Quantitative Evaluation of Fault Vertical Sealing Ability of 1st Structure in Nanpu Sag
-
摘要: 通过对断裂带内部结构及其特征研究发现,断层岩是断层构成的重要部分,断层垂向封闭能力的强弱关键取决于油气运移方向断层岩与下伏储层岩石的排替压力差.若断层岩排替压力大于等于储层岩石,断层垂向封闭,其封闭能力的大小取决于二者排替压力差值的大小,差值越大,断层垂向封闭能力越强;反之断层垂向开启.断层岩的排替压力大小受泥质含量、压实成岩程度、岩石结构方向性等因素的影响,其泥质含量越高、压实成岩程度越大、断面方向与铅直方向夹角越小,断层岩排替压力越大.基于断层垂向封闭机理及影响因素,综合实验室不同角度泥岩样品排替压力测试结果与岩石力学分解关系,在确定与目标点断层岩具有相同压实成岩程度围岩地层的基础上,建立了一套定量评价断层垂向封闭能力的方法,并将其应用于渤海湾盆地南堡凹陷1号构造内典型断层垂向封闭能力评价中,结果表明:f1断层在不同测线处的断-储排替压力差为-0.114~1.035 MPa,除L7~L11测线处其他测线内断层岩排替压力均大于储层岩石,断层垂向封闭,与油气分布吻合关系较好.通过与未考虑岩石结构方向性方法的比较,证实该方法具有更好的可行性和更高的可信度.Abstract: The study of the internal structure and its characteristics of fault zone shows that fault rock constitutes an important part of fault with universal distribution in fault, and the vertical sealing ability of fault is mainly determined by the difference of capillary entry pressure between fault rock and underlying reservoir rock. The fault is sealed when the capillary entry pressure of fault rock is not smaller than that of reservoir rock. In addition, the sealing ability is determined by the degree of capillary entry pressure difference, the greater the difference, the stronger the sealing ability of fault, and vice versa. The capillary entry pressure of fault rock depends on mud content, diagenetic degree and structure directionality of rock. The higher the mud content and the larger the degree of diagenesis, the smaller the angle between fault surface and vertical direction, which results in the greater the capillary entry pressure. Based on the fault vertical sealing mechanism and multiple geological factors, in combination with the results of capillary entry pressure of mudstone samples in different angles under laboratory conditions and the relation of rock mechanics decomposition, a set of method that could evaluate the fault vertical sealing ability is then established on the basis of determining the surrendering rock which has the same diagenetic degree with the target fault rock. Then the method was applied to evaluation of the fault sealing ability of 1st structure of Nanpu sag. The results indicate that the differences of capillary entry pressures of fault rock and reservoir rock in different survey lines of Fault f1 are from -0.114 MPa to 1.035 MPa, the capillary entry pressures of fault rock are larger than that of reservoir rock except for the survey Lines L1 to L7, that fault is sealed invertical direction, which is consistent with oil and gas distribution law. The method is proved more feasible and credible by comparison of the results with those calculated by method which ignores the structure directionality of rock.
