The Application of the Handheld Energy-Dispersive X-Ray Fluorescence (ED-XRF) in the Cyclostratigraphy Research-A Case Study from the Xiagou Formation of the Lower Cretaceous in the Qingxi Sag, Jiuquan Basin
-
摘要: 在旋回地层学研究中,高分辨率地球化学数据作为一重要的替代指标,其一般获取方式(ICP-MS或WD-XRF)较耗费时间和经费,而手持X射线衍射仪(ED-XRF)能够高效的解决这一问题,目前将ED-XRF运用在沉积地层研究中,尤其是旋回地层学研究领域中较少.以酒泉盆地青西凹陷早白垩世下沟组深湖相泥岩、白云质泥岩为研究对象,将连续采集的岩心样品通过ED-XRF测试,该测试方法能够保证在不破坏样品的前提下,并在误差允许的范围内的条件下,短时间内(5 min)完成对单一样品的测试.通过测试精确得出24种主量及微量元素的含量,将得出的地球化学特征作为旋回地层学研究的替代指标,并针对K/Al,Ca/Al,Si/Al,Fe/Al,Ti/Al,Mn/Al,Ni/Al,Zn/Al和Pb/Al的比值进行频谱分析.数据表明W2井下沟组一段(SQK1g1)地层旋回性表现出与天文旋回明显的对应关系.沉积地层中的旋回厚度比值为20.25:4.75:1.75:1.00,与米兰科维奇旋回中长偏心率、短偏心率、斜率和岁差的周期比值:400 ka:95 ka:37 ka:20 ka相对应.该地区的沉积记录受天文轨道周期的影响得到了证明,与此同时,为手持X射线衍射仪在旋回地层学中的应用开辟了新领域.Abstract: The high resolution geochemical data are used as important proxies in cyclostratigraphy, which cost a lot of time and money to obtain the data in the usual way (ICP-MS or WD-XRF). And the handheld energy-dispersive X-ray fluorescence (ED-XRF) can obtain the high resolution geochemical data efficiently. Currently, the handheld energy-dispersive X-ray fluorescence (ED-XRF) was few used in the study of sedimentary strata, especially in cyclostratigraphy research field.Continuous core samples of deep lacustrine mudstone and dolomitic mudstone were selected from the Xiagou Formation of the Lower Cretaceous in the Qingxi Sag, Jiuquan Basin. Content of 24 major elements and trace elements which can be used as important proxies in cyclostratigraphy were accurately measured under the Handheld energy-dispersive X-ray fluorescence (ED-XRF) testing, a non-destructive, direct method with high precision in an efficiency way which can test one single sample in five minutes. Ratios of obtained geochemical data (K/Al, Ca/Al, Si/Al, Fe/Al, Ti/Al, Mn/Al, Ni/Al, Zn/Al and Pb/Al) were analyzed by spectral methods further. Such results presented cycle wavelengths in the stratigraphic units show a value of 20.25:4.75:1.75:1.00, corresponding with those of Milankovitch cycle periods (400 ka (long eccentricity):95 ka (short eccentricity):37 ka (obliquity):20 ka (precession), respectively) in Well W2. The correspondences between the sedimentary cycle ratios and the Milankovitch cycle periods indicates controlling effect of astronomical factors on sedimentation. ED-XRF provide the new possibilities in detection and quantification of geological processes, and have great significance in establishing geological time series.
