• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例

    薛肖斌 李俊霞 钱坤 谢先军

    薛肖斌, 李俊霞, 钱坤, 谢先军, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
    引用本文: 薛肖斌, 李俊霞, 钱坤, 谢先军, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
    Xue Xiaobin, Li Junxia, Qian Kun, Xie Xianjun, 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
    Citation: Xue Xiaobin, Li Junxia, Qian Kun, Xie Xianjun, 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921. doi: 10.3799/dqkx.2017.564

    华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例

    doi: 10.3799/dqkx.2017.564
    基金项目: 

    国家自然科学基金项目 41502230

    详细信息
      作者简介:

      薛肖斌(1992-), 男, 硕士研究生, 主要从事地下水污染与防治方面的研究工作

      通讯作者:

      李俊霞

    • 中图分类号: P641.1

    Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example

    • 摘要: 高碘地下水是继高砷、高氟地下水之后的又一全球性饮水安全问题,但对地下水系统中碘的赋存形态及迁移富集机理研究尚显不足.为了解华北平原地下水系统中碘的空间分布特征及迁移富集规律,选取石家庄-衡水-沧州典型水文地质剖面,完成地下水样品采集,分析其水化学组成、总碘含量及碘形态组成特征,同时运用phreeqc完成水文地质剖面地球化学反向模拟及相关矿物饱和指数计算,定性定量表征水流场内所发生的水文地球化学过程,进而深入探讨上述过程对地下水系统碘迁移富集的影响.结果表明,区域内地下水中碘含量变化范围为3.35~1 106.00 μg/L,其中,41.86%样品碘含量超过《水源性高碘地区和地方性高碘甲状腺肿病区的规定(GB/T19380-2003)》所界定的150 μg/L国家标准;空间上,高碘地下水主要分布于渤海湾区;地下水中碘的主要赋存形态为碘离子及碘酸根离子,其分布受氧化还原环境控制,碘酸根离子主要出现于氧化环境中;沿地下水流向,地下水环境朝利于液相碘迁移富集的方向演变;渤海湾区,海水入侵影响下形成的偏碱性、(弱)还原环境,利于碘从沉积物中迁移释放至地下水中;碘在不同铁矿物相上的搭载能力及氧化还原环境演化导致的铁矿物相转化,是造成华北平原地下水系统中碘迁移富集的主要水文地球化学过程.

       

    • 图  1  研究区采样点位置与地下水碘含量概况

      Fig.  1.  Sampling location of groundwater samples from NCP

      图  2  地下水中碘含量与井深关系

      ▲:Ⅰ区补给区;■:Ⅱ区径流区;●:Ⅲ区排泄及海水入侵区

      Fig.  2.  Depth profile of iodine concentrations in groundwater samples from NCP

      图  3  碘形态相对含量图

      Fig.  3.  Ternary diagram of iodine species in groundwater

      图  4  Piper三线图

      △代表Ⅰ区补给区;□代表Ⅱ区径流区;○代表Ⅲ区排泄及海水入侵区

      Fig.  4.  Piper diagram of groundwater samples from NCP

      图  5  剖面总碘含量、Cl/Br摩尔比、Cl/(Cl+HCO3)质量比和pH演化图

      Fig.  5.  The variations of groundwater iodine, Cl/Br molar ratio, Cl/(Cl+HCO3) weight ratio and pH along groundwater flow path from Shijiazhuang/Hengshui to Cangzhou

      图  6  碘含量与pH(a)、Eh(b)、Fe(c)、HCO3(d)的关系图

      ▲:Ⅰ区补给区;■:Ⅱ区径流区;●:Ⅲ区排泄及海水入侵区

      Fig.  6.  The plots of groundwater iodine vs. pH (a), Eh (b), Fe (c) and HCO3 (d)

      表  1  华北平原第四系地层、岩性、含水层组和海侵划分

      Table  1.   Events of Quaternary marine transgressions at North China Plain (NCP)

