• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    孔喉半径对松辽盆地南部青一段特低-超低渗透储层质量的控制作用

    吕洲 王玉普 李莉 张文旗 顾斐 张洋 于利民 林晓海

    吕洲, 王玉普, 李莉, 张文旗, 顾斐, 张洋, 于利民, 林晓海, 2018. 孔喉半径对松辽盆地南部青一段特低-超低渗透储层质量的控制作用. 地球科学, 43(11): 4204-4214. doi: 10.3799/dqkx.2017.578
    引用本文: 吕洲, 王玉普, 李莉, 张文旗, 顾斐, 张洋, 于利民, 林晓海, 2018. 孔喉半径对松辽盆地南部青一段特低-超低渗透储层质量的控制作用. 地球科学, 43(11): 4204-4214. doi: 10.3799/dqkx.2017.578
    Lü Zhou, Wang Yupu, Li Li, Zhang Wenqi, Gu Fei, Zhang Yang, Yu Limin, Lin Xiaohai, 2018. Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin. Earth Science, 43(11): 4204-4214. doi: 10.3799/dqkx.2017.578
    Citation: Lü Zhou, Wang Yupu, Li Li, Zhang Wenqi, Gu Fei, Zhang Yang, Yu Limin, Lin Xiaohai, 2018. Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin. Earth Science, 43(11): 4204-4214. doi: 10.3799/dqkx.2017.578

    孔喉半径对松辽盆地南部青一段特低-超低渗透储层质量的控制作用

    doi: 10.3799/dqkx.2017.578
    基金项目: 

    中国石油天然气股份有限公司科学研究与技术开发项目"低/超低渗透油田有效开发关键技术" 2016B-1306

    国家科技重大专项大型油气田及煤层气开发"低渗-超低渗油藏有效开发关键技术"项目课题六"低渗、特低渗复杂油藏规模有效动用关键技术" 2017ZX05013-006

    详细信息
      作者简介:

      吕洲(1990-), 男, 工程师, 主要从事油气田开发地质研究

    • 中图分类号: P588.21

    Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin

    • 摘要: 针对青山口组一段特低-超低渗储层开发时,仍然存在储层认识程度低的问题.其中,明确特低-超低渗储层物性、含油性及流动性的主控因素是亟待解决的重要问题.利用常规压汞、核磁共振、孔渗测定、粒度分析和X衍射等实验方法,对松辽盆地南部青山口组一段特低-超低渗储层特征参数进行定量表征.结果表明:松辽盆地南部青山口组一段特低-超低渗透储层平均孔喉半径主要分布于0.3~1.7 μm之间.大于1.5 μm的孔喉半径对应常规低渗透储层,以细粒长石岩屑砂岩为主;0.5~1.5 μm孔喉半径对应特低渗透储层,以极细粒长石岩屑砂岩和粗粉砂岩为主,可动流体饱和度大于65%;0.1~0.5 μm孔喉半径对应超低渗透储层,以粗-细粉砂岩为主,可动流体饱和度介于50%~60%.孔喉半径决定了储层物性和流体饱和度特征,并在宏观上受控于沉积相带,应作为特低-超低渗储层评价的重要参数.

       

    • 图  1  松辽盆地构造分区图及取心井位置

      图a修改自参考文献Feng et al.(2010)

      Fig.  1.  Tectonic division of Songliao basin and the location of the samples

      图  2  典型毛管压力曲线特征

      (Ⅰ)φ=14.50%,K=9.44×10-3 μm2,排驱压力Pc=0.209 MPa,中值孔喉半径R50=1.541 μm,平均孔喉半径Rp=1.474 μm,H11井,样品深度2 374.15~2 374.23 m;(Ⅱ)φ=12.9%,K=2.54×10-3 μm2,排驱压力Pc=0.206 MPa,中值孔喉半径R50=0.626 μm,平均孔喉半径Rp=1.114 μm,H12井,样品深度2 417.40~2 417.50 m;(Ⅲ)φ=9.1%,K=0.82×10-3 μm2,排驱压力Pc=0.345 MPa,中值孔喉半径R50=0.272 μm,平均孔喉半径Rp=0.454 μm,H9井,样品深度2 457.47~2 457.57 m

      Fig.  2.  Typical capillary curve characteristics

      图  3  孔喉半径与粒度关系

      图中Ra为最大孔喉半径,Rp为平均孔喉半径,R50为中值孔喉半径

      Fig.  3.  Cross plot showing the relationship between pore throat radius and grain size

      图  4  平均孔喉半径与粘土矿物含量(a)和石英-长石含量比值(b)关系

      Fig.  4.  Cross plots showing the relationship between average pore throat radius and clay content(a), average pore throat radius and ratio of quartz and feldspar(b)

