D.T., 1999.The Role of Sulphate-Reducing Bacteria and Cyanobacteria in Dolomite Formation in Distal Ephemeral Lakes of the Coorong Region, South Australia.Sedimentary Geology, 126(1-4):147-157. https://doi.org/10.1016/s0037-0738(99)00037-8
      [52] Xia, W.J., Li, X.H., 1986.The Discorvery of Primary Dolomitefrom Beach Rockin the Xiaochaidan Salt Lake of QingHai and Its Significance.Acta Sedimentologica Sinica, 4(2):19-25(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB198602001.htm
      [53] Yee, N., Benning, L.G., Phoenix, V.R., et al., 2004.Characterization of Metal-Cyanobacteria Sorption Reactions:A Combined Macroscopic and Infrared Spectroscopic Investigation.Environmental Science & Technology, 38(3):775-782. https://doi.org/10.1021/es0346680
      [54] Xie, S.C., Liu, D., Qiu, X., et al., 2016.Microbial Roles Equivalent to Geological Agents of High Temperature and Pressure in Deep Earth.Science China Earth Science, 59(11):2098-2104. https://doi.org/10.1007/s11430-015-5442-1
      [55] You, X.L., Sun, S., Zhu, J.Q., et al., 2011.Progress in the Study of Microbial Dolomite Model.Earth Science Frontiers, 18(4):52-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201104004.htm
      [56] Yu, B.S., Dong, H.L., Jiang, H.C., et al., 2007.Discovery of Spheric Dolomite Aggregations in Sediments from the Bottom of Qinghai Lake and Its Significance for Dolomite Problem.Geoscience, 21(1):66-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200701006.htm
      [57] Zhang, F.F., Xu, H.F., Konishi, H., et al., 2010.A Relationship between d104 Value and Composition in the Calcite-Disordered Dolomite Solid-Solution Series.American Mineralogist, 95(11-12):1650-1656. https://doi.org/10.2138/am.2010.3414
      [58] Zhang, F.F., Xu, H.F., Konishi, H., et al., 2012a.Polysaccharide-Catalyzed Nucleation and Growth of Disordered Dolomite:A Potential Precursor of Sedimentary Dolomite.American Mineralogist, 97(4):556-567. https://doi.org/10.2138/am.2012.3979
      [59] Zhang, Z.Q., Liu, Y., Wang, S., et al., 2012b.Temperate Membrane-Containing Halophilic Archaeal Virus SNJ1 Has a Circular dsDNA Genome Identical to that of Plasmid pHH205.Virology, 434(2):233-241. https://doi.org/10.1016/j.virol.2012.05.036
      [60] Zhang, X.F., Hu, W.X., Zhang, J.T., 2006.Critical Problems for Dolomite Formation and Dolomitization Models.Geological Science and Technology Information, 25(5):32-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200605005.htm
      [61] 卞友艳, 陈多福, 2014.海底冷泉环境中的白云石(岩)研究现状.矿物岩石地球化学通报, 33(2):238-246. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kydh201402013&dbname=CJFD&dbcode=CJFQ
      [62] 段勇, 药彦辰, 邱轩, 等, 2017.三株嗜盐古菌诱导形成白云石.地球科学, 42(3):389-396. https://doi.org/10.3799/dqkx.2017.029
      [63] 李波, 颜佳新, 刘喜停, 等, 2010.白云岩有机成因模式:机制, 进展与意义.古地理学报, 12(6):699-710. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdlx201006009&dbname=CJFD&dbcode=CJFQ
      [64] 李红, 柳益群, 2013."白云石(岩)问题"与湖相白云岩研究.沉积学报, 31(2):302-314. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201302009&dbname=CJFD&dbcode=CJFQ
      [65] 李红, 柳益群, 李文厚, 等, 2013.新疆乌鲁木齐二叠系湖相微生物白云岩成因.地质通报, 32(4):661-670. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd201304015&dbname=CJFD&dbcode=CJFQ
      [66] 梅冥相, 2012.从3个科学理念简论沉积学中的"白云岩问题".古地理学报, 14(1):1-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdlx201201003&dbname=CJFD&dbcode=CJFQ
      [67] 王红梅, 吴晓萍, 邱轩, 等, 2013.微生物成因的碳酸盐矿物研究进展.微生物学通报, 40(1):180-189. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wswt201301020&dbname=CJFD&dbcode=CJFQ
      [68] 王伟伟, 唐鸿志, 许平, 2015.嗜盐菌耐盐机制相关基因的研究进展.微生物学通报, 42(3):550-558. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wswt201503016&dbname=CJFD&dbcode=CJFQ
      [69] 王勇, 2006."白云岩问题"与"前寒武纪之谜"研究进展.地球科学进展, 21(8):857-862. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz200608010&dbname=CJFD&dbcode=CJFQ
      [70] 夏文杰, 李秀华, 1986.青海小柴旦盐湖湖滩岩中原生白云石的发现及其意义.沉积学报, 4(2):19-25. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb198602001&dbname=CJFD&dbcode=CJFQ
      [71] 由雪莲, 孙枢, 朱井泉, 等, 2011.微生物白云岩模式研究进展.地学前缘, 18(4):52-64. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201104004&dbname=CJFD&dbcode=CJFQ
      [72] 于炳松, 董海良, 蒋宏忱, 等, 2007.青海湖底沉积物中球状白云石集合体的发现及其地质意义.现代地质, 21(1):66-70. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz200701006&dbname=CJFD&dbcode=CJFQ
      [73] 张学丰, 胡文瑄, 张军涛, 2006.白云岩成因相关问题及主要形成模式.地质科技情报, 25(5):32-40. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq200605005&dbname=CJFD&dbcode=CJFQ
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  3937
    • HTML全文浏览量:  1023
    • PDF下载量:  17
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-02
    • 刊出日期:  2018-02-15

    目录

      /

      返回文章
      返回