-
表 1 不同方向岩石排替压力实测值与分解法计算值间关系
Table 1. The relation of capillary entry pressure by measurement and calculation (applicable for normal fault)
样品1 样品2 断层倾角(°) 90 75 60 45 90 75 60 45 实测值(MPa) 2.68 2.43 2.16 1.96 4.55 4.16 3.82 3.33 计算值(MPa) 2.68 2.59 2.32 1.90 4.55 4.39 3.94 3.22 误差(%) 0 6.73 7.61 3.31 0 5.53 3.25 3.27 表 2 南堡凹陷1号构造f1断层垂向封闭性评价参数
Table 2. Evaluation data of fault vertical sealing of Fault f1 in 1st structure of Nanpu sag
测线号 现今埋深(m) 断层岩 储层岩石 断-储排替压力差(MPa) 泥质含量(%) 断层倾角(°) 压实成岩埋深(m) 垂直断层方向排替压力(MPa) 油气运移方向排替压力(MPa) 泥质含量(%) 储层倾角(°) 垂直储层方向排替压力(MPa) 油气运移方向排替压力(MPa) 1 2 876.5 36.49 61.81 128.42 0.421 0.786 30.53 14.63 0.747 0.548 0.238 2 2 869.3 44.03 56.65 149.07 0.431 0.655 30.53 8.87 0.760 0.563 0.092 3 2 901.7 40.92 47.67 184.67 0.436 0.479 30.51 16.41 0.786 0.408 0.070 4 2 887.3 35.12 47.35 184.87 0.430 0.467 30.51 19.07 0.749 0.355 0.112 5 2 963.4 42.05 61.32 134.40 0.426 0.779 30.49 14.41 0.789 0.576 0.203 6 2 985.3 39.61 45.16 198.94 0.438 0.440 30.61 10.94 0.783 0.440 0.000 7 3 000.0 36.83 39.54 218.64 0.438 0.362 30.66 2.57 0.791 0.476 -0.114 8 2 996.3 34.39 42.53 208.67 0.434 0.398 30.67 3.42 0.804 0.507 -0.109 9 2 959.8 33.91 44.30 200.19 0.432 0.422 30.65 4.41 0.801 0.514 -0.092 10 2 927.0 31.94 47.76 185.96 0.428 0.471 30.63 1.83 0.781 0.561 -0.090 11 2 956.1 30.97 49.03 183.17 0.426 0.491 30.52 6.02 0.769 0.525 -0.034 12 3 047.8 31.75 53.53 171.21 0.425 0.575 30.46 9.86 0.792 0.547 0.028 13 3 040.4 31.47 53.20 172.12 0.425 0.568 30.23 13.22 0.788 0.506 0.062 14 3 122.1 31.33 61.98 138.61 0.420 0.789 26.77 11.58 0.690 0.531 0.258 15 3 073.7 28.68 66.27 116.90 0.415 0.944 26.77 14.63 0.687 0.539 0.405 16 3 096.0 27.30 66.12 118.45 0.414 0.936 26.77 11.91 0.701 0.569 0.367 17 3 144.5 25.14 62.43 137.54 0.415 0.796 26.77 6.56 0.711 0.589 0.207 18 3 178.3 23.42 65.14 126.27 0.413 0.891 26.77 15.02 0.713 0.547 0.344 19 3 185.8 22.43 67.65 114.49 0.411 1.000 24.81 9.72 0.669 0.567 0.433 20 3 315.0 23.63 74.98 81.19 0.408 1.521 21.62 8.27 0.561 0.515 1.005 21 3 212.2 30.26 75.05 78.31 0.410 1.536 21.41 12.84 0.567 0.501 1.035 22 3 315.0 33.36 69.73 108.54 0.416 1.127 22.77 16.31 0.599 0.481 0.646 23 3 322.7 40.23 66.42 125.61 0.423 0.970 23.72 8.99 0.638 0.537 0.432 24 3 396.0 40.16 60.92 155.99 0.429 0.772 19.79 9.67 0.513 0.400 0.372 25 3 380.5 43.12 65.98 130.04 0.426 0.956 18.06 4.87 0.475 0.415 0.541 26 3 399.8 43.79 64.90 136.30 0.428 0.913 16.38 12.14 0.427 0.340 0.573 27 3 509.2 42.23 64.11 144.81 0.429 0.883 14.68 7.58 0.393 0.328 0.555 28 3 470.0 44.39 55.60 185.27 0.439 0.642 13.80 4.47 0.369 0.287 0.354 29 3 548.7 44.34 64.22 145.86 0.430 0.891 13.16 8.20 0.359 0.298 0.593 30 3 485.7 43.35 71.49 104.58 0.421 1.257 12.19 11.84 0.337 0.291 0.966 -