      图  5  平均孔喉半径与渗透率(a)、孔隙度(b)和储层质量指数(c)的关系

      Fig.  5.  Cross plots showing the relationship between average pore throat radius and permeability(a), average pore throat radius and porosity(b), average pore throat radius and reservoir quality index(c)

      图  6  T2平均值与储层质量参数(a)和可动流体饱和度(b)的关系

      Fig.  6.  Cross plots showing the relationship between average T2 and reservoir quality index(a), and average T2 and moveable fluid saturation(b)

      图  7  平均孔喉半径与可动流体饱和度关系

      Fig.  7.  Cross plot showing the relationship between average pore throat radius and moveable fluid saturation

      图  8  典型铸体薄片镜下照片

      Fig.  8.  Typical photographs of casting section

      图  9  储层质量指数与采油强度的关系

      Fig.  9.  Cross plot showing the relationship between reservoir quality index and oil production perunit thickness

      表  1  松辽盆地南部大情字油田青山口组一段储层特征参数表

      Table  1.   The characteristic parameters of ultra-low permeability reservoirs in the member 1 of Qingshankou Formation of the southern Songliao basin

      井号 沉积相带 深度(m) 排驱压力(MPa) 最大孔喉半径(μm) 平均孔喉半径(μm) 中值孔喉半径(μm) 粒度中值(μm) 分选系数 粘土矿物含量(%) 石英/长石 RQI(μm)
      H1 外前缘 2 337.05~2 337.13 5.740 0.128 0.056 0.053 39.555 2.600 9.800 0.268 0.696
      H2 外前缘 2 453.09~2 453.19 8.362 0.088 0.037 0.031 12.430 2.870 4.400 0.227 0.513
      H2 外前缘 2 457.93~2 458.03 2.059 0.357 0.125 0.122 50.067 2.100 2.600 0.197 0.810
      H3 外前缘 2 427.80~2 427.90 6.908 0.106 0.046 0.043 27.776 2.630 10.600 0.202 0.477
      H4 外前缘 2 569.85~2 569.95 2.771 0.265 0.080 0.061 51.119 2.310 - - 0.693
      H5 外前缘 2 262.82~2 262.90 10.360 0.071 0.036 0.033 22.097 2.850 6.400 0.213 0.546
      H6 外前缘 2 410.87~2 410.99 2.774 0.265 0.105 0.092 21.197 2.830 8.400 0.161 0.797
      H7 外前缘 2 415.30~2 415.40 6.926 0.106 0.046 0.043 20.193 1.880 13.900 0.205 0.650
      H8 内前缘 2 352.10~2 352.20 0.138 5.311 1.435 0.729 83.043 2.410 5.700 0.204 7.906
      H9 内前缘 2 457.47~2 457.57 0.345 2.132 0.455 0.272 31.686 2.260 - - 3.002
      H9 内前缘 2 460.42~2 460.52 0.487 1.510 0.591 0.536 20.761 2.460 - - 2.993
      H9 内前缘 2 463.02~2 463.12 1.374 0.535 0.186 0.127 16.176 2.590 6.700 0.141 0.942
      H9 内前缘 2 467.02~2 467.12 0.345 2.130 0.708 0.519 23.848 2.430 4.900 0.140 3.330
      H9 内前缘 2 469.32~2 469.44 0.211 3.481 1.057 0.684 25.033 2.380 3.700 0.183 5.137
      H10 内前缘 2 421.80~2 421.90 0.345 2.131 0.889 0.858 16.980 2.610 6.800 0.177 4.275
      H10 内前缘 2 427.50~2 427.60 0.481 1.528 0.539 0.584 19.505 2.570 3.500 0.221 2.206
      H10 内前缘 2 435.30~2 435.40 0.207 3.550 1.033 0.995 34.674 2.450 3.800 0.205 4.368
      H10 内前缘 2 436.65~2 436.75 0.207 3.559 1.199 1.113 28.756 1.580 3.900 0.176 5.634
      H10 内前缘 2 441.00~2 441.10 0.207 3.544 1.282 1.082 17.824 1.350 3.100 0.236 6.258
      H11 内前缘 2 370.54~2 370.62 0.482 1.524 0.468 0.312 47.039 3.600 2.500 0.217 1.745
      H11 内前缘 2 373.95~2 374.05 0.139 5.304 1.868 1.376 33.262 3.190 - - 9.924
      H11 内前缘 2 374.15~2 374.23 0.209 3.525 1.474 1.541 47.696 1.850 2.600 0.212 8.069
      H11 内前缘 2 374.31~2 374.40 0.139 5.306 1.466 1.225 33.960 1.980 - - 7.604
      H11 内前缘 2 374.47~2 374.55 0.207 3.553 1.433 1.317 51.474 2.950 - - 7.786
      H11 内前缘 2 375.10~2 375.18 0.139 5.307 1.589 0.784 29.770 3.120 3.900 0.200 7.313
      H11 内前缘 2 406.65~2 406.75 0.208 3.540 1.168 0.661 68.393 2.090 2.500 0.196 5.761
      H11 内前缘 2 436.08~2 436.16 0.208 3.538 1.241 0.788 52.922 1.770 3.300 0.177 5.025
      H12 内前缘 2 360.40~2 360.50 0.208 3.530 0.950 0.616 27.970 1.580 - - 4.202
      H12 内前缘 2 363.80~2 363.90 0.208 3.533 1.148 0.740 32.352 2.790 2.000 0.207 3.519
      H12 内前缘 2 413.40~2 413.50 0.482 1.526 0.610 0.440 25.737 2.450 4.400 0.176 2.498
      H12 内前缘 2 417.40~2 417.50 0.206 3.566 1.114 0.626 25.737 2.360 4.000 0.129 4.437
      H13 内前缘 2 423.20~2 423.30 0.207 3.556 1.318 1.071 39.555 4.590 6.200 0.220 6.035
      H13 内前缘 2 438.00~2 438.10 0.351 2.093 0.611 0.389 19.777 2.810 9.800 0.151 2.770
      H13 内前缘 2 436.42~2 436.53 0.208 3.530 1.336 1.336 35.649 2.380 7.000 0.194 6.348
      H13 内前缘 2 437.92~2 438.04 0.483 1.521 0.437 0.437 20.333 2.220 5.600 0.192 1.951
      H13 内前缘 2 441.22~2 441.32 1.038 0.708 0.213 0.213 23.683 2.110 5.100 0.129 1.144
      H13 内前缘 2 442.20~2 442.30 0.346 2.126 0.562 0.562 18.199 2.710 4.200 0.142 2.774
      H14 内前缘 2 439.45~2 439.55 0.208 3.540 1.234 0.912 40.950 1.850 2.600 0.192 5.883
      H14 内前缘 2 450.62~2 450.75 0.139 5.306 1.738 1.404 73.302 1.570 2.600 0.202 9.333
      H15 内前缘 2 486.60~2 486.70 0.206 3.566 1.499 1.510 31.034 2.810 7.000 0.225 7.646
      注:“-”表示样品未做X衍射实验.
      下载: 导出CSV