      符号 岩性描述 底界埋深 总厚度 含水层组 海侵
      全新统 Q4 含淤泥质粉土、粉质粘土夹细砂粉砂 15~30 m,局部为60~70 m 20~30 m 第1含水层组 天津海侵
      上更新统 Q3 粉土、粉质粘土、粉细砂、中细砂、卵石 10~170 m 50~150 m 第2含水层组 白洋淀、沧州海侵
      中更新统 Q2 粉质粘土夹砂、砾石 250~350 m 80~180 m 第3含水层组 海兴、黄骅海侵
      下更新统 Q1 厚层粘土、粉质粘土夹砂 350~550 m 100~200 m 第4含水层组 渤海海侵
      下载: 导出CSV

      表  2  样品数据统计

      Table  2.   Statistical description of chemical composition of groundwater samples from NCP

      Ⅰ区 Ⅱ区 Ⅲ区
      最小值 最大值 平均值 中位数 标准差 最小值 最大值 平均值 中位数 标准差 最小值 最大值 平均值 中位数 标准差
      总碘(μg/L) 3.35 20.99 8.82 7.23 5.03 7.66 138.00 54.12 37.74 41.82 197.80 1 106.00 598.00 546.40 282.20
      碘酸根(μg/L) ND 17.63 3.26 2.18 5.21 ND 115.50 16.24 ND 32.42 ND 694.60 134.80 3.88 228.50
      碘离子(μg/L) 0.87 11.56 2.24 1.11 3.30 0.70 91.21 29.50 16.12 29.80 34.47 854.00 424.80 358.30 259.80
      有机碘(μg/L) 2.07 5.91 3.32 2.83 1.16 ND 20.2 8.65 7.01 6.92 -17.19 296.10 43.63 4.98 85.14
      pH 7.25 8.36 7.62 7.49 0.38 7.64 8.55 8.16 8.16 0.21 7.80 8.34 8.048 8.10 0.15
      TDS(mg/L) 269.5 817.7 461.9 309.2 222.3 391.1 866.4 671.2 702.8 158.4 892.0 2 400.0 1 480.0 1 498.0 373.4
      Eh(mV) 122.00 170.00 145.60 148.00 17.08 86.00 135.00 113.70 115.00 15.96 -214.00 126.00 -2.221 51.55 132.60
      F(mg/L) 0.19 0.67 0.41 0.42 0.14 0.43 3.37 1.51 1.31 1.01 1.93 4.89 3.03 2.74 0.75
      Cl/Br (摩尔比) 132.5 3 677.0 938.0 706.4 1 069.0 381.2 2 937.0 1 305.0 1 270.0 570.0 582.3 2 465.0 1 391.0 1 348.0 548.6
      Cl(mg/L) 7.16 64.33 33.16 32.99 25.00 11.90 263.00 107.20 113.20 60.91 110.10 705.00 381.50 388.00 153.30
      NO3(mg/L) 2.000 139.500 31.150 8.050 43.450 ND 7.050 0.900 ND 1.870 ND 5.580 1.074 ND 1.970