-
Key words:
- Jiuquan Basin /
- Lower Cretaceous /
- stratigraphy /
- ED-XRF /
- geochemistry
-
图 1 研究区地质
a.主要白垩系盆地分布范围及酒泉盆地位置(旷红伟等,2013);b.酒泉盆地构造区划,主要分为3个构造单元:酒西坳陷、嘉峪关隆起和酒东坳陷;c.青西凹陷及钻井位置示意图
Fig. 1. Geology of research area
图 2 青西凹陷下白垩统综合柱状图
包括:岩性描述、古生物(马其鸿等,1984;牛绍武,1987)、沉积环境、构造演化阶段(Chen et al., 2014)
Fig. 2. The stratigraphy column of Lower Cretaceous inthe Qingxi Sag
图 5 手持X射线衍射仪测量各种元素的标准值与测量值
基于Bruker AXS的校准软件(SPECTRAEDX S2 CONFIGURATION),校准值见表 3
Fig. 5. Accepted (acc) versus measured (meas) values for elements analyzed by ED-XRF
表 1 青西凹陷采样分布
Table 1. Sections of sample analyzed in the Qingxi Sag
井名 样品数 样品分类 W1 48 白云质泥岩;泥岩;灰质粉砂岩 W2 41 白云质泥岩;灰质粉砂岩 W3 29 白云质泥岩; W4 32 白云质泥岩;泥质白云岩;细砂岩 W5 21 白云质泥岩;泥质白云岩;灰质粉砂岩 总计 171 泥岩;白云质泥岩;泥质白云岩;灰质粉砂岩;细砂岩 表 2 标样主量及微量元素浓度的计算标准(加拿大Bureau Veritas矿物检测公司)
Table 2. Major and trace elemental concentrations for the calibration standards
W1-3 W3-14 W3-9 W2-13 W4-15 W4-13 W5-16 W5-19 W1-23 W2-19 K2O(%) 3.07 2.71 2.88 3.36 2.44 2.44 3.34 2.95 2.96 2.61 CaO(%) 3.49 6.84 9.01 10.84 1.89 15.06 4.81 6.57 8.27 11.96 Al2O3(%) 17.17 14.99 12.54 11.48 16.06 8.61 17.74 14.88 13.29 12.01 SiO2(%) 51.62 42.87 37.93 37.04 52.05 26.06 45.83 43.22 38.01 34.10 P2O5(%) 0.06 0.02 0.05 0.03 0.04 0.01 0.04 0.05 0.00 0.08 TiO2(%) 0.73 0.53 0.51 0.48 0.66 0.32 0.61 0.51 0.49 0.40 V(10-6) 148.00 113.00 105.00 93.00 96.00 73.00 126.00 87.00 114.00 106.00 Cr2O3(%) 0.020 0.017 0.017 0.015 0.016 0.008 0.019 0.016 0.015 0.014 MnO(%) 0.13 0.13 0.12 0.12 0.12 0.11 0.10 0.10 0.11 0.18 Fe2O3(%) 6.16 4.87 4.60 3.18 4.28 2.16 5.63 7.13 5.15 5.76 Co(10-6) 19.50 21.30 20.20 15.50 40.50 9.60 24.90 19.80 15.70 14.00 Ni(10-6) 66.00 54.00 78.00 47.00 133.00 20.00 68.00 64.00 42.00 47.00 Cu(10-6) 41.60 39.30 49.10 33.00 47.70 25.20 51.50 55.30 39.50 36.10 Zn(10-6) 59.00 43.00 66.00 60.00 91.00 30.00 62.00 70.00 92.00 48.00 Rb(10-6) 144.60 115.10 128.00 120.10 91.20 84.90 137.60 95.60 120.50 93.30 Sr(10-6) 127.30 335.00 535.80 603.00 206.70 988.10 256.10 524.20 630.10 590.20 Y(10-6) 26.20 15.80 19.60 17.90 20.80 14.70 13.40 22.90 12.70 20.40 Zr(10-6) 154.00 114.80 101.10 96.60 144.30 68.00 120.70 108.30 89.90 85.90 Nb(10-6) 13.40 9.20 9.80 8.70 12.20 6.00 11.20 9.80 8.20 7.40 Mo(10-6) 0.20 2.90 3.30 2.10 0.90 2.70 0.70 1.30 2.70 0.90 Pb(10-6) 18.40 11.60 36.60 6.10 43.50 7.50 19.40 49.60 24.00 20.90 W(10-6) 2.80 1.50 2.00 1.80 2.60 1.30 2.30 1.60 1.90 0.90 Ba(10-6) 573.00 504.00 732.00 705.00 234.00 386.00 474.00 289.00 319.00 280.00 Ce(10-6) 72.20 43.80 53.60 48.80 60.40 42.60 25.00 52.80 23.40 40.80 Sum(%) 82.60 73.12 67.85 66.73 77.68 54.95 78.26 75.57 68.45 67.25 表 3 Corrections used for ED-XRF calibration ED-XRF标准值校正
Table 3. Corrections used for ED-XRF calibration
