Control Effect of Pore Throat Radius on Quality of Extra-Low and Ultra-Low Permeability Reservoir in Member 1 of Qingshankou Formation, Southern Songliao Basin
-
摘要: 针对青山口组一段特低-超低渗储层开发时,仍然存在储层认识程度低的问题.其中,明确特低-超低渗储层物性、含油性及流动性的主控因素是亟待解决的重要问题.利用常规压汞、核磁共振、孔渗测定、粒度分析和X衍射等实验方法,对松辽盆地南部青山口组一段特低-超低渗储层特征参数进行定量表征.结果表明:松辽盆地南部青山口组一段特低-超低渗透储层平均孔喉半径主要分布于0.3~1.7 μm之间.大于1.5 μm的孔喉半径对应常规低渗透储层,以细粒长石岩屑砂岩为主;0.5~1.5 μm孔喉半径对应特低渗透储层,以极细粒长石岩屑砂岩和粗粉砂岩为主,可动流体饱和度大于65%;0.1~0.5 μm孔喉半径对应超低渗透储层,以粗-细粉砂岩为主,可动流体饱和度介于50%~60%.孔喉半径决定了储层物性和流体饱和度特征,并在宏观上受控于沉积相带,应作为特低-超低渗储层评价的重要参数.Abstract: Among the uncertainties in development of extra-low and ultra-low permeability reservoirs in the Qingshankou Formation, it is clear that the main controlling factors of the porosity, permeability, oil saturation and mobility are important issues to be solved. The characteristic parameters of extra-low and ultra-low permeability reservoirs in the Qingshankou Formation of the southern Songliao basin were quantitatively characterized by mercury intrusion, nuclear magnetic resonance, pore-permeability measurement, grain size analysis and X-ray diffraction test in this study. The results show that the pore throat size of the ultra-low permeability reservoir in southern Songliao basin is mainly distributed between 0.3 μm and 1.7 μm, which is the main controlling factor of reservoir property and fluidity. The pore throat radius of more than 1.5 μm corresponds to the conventional low permeability reservoir, and the rock type of the reservoir is mainly composed of fine feldspar lithic sandstone. 0.5-1.5 μm pore throat corresponds to ultra-low permeability reservoir. The rock type is mainly composed of very fine feldspathic lithic sandstone and coarse siltstone. The moveable fluid saturation is more than 65%; 0.1-0.5 μm pore throat corresponds to ultra-low permeability reservoir, and the rock type is mainly coarse-fine siltstone, moveable fluid saturation between 50%-60%. It is concluded that pore throat radius which has been controlled by the sedimentary facies determines the characteristics of reservoir physical properties and fluid saturation, and it should be used as a significant parameter of reservoir evaluation.
-
图 1 松辽盆地构造分区图及取心井位置
图a修改自参考文献Feng et al.(2010)
Fig. 1. Tectonic division of Songliao basin and the location of the samples
图 2 典型毛管压力曲线特征
(Ⅰ)φ=14.50%,K=9.44×10-3 μm2,排驱压力Pc=0.209 MPa,中值孔喉半径R50=1.541 μm,平均孔喉半径Rp=1.474 μm,H11井,样品深度2 374.15~2 374.23 m;(Ⅱ)φ=12.9%,K=2.54×10-3 μm2,排驱压力Pc=0.206 MPa,中值孔喉半径R50=0.626 μm,平均孔喉半径Rp=1.114 μm,H12井,样品深度2 417.40~2 417.50 m;(Ⅲ)φ=9.1%,K=0.82×10-3 μm2,排驱压力Pc=0.345 MPa,中值孔喉半径R50=0.272 μm,平均孔喉半径Rp=0.454 μm,H9井,样品深度2 457.47~2 457.57 m
Fig. 2. Typical capillary curve characteristics
表 1 松辽盆地南部大情字油田青山口组一段储层特征参数表
Table 1. The characteristic parameters of ultra-low permeability reservoirs in the member 1 of Qingshankou Formation of the southern Songliao basin