[1] Athy, L. F., 1930. Density, Porosity, and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1):1-24. https://doi.org/10.1306/3d93289e-16b1-11d7-8645000102c1865d [2] Boutareaud, S., Wibberley, C. A. J., Fabbri, O., et al., 2008. Permeability Structure and Co-Seismic Thermal Pressurization on Fault Branches:Insights from the Usukidani Fault, Japan. Geological Society, London, Special Publications, 299(1):341-361. https://doi.org/10.1144/sp299.20 [3] Bretan, P., Yielding, G., Jones, H., 2003. Using Calibrated Shale Gouge Ratio to Estimate Hydrocarbon Column Heights. AAPG Bulletin, 87(3):397-413. https://doi.org/10.1306/08010201128 [4] Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11):1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co; 2 doi: 10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co;2 [5] Cao, Z. H., Zhang, H. C., Liu, G. Y., et al., 2015. Main Control Factors and Distribution Prediction of High-Quality Carbonate Reservoirs in the Nanpu Sag, Bohai Bay Basin. Oil & Gas Geology, 36(1):103-110 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201501013 [6] Chen, W., Wu, Z. P., Hou, F., et al., 2010. Internal Structures of Fault Zones and Their Relationship with Hydrocarbon Migration and Accumulation. Acta Petrolei Sinica, 31(5):774-780 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201005012 [7] Fan, J., Jiang, Y.L., Liu, J.D., et al., 2017. Relationship of Fault with Hydrocarbon Migration and Accumulation in Longfengshan Area, Changling Faulted Depression. Earth Science, 42(10):1817-1829 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.568 [8] Fu, G., Li, S. Z., 2017. Restoration Method of Closed Evolution History of Fractured Mudstone Cap Rock and Its Application. Earth Science, 42(9):1590-1598 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.514 [9] Fu, G., Shi, J. J., Lü, Y. F., 2012. An Improvement in Quantitatively Studying Lateral Seal of Faults. Acta Petrolei Sinica, 33(3):414-418 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203010 [10] Fu, G., Yang, W. M., Lei, L., et al., 2009. A New Method for Quantitative Evaluation of Vertical Seal Ability of Faults in Caprock. Special Oil & Gas Reservoirs, 16(4):18-20 (in Chinese with English abstract). [11] Fu, X. F., Fang, D. Q., Lü, Y. F., et al., 2005. Method of Evaluating Vertical Sealing of Faults in Terms of the Internal Structure of Fault Zones. Earth Science, 30(3):328-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200503008 [12] Fu, X. F., Lü, Y. F., Fu, G., et al., 2004. Quantitative Simulation Experiment and Evaluation Method for Vertical Seal of Overthrust. Chinese Journal of Geology, 39(2):223-233 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200402009 [13] Fu, X. F., Shang, X. Y., Meng, L. D., 2013. Internal Structure of Fault Zone and Oil/Gas Reservior in Low-Porosity Rock. Journal of Central South University (Science and Technology), 44(6):2428-2438 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201306034 [14] Fu, X. F., Yan, L. Y., Meng, L. D., 2019. Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock. Journal of Earth Science, 30(2):367-375. https://doi.org/10.1007/s12583-018-0998-7 [15] Hubbert, M. K., 1953. Entrapment of Petroleum under Hydro-Dynamic Conditions. American Association of Petroleum Geologists Bulletin, 37:1954-2026. http://cn.bing.com/academic/profile?id=ca89c180ddd745dff7a1945efc12034e&encoded=0&v=paper_preview&mkt=zh-cn [16] Knipe, R. J., Jones, G., Fisher, Q. J., 1998. Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs:An Introduction. Geological Society, London, Special Publications, 147(1):93. https://doi.org/10.1144/GSL.SP.1998.147.01.01 [17] Landes, K. K., 1951. A Scrutiny of the Abstract. Bulletin of the American Association of Petroleum Geologists, 35(7):1660-1966. https://doi.org/10.1029/EO050i003p00074-01 [18] Lu, B., Chen, Z. M., Guan, D. F., et al., 1996. The Activating Properties of Fault Planes and Functions of Sealing Oil-Gas Accumulation. Acta Petrolei Sinica, 17(3):33-38 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600808407 [19] Lü, Y. F., Chen, Z. M., Chen, F. J., 1995. Evaluation of Sealing Ability of Faults Using Nonlinear Mapping Analysis. Acta Petrolei Sinica, 16(2):36-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500767731 [20] Lü, Y. F., Chen, Z. M., Fu, G., et al., 1993. Research on the Displacement Pressure of Caprock. Journal of Daqing Petroleum Institute, 17(4):1-7 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=18847253666615eff3f4102de2ac3941&encoded=0&v=paper_preview&mkt=zh-cn [21] Lü, Y. F., Sha, Z. X., Fu, X. F., et al., 2007. Quantitative Evaluation Method for Fault Vertical Sealing Ability and Its Application. Acta Petrolei Sinica, 28(5):34-38 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200705006 [22] Lü, Y. F., Wang, W., Hu, X. L., et al., 2016. Quantitative Evaluation Method of Fault Lateral Sealing. Petroleum Exploration and Development, 43(2):1-7 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a9b94d619a5e1f5325a77bf881ccd05f&encoded=0&v=paper_preview&mkt=zh-cn [23] Ma, L., 2009. The Dynamics Simulation on Migration and Accumulation of Oil-Gas Prediction of Exploration Targets in Nanpu Depression, Bohai Bay Basin, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [24] Qiao, H. B., Wang, S. L., Zhang, B. M., et al., 2017. Diagenetic Characteristics and Evolution Sequence of Dongying Formation in Nanpu 1st Structure. Petroleum Geology and Engineering, 31(2):33-37 (in Chinese). [25] Riley, P. R., Goodwin, L. B., Lewis, C. J., 2010. Controls on Fault Damage Zone Width, Structure, and Symmetry in the Bandelier Tuff, New Mexico. Journal of Structural Geology, 32(6):766-780. https://doi.org/10.1016/j.jsg.2010.05.005 [26] Shi, J. J., Li, L. L., Fu, G., et al., 2012. Quantitative Evaluation Method and Application of Vertical Sealing Property of Faults in Caprock. Journal of Jilin University (Earth Science Edition), 42(Suppl.2):162-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2012S2020.htm [27] Smith, D. A., 1966. Theoretical Consideration of Sealing and Non-Sealing Faults. AAPG Bulletin, 50(2):363-374. https://doi.org/10.1306/5d25b48f-16c1-11d7-8645000102c1865d [28] Tanaka, H., Hinoki, S. I., Kosaka, K., et al., 2001. Deformation Mechanisms and Fluid Behavior in a Shallow, Brittle Fault Zone during Coseismic and Interseismic Periods:Results from Drill Core Penetrating the Nojima Fault, Japan. The Island Arc, 10(3/4):381-391. https://doi.org/10.1046/j.1440-1738.2001.00336.x [29] Tang, J. R., Wang, H., Meng, L. J., et al., 2016. Pressure Evolution and Its Effect on Petroleum