元素 峰能 偏移量和二次修正 α校正(强度修正) 标准值省略校正 标准偏差 Al Ka1 On;Off P,Mn,Rb W4-15;W1-23 0.076 1% Si Ka1 Off;On P,Rb,Pb W3-14; 0.256 0% P Ka1 Off;On Sr,Ba 0 0.005 0% K Ka1 On;Off Ca,Ti, 0 0.027 2% Ca Ka1 On;On Al,Si,K 0 0.117 0% Ti Ka1 On;On P,Mn W3-9 0.003 4% Mn Ka1 Off;Off Al,Ca,Rh W1-3 28×10-6 Fe Ka1 On;On P,Ca 0 0.035 4% Cr Ka1 Off;Off Si,P,Ca 0 3×10-6 V Ka1 On;On Al,P W1-3;W2-19 10-6 Co Ka1 On;Off Ti,Mo 0 10-6 Ni Ka1 Off;On V,Fe,W 0 10-6 Cu Ka1 Off;Off Si,Ca,Ba 0 10-6 Zn Ka1 On;Off P W2-13;W4-13 10-6 Rb Ka1 On;Off P,V,Nb 0 10-6 Sr Ka1 On;On Al,Si, 0 16×10-6 Y Ka1 On;On Al,Ba 0 0 Zr Ka1 On;Off Si,P,Mn W3-14;W5-20 10-6 Nb Ka1 On;Off P,Rb 0 0 Mo Ka1 Off;Off Al,P,Ca W5-12; 0 Ba Ka1 On;On Al,Cr,Pb W1-5;W2-17 36×10-6 Ce Ka1 Off;Off P,Ce, 0 10-6 W Ka1 On;On P,V,Fe W3-6;W1-12 0 Pb Ka1 On;Off P,Cr,Zn 0 0 表 4 元素比值与天文周期的比例关系
Table 4. The proportion of element ratios and astronomical cycle
K/Al Ca/Al Si/Al Fe/Al Ti/Al Mn/Al Ni/Al Zn/Al Pb/Al 19.21 m 19.30 m 19.30 m 81.30 m 19.21 m 81.23 m 81.30 m 81.30 m 81.30 m 10.22 m 6.47 m 7.35 m 9.17 m 12.01 m 10.87 m 19.21 m 19.29 m 19.30 m 7.14 m 4.30 m 6.29 m 7.36 m 7.35 m 7.35 m 8.33 m 8.33 m 7.35 m 6.35 m 4.43 m 4.72 m 5.70 m 5.13 m 4.21 m 7.35 m 4.28 m 3.67 m 3.87 m 4.05 m -
[1] Arthur, M.A., Dean, W.E., 1991.A Holistic Geochemical Approach to Cyclomania:Examples from Cretaceous Pelagic Limestone Sequences.Cycles and Events in Stratigraphy.Springer, Berlin, 126-166. [2] Binstock, D.A., Gutknecht, W.F., McWilliams, A.C., 2008.Lead in Soil by Field-Portable X-ray Fluorescence Spectrometry-An Examination of Paired in Situ and Laboratory ICP-AES Results.Remediation Journal, 18(3):55-61.doi: 10.1002/rem.20171 [3] Burn, B.A.B., Hel, P.L., 1997.Fluvial Response in a Sequence Stratigraphic Framework:Example from the Montserrat Fan Delta, Spain.SEPM Journal of Sedimentary Research, 67(2):311-320.doi: 10.1306/d426855e-2b26-11d7-8648000102c1865d [4] Chen, J.H., Komatsu, T., Meizhen Cao, et al., 2006.Kumamotoa, an Early Late Cretaceous Non-Marine Bivalve, from Fujian, South China.Journal of Asian Earth Sciences, 27(6):943-951.doi: 10.1016/j.jseaes.2005.10.002 [5] Chen, S., Wang, H., Wei, J., et al., 2014.Sedimentation of the Lower Cretaceous Xiagou Formation and its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China.Cretaceous Research, 47:72-86.doi: 10.1016/j.cretres.2013.11.006 [6] Chen, W.F., Chen, P.R., Xu, X.S., et al., 2005.Geochemical Characteristics of Cretaceous Basaltic Rocks in South China and Constraints on Pacific Plate Subduction.Science in China:Series D, 35(11):1007-1018(in Chinese with English abstract). doi: 10.1360/04yd0149.pdf [7] Chen, J.P., Huang, D.F., 1996.Formation and Mechanism of the Abnormal Pressure Zone and Its Relation to Oil and Gas Accumulations in the Eastern Jiuquan Basin, Northwest China.Science in China Series D, 39(2):194-204 (in Chinese with English abstract). http://earth.scichina.com:8080/sciDe/CN/Y1996/V39/I2/194 [8] Deng, S.H., Lu, Y.Z., 2008.Fossil Plants from Lower Cretaceous of the Jiuquan Basin, Gansu, Northwest China and their Palaeoclimatic