井号 沉积相带 深度(m) 排驱压力(MPa) 最大孔喉半径(μm) 平均孔喉半径(μm) 中值孔喉半径(μm) 粒度中值(μm) 分选系数 粘土矿物含量(%) 石英/长石 RQI(μm) H1 外前缘 2 337.05~2 337.13 5.740 0.128 0.056 0.053 39.555 2.600 9.800 0.268 0.696 H2 外前缘 2 453.09~2 453.19 8.362 0.088 0.037 0.031 12.430 2.870 4.400 0.227 0.513 H2 外前缘 2 457.93~2 458.03 2.059 0.357 0.125 0.122 50.067 2.100 2.600 0.197 0.810 H3 外前缘 2 427.80~2 427.90 6.908 0.106 0.046 0.043 27.776 2.630 10.600 0.202 0.477 H4 外前缘 2 569.85~2 569.95 2.771 0.265 0.080 0.061 51.119 2.310 - - 0.693 H5 外前缘 2 262.82~2 262.90 10.360 0.071 0.036 0.033 22.097 2.850 6.400 0.213 0.546 H6 外前缘 2 410.87~2 410.99 2.774 0.265 0.105 0.092 21.197 2.830 8.400 0.161 0.797 H7 外前缘 2 415.30~2 415.40 6.926 0.106 0.046 0.043 20.193 1.880 13.900 0.205 0.650 H8 内前缘 2 352.10~2 352.20 0.138 5.311 1.435 0.729 83.043 2.410 5.700 0.204 7.906 H9 内前缘 2 457.47~2 457.57 0.345 2.132 0.455 0.272 31.686 2.260 - - 3.002 H9 内前缘 2 460.42~2 460.52 0.487 1.510 0.591 0.536 20.761 2.460 - - 2.993 H9 内前缘 2 463.02~2 463.12 1.374 0.535 0.186 0.127 16.176 2.590 6.700 0.141 0.942 H9 内前缘 2 467.02~2 467.12 0.345 2.130 0.708 0.519 23.848 2.430 4.900 0.140 3.330 H9 内前缘 2 469.32~2 469.44 0.211 3.481 1.057 0.684 25.033 2.380 3.700 0.183 5.137 H10 内前缘 2 421.80~2 421.90 0.345 2.131 0.889 0.858 16.980 2.610 6.800 0.177 4.275 H10 内前缘 2 427.50~2 427.60 0.481 1.528 0.539 0.584 19.505 2.570 3.500 0.221 2.206 H10 内前缘 2 435.30~2 435.40 0.207 3.550 1.033 0.995 34.674 2.450 3.800 0.205 4.368 H10 内前缘 2 436.65~2 436.75 0.207 3.559 1.199 1.113 28.756 1.580 3.900 0.176 5.634 H10 内前缘 2 441.00~2 441.10 0.207 3.544 1.282 1.082 17.824 1.350 3.100 0.236 6.258 H11 内前缘 2 370.54~2 370.62 0.482 1.524 0.468 0.312 47.039 3.600 2.500 0.217 1.745 H11 内前缘 2 373.95~2 374.05 0.139 5.304 1.868 1.376 33.262 3.190 - - 9.924 H11 内前缘 2 374.15~2 374.23 0.209 3.525 1.474 1.541 47.696 1.850 2.600 0.212 8.069 H11 内前缘 2 374.31~2 374.40 0.139 5.306 1.466 1.225 33.960 1.980 - - 7.604 H11 内前缘 2 374.47~2 374.55 0.207 3.553 1.433 1.317 51.474 2.950 - - 7.786 H11 内前缘 2 375.10~2 375.18 0.139 5.307 1.589 0.784 29.770 3.120 3.900 0.200 7.313 H11 内前缘 2 406.65~2 406.75 0.208 3.540 1.168 0.661 68.393 2.090 2.500 0.196 5.761 H11 内前缘 2 436.08~2 436.16 0.208 3.538 1.241 0.788 52.922 1.770 3.300 0.177 5.025 H12 内前缘 2 360.40~2 360.50 0.208 3.530 0.950 0.616 27.970 1.580 - - 4.202 H12 内前缘 2 363.80~2 363.90 0.208 3.533 1.148 0.740 32.352 2.790 2.000 0.207 3.519 H12 内前缘 2 413.40~2 413.50 0.482 1.526 0.610 0.440 25.737 2.450 4.400 0.176 2.498 H12 内前缘 2 417.40~2 417.50 0.206 3.566 1.114 0.626 25.737 2.360 4.000 0.129 4.437 H13 内前缘 2 423.20~2 423.30 0.207 3.556 1.318 1.071 39.555 4.590 6.200 0.220 6.035 H13 内前缘 2 438.00~2 438.10 0.351 2.093 0.611 0.389 19.777 2.810 9.800 0.151 2.770 H13 内前缘 2 436.42~2 436.53 0.208 3.530 1.336 1.336 35.649 2.380 7.000 0.194 6.348 H13 内前缘 2 437.92~2 438.04 0.483 1.521 