      表  2  H16井核磁共振可动流体饱和度测定结果

      Table  2.   Results of nuclear magnetic resonance test of well H16

      深度(m) 岩性 长度(cm) 直径(cm) 岩石密度(g/cm3) 渗透率(10-3μm2) 孔隙度(%) 可动流体饱和度(%) 束缚流体饱和度(%) RQI(μm) T2平均值(ms) 对应孔喉平均半径(μm)
      2 327.56~2 327.68 褐色粉砂岩 7.52 2.526 2.41 0.207 2 9.96 60.87 39.13 0.046 22.409 0.304
      2 332.26~2 332.45 褐色粉砂岩 7.95 2.526 1.59 0.006 2 2.50 51.71 48.29 0.016 7.127 0.105
      2 335.97~2 336.08 褐色粉砂岩 7.932 2.526 2.47 0.062 2 6.88 58.08 41.92 0.030 12.235 0.200
      2 336.73~2 336.83 灰褐色粉砂岩 5.234 2.526 2.35 0.939 1 13.24 68.73 31.27 0.084 38.703 0.561
      2 373.89~2 374.05 灰褐色粉砂岩 7.592 2.528 2.31 0.236 2 13.98 58.83 41.17 0.041 16.932 0.274
      下载: 导出CSV

      表  3  单因素分析结果

      Table  3.   Results of single factor analysis

      因素 R2 P
      排驱压力 0.918 0.000
      最大孔喉半径 0.887 0.000
      平均孔喉半径 0.950 0.000
      中值孔喉半径 0.827 0.000
      下载: 导出CSV