Implications.Acta Geologica Sinica, 82(1):104-114 (in Chinese with English abstract). [9] Deng, S.H., Yang, X.J., Lu, Y.Z., 2005.Pseudofrenelopsis(Cheirolepidiaceae) from the Lower Cretaceous of Jiuquan, Gansu, Northwestern China.Acta Palaeontologica Sinica, 44(4):505-516(in Chinese with English abstract). https://www.researchgate.net/publication/281308413... [10] Fang, Q., 2015.Milankovitch Cycles from South China and the Environmental Responds at the End of the Late Paleozoic Ice Age(Dissertation).China University of Geosciences(Beijing), Beijing(in Chinese with English abstract). [11] Fitton, G., 1997.X-ray Fluorescence Spectrometery.In:Gill, R., ed., Modern Analytical Geochemistry.Addison Wesley Longman, 329. [12] Hall, G.E.M., Bonham-Carter, G.F., Buchar, A., 2014.Evaluation of Portable X-Ray Fluorescence (pXRF) in Exploration and Mining:Phase 1, Control Reference Materials.Geochemistry:Exploration, Environment, Analysis, 14(2):99-123.doi: 10.1144/geochem2013-241 [13] Harvey, P.K., 1983.Principles of Quantitative X-Ray Fluorescence Analysis.Mineralogical Magazine, 47(345):571-571.doi: 10.1180/minmag.1983.047.345.25 [14] Hu, Y.X., Xu, D.L., 2005.Early Cretaceous Ostracods from the Xiagou Formation in Xiagou, Gansu Province.Acta Micropalaeontologica Sinica, 22(2):173-184(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WSGT200502006.htm [15] Jansen, J.H.F., van der Gaast, S.J.V.D., Koster, B., et al., 1998.CORTEX, a Shipboard XRF-Scanner for Element Analyses in Split Sediment Cores.Marine Geology, 151(1-4):143-153.doi: 10.1016/s0025-3227(98)00074-7 [16] Jin, S.D., Wang, H., Chen, S., et al., 2013.Control of Anticline Crest Zone on Depositional System and its Geological Significance for Petroleum in Changshaling, Yinger Sag, Eastern Jiuquan Basin.Journal of Earth Science, 24(6):947-961.doi: 10.1007/s12583-013-0388-0 [17] Jin, S.D., 2016.Recognition of Cyclostratigraphy and Discussion of the Genetic Mechanism of Xiagou Formation in Early Cretaceous, Jiuquan Basin, West of China(Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [18] Jones, M.C., Williams-Thorpe, O., Potts, P.J., et al., 2005.Using Field-Portable XRF to Assess Geochemical Variations within and between Dolerite Outcrops of Preseli, South Wales.Geostandards and Geoanalytical Research, 29(3):251-269.doi: 10.1111/j.1751-908x.2005.tb00899.x [19] Kuang, H.W., Liu, Y.Q., Liu, Y.X., et al., 2013.Stratigraphy and Depositional Palaeogeography of the Early Cretaceous Basins in Da Hinggan Mountains-Mongolia Orogenic Belt and Its Neighboring Areas.Geological Bulletin of China, 32(7):1063-1084(in Chinese with English abstract). https://www.researchgate.net/publication/286673825_Stratigraphy... [20] Kujau, A., Nürnberg, D., Zielhofer, C., et al., 2010.Mississippi River Discharge over the last ~560 000 years-Indications from X-Ray Fluorescence Core-Scanning.Palaeogeography, Palaeoclimatology, Palaeoecology, 