Accumulation in Nanpu Sag, Bohai Bay Basin. Earth Science, 41(5):809-820 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.068 [30] Wang, W. F., Zhou, W. W., Xu, S. L., 2017. Formation and Evolution of Concealed Fault Zone in Sedimentary Basin and Its Significance in Hydrocarbon Accumulation. Earth Science, 42(4):613-624 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.048 [31] Wayne, R. B., Jim, U., David, N. D., et al., 2006. Multi-Disciplinary Approach to Fault and Top Seal Appraisal; Pyrenees-Macedon Oil and Gas Fields, Exmouth Sub-Basin, Australian Northwest Shelf. Marine and Petroleum Geology, 23(3):241-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b95a66a68b1c91ef9aa8b7e105b6ffa6 [32] Yielding, G., 2002. Shale Gouge Ratio-Calibration by Geohistory. Norwegian Petroleum Society Special Publications, 11(2):1-15. https://doi.org/10.1016/S0928-8937(02)80003-0 [33] Yielding, G., Freeman, B., Needham, D. T., 1997. Quantitative Fault Seal Prediction. AAPG Bulletin, 81(6):897-917. https://doi.org/10.1306/522b498d-1727-11d7-8645000102c1865d [34] 曹中宏, 张红臣, 刘国勇, 等, 2015.南堡凹陷碳酸盐岩优质储层发育主控因素与分布预测.石油与天然气地质, 36(1):103-110. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201501013 [35] 陈伟, 吴智平, 侯峰, 等, 2010.断裂带内部结构特征及其与油气运聚关系.石油学报, 31(5):774-780. http://d.old.wanfangdata.com.cn/Periodical/syxb201005012 [36] 范婕, 蒋有录, 刘景东, 等, 2017.长岭断陷龙凤山地区断裂与油气运聚的关系.地球科学, 42(10):1817-1829. doi: 10.3799/dqkx.2017.568 [37] 付广, 李世朝, 2017.被断裂破坏泥岩盖层封闭性演化史恢复方法及其应用.地球科学, 42(9):1590-1598. doi: 10.3799/dqkx.2017.514 [38] 付广, 史集建, 吕延防, 2012.断层侧向封闭性定量研究方法的改进.石油学报, 33(3):414-418. http://d.old.wanfangdata.com.cn/Periodical/syxb201203010 [39] 付广, 杨文敏, 雷琳, 等, 2009.盖层内断裂垂向封闭性定量评价新方法.特种油气藏, 16(4):18-20. doi: 10.3969/j.issn.1006-6535.2009.04.004 [40] 付晓飞, 方德庆, 吕延防, 等, 2005.从断裂带内部出发评价断层垂向封闭性的方法.地球科学, 30(3):328-336. http://www.earth-science.net/article/id/1414 [41] 付晓飞, 吕延防, 付广, 等, 2004.逆掩断层垂向封闭性定量模拟实验及评价方法.地质科学, 39(2):223-233. doi: 10.3321/j.issn:0563-5020.2004.02.009 [42] 付晓飞, 尚小钰, 孟令东, 2013.低孔隙岩石中断裂带内部结构及与油气成藏.中南大学学报(自然科学版), 44(6):2428-2438. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201306034 [43] 鲁兵, 陈章明, 关德范, 等, 1996.断面活动特征及其对油气的封闭作用.石油学报, 17(3):33-38. doi: 10.3321/j.issn:0253-2697.1996.03.005 [44] 吕延防, 陈章明, 陈发景, 1995.非线性映射分析判断断层封闭性.石油学报, 16(2):36-41. doi: 10.3321/j.issn:0253-2697.1995.02.006 [45] 吕延防, 陈章明, 付广, 等, 1993.盖岩排替压力研究.大庆石油学院学报, 17(4):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DQSY199304000.htm [46] 吕延防, 沙子萱, 付晓飞, 等, 2007.断层垂向封闭性定量评价方法及其应用.石油学报, 28(5):34-38. doi: 10.3321/j.issn:0253-2697.2007.05.006 [47] 吕延防, 王伟, 胡欣蕾, 等, 2016.断层侧向封闭性定量评价方法.石油勘探与开发, 43(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/syktykf201602020 [48] 马良, 2009.南堡凹陷油气运聚动力学模拟及有利勘探目标预测(硕士学位论文).北京: 中国地质大学. [49] 乔海波, 王时林, 张博明, 等, 2017.南堡1号构造东营组储层成岩作用特征及演化序列.石油地质与工程, 31(2):33-37. doi: 10.3969/j.issn.1673-8217.2017.02.008 [50] 史集建, 李丽丽, 付广, 等, 2012.盖层内断层垂向封闭性定量评价方法及应用.吉林大学学报(地球科学版), 42(增刊2):162-169. [51] 汤建荣, 王华, 孟令箭, 等, 2016.渤海湾盆地南堡凹陷地层压力演化及其成藏意义.地球科学, 41(5):809-820. doi: 10.3799/dqkx.2016.068 [52] 王伟锋, 周维维, 徐守礼, 2017.沉积盆地断裂趋势带形成演化及其控藏作用.地球科学, 42(4):613-624. doi: 10.3799/dqkx.2017.048