      表  4  多因素分析结果

      Table  4.   Results of multi factor analysis

      参数 回归系数 P 95%可信区间
      平均孔喉半径 0.150 0.000 0.137~0.163
      下载: 导出CSV

      表  5  多因素分析中被排除的参数

      Table  5.   Excluded factors in multi factor analysis

      参数 P
      排驱压力 0.062
      最大孔喉半径 0.569
      中值孔喉半径 0.182
      粒度中值 0.061
      粒度分选系数 0.165
      石英含量/长石含量 0.302
      泥质含量 0.100
      下载: 导出CSV
    • [1] Amaefule, J.O., Altunbay, M., Tiab, D., et al., 1993.Enhanced Reservoir Description:Using 402 Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells.SPE Annual Technical Conference and Exhibition, Houston, 11:205-220.
      [2] Huang, Z.K., Chen, J.P., Wang, Y.J., et al., 2013.Characteristics of Micropores in Mudstones of Cretaceous Qingshankou Formation, Songliao Basin.Acta Petrolei Sinica, 34(1):30-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201301004
      [3] Feng, Z.Q., Jia, C.Z., Xie, X.N., et al., 2010.Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China.Basin Research, 22(1):79-95. doi: 10.1111/bre.2010.22.issue-1
      [4] Knackstedt, M.A., Arns, C.H., Limaye, A., et al., 2004.Digital Core Laboratory:Properties of Reservoir Core Derived from 3D Images.Spwla Annual Logging Symposium, 56(5):66-68. doi: 10.2118/87009-MS
      [5] Lai, J., Wang, G.W., Fan, Z.Y., et al., 2016.Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements.Energy & Fuels, 30(12):10200-10214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0efe05d8bd3a732872949f5ee2fedcd4
      [6] Li, H.Y., Yue D.L., Zhang, X.J., 2012.Characteristics of Pore Structure and Reservoir Evaluation of Low Permeability Reservoir in Sulige Gas Field.Earth Science Frontiers, 19(2):133-140 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202019
      [7] Li, Q., 2002 Study of Subtle Oil/Gas Reservoirs Exploration in Changling Sag of Songliao Basin.Earth Science, 27(6):770-774 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200206021
      [8] Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340. doi: 10.1306/10240808059
      [9] Purcell, W.R., 1949.Capillary Pressures-Their Measurement Using Mercury and the Calculation of Permeability Therefrom.Journal of Petroleum Technology, 1(2):39-48. doi: 10.2118/949039-G
      [10] Wang, G.Y., Liu, J.P., Jian, X.L., et al., 2016.Characteristics and Genetic Mechanism of Tight Sandstone Reservoirs of Lower Cretaceous in North Yellow Sea Basin.Earth Science, 41(3):523-532 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603018.htm
      [11] Xiao, D.S., Lu, S.F., Lu, Z.Y., et al., 2016.Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones.Petroleum Exploration and Development, 43(6):961-970 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201606013
      [12] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      [13] Yang, Z.M., Zhang, Y.Z., Hao, M.Q., et al., 2006.Comprehensive Evaluation of Reservoir in Low-Permeability Oilfields.Acta Petrolei Sinica, 27(2):64-67 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200602013
      [14] Zhao, Y.J., Bao, Z.D., Wang, Z.Q., et al., 2011.Genesis of Eq2 Low Permeability Reservoir in Daqingzijing Oilfield in Southern Songliao Basin.Journal of Oil and Gas Technology, 33(7):32-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb201107007
      [15] Zhu, R.K., Wu, S.T., Cui, J.W., et al., 2016.Classification and Evaluation of Pore Size in Oil & Gas Reservoir Rocks.Geological Science and Technology Information, 35(3):133-144 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201501014
      [16] 黄振凯, 陈建平, 王义军, 等, 2013.松辽盆地白垩系青山口组泥岩微观孔隙特征.石油学报, 34(1):30-36. doi: 10.3969/j.issn.1671-4067.2013.01.009
      [17] 李海燕, 岳大力, 张秀娟, 2012.苏里格气田低渗透储层微观孔隙结构特征及其分类评价方法.地学前缘, 19(2):133-140. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202019
      [18] 李群, 2002.松辽盆地长岭凹陷隐蔽油气藏勘探研究.地球科学, 27(6):770-774. doi: 10.3321/j.issn:1000-2383.2002.06.021
      [19] 王改云, 刘金萍, 简晓玲, 等, 2016.北黄海盆地下白垩统致密砂岩储层特征及成因.地球科学, 41(3):523-532. http://earth-science.net/WebPage/Article.aspx?id=3267
      [20] 肖佃师, 卢双舫, 陆正元, 等, 2016.联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构.石油勘探与开发, 43(6):961-970. http://d.old.wanfangdata.com.cn/Periodical/syktykf201606013
      [21] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. http://earth-science.net/WebPage/Article.aspx?id=3317
      [22] 杨正明, 张英芝, 郝明强, 等, 2006.低渗透油田储层综合评价方法.石油学报, 27(2):64-67. doi: 10.3321/j.issn:0253-2697.2006.02.013
      [23] 赵艳军, 鲍志东, 王志强, 等, 2011.松辽盆地南部大情字井油田青二段低渗透储层成因.石油天然气学报, 33(7):32-36. doi: 10.3969/j.issn.1000-9752.2011.07.007
      [24] 朱如凯, 吴松涛, 崔景伟, 等, 2016.油气储层中孔隙尺寸分级评价的讨论.地质科技情报, 35(3):133-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016061700005413
    • 加载中
    图(9) / 表(5)
    计量
    • 文章访问数:  3856
    • HTML全文浏览量:  940
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-25
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回