298(3-4):311-318.doi: 10.1016/j.palaeo.2010.10.005 [21] Laskar, J., Robutel, P., Joutel, F., et al., 2004.A Long-Term Numerical Solution for the Insolation Quantities Of the Earth.Astronomy & Astrophysics, 428(1):261-285.doi: 10.1051/0004-6361:20041335 [22] Lerman, A., 1989.Lakes:Chemistry, Geology, Physics.Geological Press, Beijing, 10-100. [23] Li, H.B., Yang, J.S., Xu, Z.Q., et al., 2006.The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau.Earth Science Frontiers, 13(4):59-79(in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/462404/1/991563136.pdf [24] Li, T.T., Zhu, R.K., Bai, B., et al., 2015.Characteristics and Research Significance of Fine Lacustrine Sedimentary Rock Laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin.China Petroleum Exploration, 20(1):38-47 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2015.01.004 [25] Li, T.T., Zhu, R.K., Bai, B., et al., 2015.Characteristics and Research Significance of Fine Lacustrine Sedimentary Rock Laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin.China Petroleum Exploration, 20(1):38-47. doi: 10.3969/j.issn.1672-7703.2015.01.004 [26] Li, X.H., Xu, W.L., Liu, W.H., et al., 2013.Climatic and Environmental Indications of Carbon and Oxygen Isotopes from the Lower Cretaceous Calcrete and Lacustrine Carbonates in Southeast and Northwest China.Palaeogeography, Palaeoclimatology, Palaeoecology, 385:171-189.doi: 10.1016/j.palaeo.2013.03.011 [27] Luo, P., Yang, S.S., Ma, L., et al., 2001.Origin, Feature and its Significance to the Petroleum Exploration of the Clay-Size Plagioclase in Lacustrine Laminated Argillaceous Dolomite, Qingxi Depression in Jiuxi Basin.Petroleum Exploration and Development, 28(6):32-33(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_syktykf200106009.aspx [28] Lü, F.L., 2014.Evolution of Depositional Environment Since Early Pleistocene in Lop Nor, Xinjiang, China and Its Geological Significance(Dissertation).China University of Geosciences (Beijing), Beijing (in Chinese with English abstract). [29] Ma, Q.H., Lin, Q.B., Ye, C.H., et al., 1982.Division and Correlation of the Xinminpu Formation in the Jiuxi Basin, Gansu.Journal of Stratigraphy, 2:255-270 (in Chinese with English abstract). [30] Mayer, H., Appel, E., 1999.Milankovitch Cyclicity and Rock-Magnetic Signatures of Palaeoclimatic Change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy.Cretaceous Research, 20(2):189-214.doi: 10.1006/cres.1999.0145 [31] Niu, S.W., 1987.Late Mesozoic Stratigraphy in the Jiuquan Basin, Gansu.Journal of Stratigraphy, 11:1-22 (in Chinese with English abstract). [32] Olsen, P.E., Kent, D.V., Cornet, B., et al., 1996.High-Resolution Stratigraphy of the Newark Rift Basin (Early Mesozoic, Eastern North America).Geological Society of America Bulletin, 108(1):40-77.doi:10.1130/0016-7606(1996)108<0040:hrsotn>2.3.co;2 [33] Pan, L.Y., Xie, J.L., Li, M.J., et al., 2006.Cretaceous-Cenozoic Regional Tectonic Evolution in Jiuquan Basin and Petroleum Exploration.Oil & Gas Geology, 27(1):62-69(in Chinese with English abstract). https://www.researchgate.net/publication/291773464_Cretaceous... [34] Peng, N., 2013.Basin Analysis and Paleogeography in North Qilian Mountain to Beishan Area, Early Cretaceous(Dissertation).China University of Geosciences(Beijing), Beijing (in Chinese with English abstract). [35] Peng, X.F., Wang, L.J., Jiang, L.P., 2012.Geochemical Characteristics of the Lucaogou Formation Oil Shale in the Southeastern Margin of the Junggar Basin and its Environmental Implications.Bulletin of Mineralogy, Petrology and Geochemistry, 31(2):121-127, 151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201202004.htm [36] Potts, P.J., Webb, P.C., Williams-Thorpe, O., et al., 1995.Analysis of Silicate Rocks Using Field-Portable X-Ray Fluorescence Instrumentation Incorporating a Mercury(Ⅱ) Iodide Detector:A Preliminary Assessment of Analytical Performance.The Analyst, 120(5):1273.doi: 10.1039/an9952001273 [37] Richter, T.O., van der Gaast, S.V.D., Koster, B., et al., 2006.The Avaatech XRF Core Scanner:Technical Description and Applications to NE Atlantic Sediments.Geological Society, London, Special Publications, 267(1):39-50.doi: 10.1144/gsl.sp.2006.267.01.03 [38] Rimmer, S.M., 2004.Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA).Chemical Geology, 206(3-4):373-391.doi: 10.1016/j.chemgeo.2003.12.029 [39] Rousseau, R.M., 2001.Detection Limit and Estimate of Uncertainty of Analytical XRF Results.The Rigaku Journal, 18(18):33-47. https://www.researchgate.net/publication/228687395_Detection_limit... [40] Rowe, H., Hughes, N., Robinson, K., 2012.The Quantification and Application of Handheld Energy-Dispersive X-Ray Fluorescence (ED-XRF) in Mudrock Chemostratigraphy and Geochemistry.Chemical Geology, 324-325:122-131.doi: 10.1016/j.chemgeo.2011.12.023 [41] Shi, R.P., Zhu, R.X., 2002.Possible Links Between Abnormal Geological Events and Geodynamics During Cretaceous.Progress in Geophysics, 17(2):295-300 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200202015.htm [42] Sorrel, P., Oberhänsli, H., Boroffka, N., et al., 2007.Control of Wind Strength and Frequency in the Aral Sea Basin during the Late Holocene.Quaternary Research, 67(3):371-382.doi: 10.1016/j.yqres.2006.12.003 [43] Strasser, A., Hilgen, F.J., Heckel, P.H., 2006.Cyclostratigraphy-Concepts, Definitions, and Applications.Newsletters on Stratigraphy, 42(2):75-114.doi: 10.1127/0078-0421/2006/0042-0075 [44] Tung, J.W.T., 2004.Determination of Metal Components in Marine Sediments Using Energy-Dispersive X-Ray Fluorescence (ED-XRF) Spectrometry.Annali Di Chimica, 94(11):837-846.doi: 10.1002/adic.200490104 [45] Vanhoof, C., Corthouts, V., Tirez, K., 2004.Energy-Dispersive X-Ray Fluorescence Systems