0.437 0.437 20.333 2.220 5.600 0.192 1.951 H13 内前缘 2 441.22~2 441.32 1.038 0.708 0.213 0.213 23.683 2.110 5.100 0.129 1.144 H13 内前缘 2 442.20~2 442.30 0.346 2.126 0.562 0.562 18.199 2.710 4.200 0.142 2.774 H14 内前缘 2 439.45~2 439.55 0.208 3.540 1.234 0.912 40.950 1.850 2.600 0.192 5.883 H14 内前缘 2 450.62~2 450.75 0.139 5.306 1.738 1.404 73.302 1.570 2.600 0.202 9.333 H15 内前缘 2 486.60~2 486.70 0.206 3.566 1.499 1.510 31.034 2.810 7.000 0.225 7.646 注:“-”表示样品未做X衍射实验. 表 2 H16井核磁共振可动流体饱和度测定结果
Table 2. Results of nuclear magnetic resonance test of well H16
深度(m) 岩性 长度(cm) 直径(cm) 岩石密度(g/cm3) 渗透率(10-3μm2) 孔隙度(%) 可动流体饱和度(%) 束缚流体饱和度(%) RQI(μm) T2平均值(ms) 对应孔喉平均半径(μm) 2 327.56~2 327.68 褐色粉砂岩 7.52 2.526 2.41 0.207 2 9.96 60.87 39.13 0.046 22.409 0.304 2 332.26~2 332.45 褐色粉砂岩 7.95 2.526 1.59 0.006 2 2.50 51.71 48.29 0.016 7.127 0.105 2 335.97~2 336.08 褐色粉砂岩 7.932 2.526 2.47 0.062 2 6.88 58.08 41.92 0.030 12.235 0.200 2 336.73~2 336.83 灰褐色粉砂岩 5.234 2.526 2.35 0.939 1 13.24 68.73 31.27 0.084 38.703 0.561 2 373.89~2 374.05 灰褐色粉砂岩 7.592 2.528 2.31 0.236 2 13.98 58.83 41.17 0.041 16.932 0.274 表 3 单因素分析结果
Table 3. Results of single factor analysis
因素 R2 P 排驱压力 0.918 0.000 最大孔喉半径 0.887 0.000 平均孔喉半径 0.950 0.000 中值孔喉半径 0.827 0.000 表 4 多因素分析结果
Table 4. Results of multi factor analysis
参数 回归系数 P值 95%可信区间 平均孔喉半径 0.150 0.000 0.137~0.163 表 5 多因素分析中被排除的参数
Table 5. Excluded factors in multi factor analysis
参数 P值 排驱压力 0.062 最大孔喉半径 0.569 中值孔喉半径 0.182 粒度中值 0.061 粒度分选系数 0.165 石英含量/长石含量 0.302 泥质含量 0.100 -
[1] Amaefule, J.O., Altunbay, M., Tiab, D., et al., 1993.Enhanced Reservoir Description:Using 402 Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells.SPE Annual Technical Conference and Exhibition, Houston, 11:205-220. [2] Huang, Z.K., Chen, J.P., Wang, Y.J., et al., 2013.Characteristics of Micropores in Mudstones of Cretaceous Qingshankou Formation, Songliao Basin.Acta Petrolei Sinica, 34(1):30-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201301004 [3] Feng, Z.Q., Jia, C.Z., Xie, X.N., et al., 2010.Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China.Basin Research, 22(1):79-95. doi: 10.1111/bre.2010.22.issue-1 [4] Knackstedt, M.A., Arns, C.H., Limaye, A., et al., 2004.Digital Core Laboratory:Properties of Reservoir Core Derived from 3D Images.Spwla Annual Logging Symposium, 56(5):66-68. doi: 10.2118/87009-MS [5] Lai, J., Wang, G.W., Fan, Z.Y., et al., 2016.Insight into the Pore Structure of Tight Sandstones Using NMR and HPMI Measurements.Energy & Fuels, 30(12):10200-10214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0efe05d8bd3a732872949f5ee2fedcd4 [6] Li, H.Y., Yue D.L., Zhang, X.J., 2012.Characteristics of Pore Structure and Reservoir Evaluation of Low Permeability Reservoir in Sulige Gas Field.Earth Science Frontiers, 19(2):133-140 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202019 [7] Li, Q., 2002 Study of Subtle Oil/Gas Reservoirs Exploration in Changling Sag of Songliao Basin.Earth Science, 27(6):770-774 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200206021 [8] Nelson, P.H., 2009.Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales.AAPG Bulletin, 93(3):329-340. doi: 10.1306/10240808059 [9] Purcell, W.R., 1949.Capillary Pressures-Their Measurement Using Mercury and the Calculation of Permeability Therefrom.Journal of Petroleum Technology, 1(2):39-48. doi: 10.2118/949039-G [10] Wang, G.Y., Liu, J.P., Jian, X.L., et al., 2016.Characteristics and Genetic Mechanism of Tight Sandstone Reservoirs of Lower Cretaceous in North Yellow Sea Basin.Earth Science, 41(3):523-532 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603018.htm [11] Xiao, D.S., Lu, S.F., Lu, Z.Y., et al., 2016.Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones.Petroleum Exploration and Development, 43(6):961-970 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201606013 [12] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). [13] Yang, Z.M., Zhang, Y.Z., Hao, M.Q., et al., 2006.Comprehensive Evaluation of Reservoir in Low-Permeability Oilfields.Acta Petrolei Sinica, 27(2):64-67 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200602013 [14] Zhao, Y.J., Bao, Z.D., Wang, Z.Q., et al., 2011.Genesis of Eq2 Low Permeability Reservoir in Daqingzijing Oilfield in Southern Songliao Basin.Journal of Oil and Gas Technology, 33(7):32-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb201107007 [15] Zhu, R.K., Wu, S.T., Cui, J.W., et al., 2016.Classification and Evaluation of Pore Size in Oil & Gas Reservoir Rocks.Geological Science and Technology Information, 35(3):133-144 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201501014 [16] 黄振凯, 陈建平, 王义军, 等, 2013.松辽盆地白垩系青山口组泥岩微观孔隙特征.石油学报, 34(1):30-36. doi: 10.3969/j.issn.1671-4067.2013.01.009 [17] 李海燕, 岳大力, 张秀娟, 2012.苏里格气田低渗透储层微观孔隙结构特征及其分类评价方法.地学前缘, 19(2):133-140. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202019 [18] 李群, 2002.松辽盆地长岭凹陷隐蔽油气藏勘探研究.地球科学, 27(6):770-774. doi: 10.3321/j.issn:1000-2383.2002.06.021 [19] 王改云, 刘金萍, 简晓玲, 等, 2016.北黄海盆地下白垩统致密砂岩储层特征及成因.地球科学, 41(3):523-532. http://earth-science.net/WebPage/Article.aspx?id=3267 [20] 肖佃师, 卢双舫, 陆正元, 等, 2016.联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构.石油勘探与开发, 43(6):961-970. http://d.old.wanfangdata.com.cn/Periodical/syktykf201606013 [21] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. http://earth-science.net/WebPage/Article.aspx?id=3317 [22] 杨正明, 张英芝, 郝明强, 等, 2006.低渗透油田储层综合评价方法.石油学报, 27(2):64-67. doi: 10.3321/j.issn:0253-2697.2006.02.013 [23] 赵艳军, 鲍志东, 王志强, 等, 2011.松辽盆地南部大情字井油田青二段低渗透储层成因.石油天然气学报, 33(7):32-36. doi: 10.3969/j.issn.1000-9752.2011.07.007 [24] 朱如凯, 吴松涛, 崔景伟, 等, 2016.油气储层中孔隙尺寸分级评价的讨论.地质科技情报, 35(3):133-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016061700005413