      SO4(mg/L) 23.12 200.80 90.60 53.95 72.90 67.47 273.80 152.40 146.00 44.74 87.26 277.70 170.00 158.00 55.48
      HCO3(mg/L) 188.50 400.80 293.00 289.70 64.57 91.50 477.60 280.10 283.70 125.40 280.70 550.80 428.50 418.00 80.53
      K(mg/L) 1.74 5.09 2.93 2.78 0.88 0.72 2.89 1.57 1.26 0.79 0.61 4.70 2.11 1.94 0.95
      Na(mg/L) 13.56 66.90 39.58 41.17 16.23 81.88 349.90 236.20 244.30 91.53 352.90 832.00 529.10 525.30 121.10
      Ca(mg/L) 35.61 189.30 96.65 70.48 60.68 ND 50.57 21.27 14.45 16.15 13.26 34.45 18.94 17.08 5.62
      Mg(mg/L) 12.070 30.920 20.940 20.560 7.200 3.119 19.920 10.040 8.270 6.080 7.110 57.890 15.380 11.690 11.900
      Fe(μg/L) 6.80 31.20 15.68 16.65 77.95 9.8 57.10 24.21 16.00 16.14 20.00 77.83 17.34 19.04 20.36
      矿物饱和指数  方解石 -0.37 0.35 -0.08 -0.24 0.29 -0.29 0.66 0.17 0.13 0.34 0.58 0.89 0.72 0.74 0.11
      矿物饱和指数  钠长石 -3.5 -1.45 -2.24 -2.06 0.69 -4.93 -1.42 -2.49 -2.43 0.94 -7.56 -4.72 -6.49 -6.59 0.73
      矿物饱和指数  钙长石 -4.63 -0.59 -2.41 -2.21 1.13 -5.33 -0.56 -1.41 -1.11 1.28 -5.7 -2.63 -4.19 -4.16 0.82
      矿物饱和指数  萤石 -2.25 -1.36 -1.84 -1.86 0.25 -1.73 0.34 -0.67 -0.52 0.77 0.09 0.86 0.51 0.49 0.19
      矿物饱和指数  岩盐 -8.2 -7.14 -7.66 -7.80 0.39 -7.90 -6.72 -7.42 -7.56 0.38 -7.46 -6.28 -6.90 -6.84 0.33
      矿物饱和指数  石膏 -2.42 -1.14 -1.80 -1.88 0.56 -1.72 -0.95 -1.15 -1.12 0.23 -1.13 -0.63 -0.92 -0.95 0.13
      矿物饱和指数  钾盐 -8.81 -7.65 -8.32 -8.35 0.43 -8.65 -7.39 -8.11 -8.10 0.33 -8.09 -6.71 -7.45 -7.35 0.38
      矿物饱和指数  绿泥石 -9.07 -4.50 -6.73 -6.8 1.24 -14.54 -5.13 -8.49 -8.00 2.61 -15.00 -7.65 -12.02 -12.08 1.64
      矿物饱和指数  高岭石 2.17 6.27 4.70 4.86 1.20 1.29 6.48 5.33 5.66 1.33 0.66 3.93 2.23 2.17 0.82
      注:ND.未检出.
      下载: 导出CSV