as Analytical Tool for Assessment of Contaminated Soils.Journal of Environmental Monitoring, 6(4):344.doi: 10.1039/b312781h [46] Wang, G.D., Cheng, R.H., Wang, P.J., et al., 2015.High Resolution Continuous Sedimentary Records of Upper Cretaceous Obtained from the Continental Drilling (SK-1) Borehole in Songliao Basin:Sifangtai and Mingshui Formations.Geoscience Frontiers, 6(6):895-912.doi: 10.1016/j.gsf.2015.02.003 [47] Wang, T.T., Ramezani, J., Wang, C.S., et al., 2016.High-Precision U-Pb Geochronologic Constraints on the Late Cretaceous Terrestrial Cyclostratigraphy and Geomagnetic Polarity from the Songliao Basin, Northeast China.Earth and Planetary Science Letters, 446:37-44.doi: 10.1016/j.epsl.2016.04.007 [48] Wang, J., Wang, H., Chen, S., et al., 2012.Control of Palaeogeomorphology on Sedimentary System Distribution:An Example from Qingxi Depression, Jiuquan Basin.Marine Geology Frontiers, 28:25-33 (in Chinese with English abstract). [49] Weedon, G, 2003.Time-Series Analysis and Cyclostratigraphy:Examining Stratigraphic Records of Environmental Cycles.Choice Reviews Online, 41(2):41-0952-41-0952.doi: 10.5860/choice.41-0952 [50] Wen, H.G., Zheng, R.C., Wu, G.X., et al., 2009.Characteristics of Strontium Isotopic Geochemistry of Sublacustrine Hydrothermal Sedimentary Rock of Xiagou Formation in Qingxi Sag, Jiuquan Basin.Acta Sedimentologica Sinica, 27(4):642-649 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB200904007.htm [51] Wen, H.G., Zheng, R.C., Ye, T.R., et al., 2005.Sedimentary Characteristics of the Lower Cretaceous Strata and Prediction of the Favourable Exploration Areas in the Qingxi Depression, Jiuxi Basin, Gansu.Sedimentary Geology and Tethyan Geology, 25(4):71-77(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2005.04.012 [52] Wu, H.C., Zhang, S.H., Hinnov, L.A., et al., 2014.Cyclostratigraphy and Orbital Tuning of the Terrestrial Upper Santonian-Lower Danian in Songliao Basin, Northeastern China.Earth and Planetary Science Letters, 407:82-95.doi: 10.1016/j.epsl.2014.09.038 [53] Wu, H.C., Zhang, S.H., Jiang, G.Q., et al., 2013.Astrochronology of the Early Turonian-Early Campanian Terrestrial Succession in the Songliao Basin, Northeastern China and its Implication for Long-Period Behavior of the Solar System.Palaeogeography, Palaeoclimatology, Palaeoecology, 385:55-70.doi: 10.1016/j.palaeo.2012.09.004 [54] Zeng, X.B., Zhang, J.H., Jin, H., et al., 2001.New Opinions on Oil and Gas Generation and Exploration in Jiuxi Basin (Ⅰ)-Basic Petroleum and Geological Condition and Oil-Generating Potential.Petroleum Exploration and Development, 28(1):19-22(in Chinese with English abstract). [55] Zhou, Y., 2011.Early Cretaceous Paleoclimate in Jiuquan Basin and Liupanshan Basin, Northwestern China(Dissertation).Chengdu University of Technology, Chengdu(in Chinese with English abstract). [56] 陈建平, 黄第藩, 霍永录, 等, 1996.酒东盆地异常流体压力带及与油气分布的关系.中国科学:D辑:地球科学, (1):9-15. http://www.cqvip.com/QK/98491X/199601/2088587.html [57] 陈卫锋, 陈培荣, 徐夕生, 等, 2005.华南白垩纪玄武质岩石的地球化学特征及其对太平洋板块俯冲作用的制约.中国科学D辑, 35(11):1007-1018. http://www.cqvip.com/QK/98491X/2005011/20620801.html [58] 邓胜徽, 卢远征, 2008.甘肃酒泉盆地早白垩世植物化石及其古气候意义.地质学报, 82(1):104-114. http://www.oalib.com/paper/4873899 [59] 邓胜徽, 杨小菊, 卢远征, 2005.甘肃酒泉盆地下白垩统Pseudofrenelopsis(掌鳞杉科)的发现及其意义.古生物学报, 44(4):505-516. http://www.wenkuxiazai.com/doc/b50a78a03968011ca30091c8.html [60] 房强, 2015. 晚古生代冰期末期米兰科维奇旋回在华南的记录及环境响应(博士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015385636.htm [61] 胡艳霞, 徐东来, 2005.甘肃玉门下沟地区早白垩世下沟组介形类.微体古生物学报, 22(2):173-184. http://www.irgrid.ac.cn/handle/1471x/487328 [62] 金思丁, 2016. 酒泉盆地白垩系下沟组旋回地层识别及成因机制探讨(博士学位论文). 武汉: 中国地质大学(武汉). http://cdmd.cnki.com.cn/Article/CDMD-10491-1016312014.htm [63] 旷红伟, 柳永清, 刘燕学, 等, 2013.兴蒙造山区及邻区早白垩世盆地岩石地层格架与沉积古地理演化.地质通报, 32(7):1063-1084. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201307010.htm [64] 李海兵, 杨经绥, 许志琴, 等, 2006.阿尔金断裂带对青藏高原北部生长、隆升的制约.地学前缘, 13(4):59-79. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604005.htm [65] 李婷婷, 朱如凯, 白斌, 等, 2015.酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义.中国石油勘探, 20(1):38-47. http://www.cqvip.com/QK/95994X/200904/31175550.html [66] 罗平, 杨式升, 马龙, 等, 2001.酒西盆地青西坳陷湖相纹层状泥质白云岩中泥级斜长石成因、特征与油气勘探意义.石油勘探与开发, 28(6):32-33. http://www.cqvip.com/QK/90664X/200106/5676739.html [67] 吕凤琳, 2014. 罗布泊早更新世以来沉积环境演变及其地质意义(硕士学位论文). 北京: 中国地质大学(北京). http://cdmd.cnki.com.cn/Article/CDMD-11415-1014239425.htm [68] 马其鸿, 林启彬, 叶春辉, 等.1984.甘肃酒泉盆地西部新民堡群的划分和对比.地层学杂志, 8(4):255-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198404001.htm [69] 牛绍武, 1987.甘肃酒泉盆地晚期中生代地层.地层学杂志, 11(1):1-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198701000.htm [70] 潘良云, 谢结来, 李明杰, 等, 2006.酒泉盆地白垩纪-新生代区域构造演化与油气勘探.石油与天然气地质, 27(1):62-69. doi: 10.11743/ogg20060111 [71] 彭楠, 2013. 北祁连-北山地区早白垩世沉积盆地分析及古地理特征(硕士学位论文). 北京: 中国地质大学(北京). http://cdmd.cnki.com.cn/Article/CDMD-11415-1013261789.htm [72] 彭雪峰, 汪立今, 姜丽萍, 2012.准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义.矿物岩石地球化学通报, 31(2):121-127, 151. http://www.cqvip.com/QK/84215X/201202/41373421.html [73] 史瑞萍, 朱日祥, 2002. 白垩纪地球物理场异常与地球深部动力学. 中国科学院地质与地球物理研究所. 中国科学院地质与地球物理研究所2002学术论文摘要汇编. 中国科学院地质与地球物理研究所, 北京. [74] 汪晶, 王华, 陈思, 等, 2012.酒泉盆地青西凹陷鸭西地区古地貌对沉积体系空间展布的控制作用.海洋地质前沿, 03:25-33. http://www.cqvip.com/QK/98440A/201203/41631416.html [75] 文华国, 郑荣才, 叶泰然, 等, 2005.酒西盆地青西凹陷下白垩统沉积特征与有利勘探区预测.沉积与特提斯地质, 25(4):71-77. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200504011.htm [76] 文华国, 郑荣才, 吴国瑄, 等, 2009.酒泉盆地青西凹陷下沟组湖相热水沉积岩锶同位素地球化学特征.沉积学报, 27(4):642-649. http://www.cqvip.com/QK/95994X/200904/31175550.html [77] 曾宪斌, 张静华, 金惠, 等, 2001.酒西盆地油气形成与勘探方向新认识(一)——基本石油地质条件及生油潜力.石油勘探与开发, 28(1):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200103003.htm [78] 周勇, 2011. 西北酒泉和六盘山盆地早白垩世古气候(硕士学位论文). 成都: 成都理工大学. http://www.xueweilunwen.com/doc/138760