      表  3  Phreeqc反向地球化学模拟结果

      Table  3.   The result of inverse modeling of phreeqc along groundwater flow path

      矿物相 化学式 转移量(mmol/L)
      Ⅰ区 Ⅱ区 Ⅲ区
      方解石 CaCO3 -1.480 0 2.500 0 1.380 0
      钠长石 NaAlSi3O8 0.008 4 -3.350 0 -
      钙长石 CaAl2Si2O8 -0.004 2 - -0.250 0
      萤石 CaF2 0.006 0 0.075 0 -
      岩盐 NaCl -1.20 4.76 8.94
      石膏 CaSO4:2H2O -1.48 1.81 -1.06
      钾盐 KCl 0.017 -0.040 0.025
      CO2(g) CO2(g) -1.68 -2.60 -
      CaX2 CaX2 -0.43 -1.81 -
      MgX2 MgX2 -0.42 -2.55 -0.19
      NaX NaX 1.69 8.73 0.37
      绿泥石 Mg5Al2Si3O10(OH)8 - 0.045 0.038
      高岭石 Al2Si2O5(OH)4 - 3.40 0.21
      注:正值表示迁入溶液(溶解),负值表示迁出溶液(沉淀),“-”表示无相关结果.
      下载: 导出CSV
    • [1] Alcalá, F.J., Custodio, E., 2008.Using the Cl/Br Ratio as a Tracer to Identify the Origin of Salinity in Aquifers in Spain and Portugal.Journal of Hydrology, 359(1/2):189-207. https://doi.org/10.1016/j.jhydrol.2008.06.028
      [2] Cartwright, I., Weaver, T.R., Fifield, L.K., 2006.Cl/Br Ratios and Environmental Isotopes as Indicators of Recharge Variability and Groundwater Flow:An Example from the Southeast Murray Basin, Australia.Chemical Geology, 231(1/2):38-56. https://doi.org/10.1016/j.chemgeo.2005.12.009
      [3] Dai, J.L., 2004.Bioavailability of Iodine in Soil-Plant System (Dissertation).Shandong Agricultural University, Qingdao, 26-29 (in Chinese with English abstract).
      [4] Dai, J.L., Zhang, M., Hu, Q.H., et al., 2009.Adsorption and Desorption of Iodine by Various Chinese Soils:Ⅱ.Iodide and Iodate.Geoderma, 153(1/2):130-135. https://doi.org/10.1016/j.geoderma.2009.07.020
      [5] Fang, J.M., 2008.Research on Iron (Hydr)oxide Preparation and Loading and Adsorption of HIOCs Pollutants(Dissertation).Wuhan University of Technology, Wuhan, 15-17(in Chinese with English abstract).
      [6] Fordyce, F.M., Johnson, C.C., Navaratna, U.R.B., et al., 2000.Selenium and Iodine in Soil, Rice and Drinking Water in Relation to Endemic Goitre in Sri Lanka.Science of the Total Environment, 263(1/2/3):127-141. https://doi.org/10.1016/s0048-9697(00)00684-7
      [7] Guo, H.M., Wang, Y.X., Li, Y.M., 2003.Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin, Shanxi Province.Environmental Science, 24(4):60-67(in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hjkx200304011
      [8] Guo, H.P., Zhang, Z.C., Cheng, G.M., et al., 2015.Groundwater-Derived Land Subsidence in the North China Plain.Environmental Earth Sciences, 74(2):1415-1427. https://doi.org/10.1007/s12665-015-4131-2
      [9] Katz, B.G., Eberts, S.M., Kauffman, L.J., 2011.Using Cl/Br Ratios and Other Indicators to Assess Potential Impacts on Groundwater Quality from Septic Systems:A Review and Examples from Principal Aquifers in the United States.Journal of Hydrology, 397(3/4):151-166. https://doi.org/10.1016/j.jhydrol.2010.11.017
      [10] Kloppmann, W., Négrel, P., Casanova, J., et al., 2001.Halite Dissolution Derived Brines in the Vicinity of a Permian Salt Dome (N German Basin):Evidence from Boron, Strontium, Oxygen, and Hydrogen Isotopes.Geochimica et Cosmochimica Acta, 65(22):4087-4101.https://doi.org/10.1016/s0016-7037(01)00640-8 doi: 10.1016/S0016-7037(01)00640-8
      [11] Lang, X.J., Lin, W.J., Liu, Z.M., et al., 2016.Hydrochemical Characteristics of Geothermal Water in Guide Basin.Earth Science, 41(10):1723-1734(in Chinese with English abstract).
      [12] Ledin, A., Karlsson, S., Allard, B., 1993.Effects of pH, Ionic Strength and a Fulvic Acid on Size Distribution and Surface Charge of Colloidal Quartz and Hematite.Applied Geochemistry, 8(4):409-414. https://doi.org/10.1016/0883-2927(93)90009-6
      [13] Li, H.W., 2009.Separation Determinatin and Application of Different Iodine Speciation in Groundwater and Soil Samples of the Lower Reaches of the Yellow River (Dissertation).Beijing University of Chemical Industry, Beijing, 26-32(in Chinese with English abstract).
      [14] Li, J.X., Wang, Y.X., Guo, W., et al., 2013.Factors Controlling Spatial Variation of Iodine Species in Groundwater of the Datong Basin, Northern China.Procedia Earth and Planetary Science, 7:483-486. https://doi.org/10.1016/j.proeps.2013.03.054
      [15] Li, J.X., Wang, Y.X., Guo, W., et al., 2014.Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics.Science of the Total Environment, 468-469:738-745.https://doi.org/10.13039/501100001809 doi: 10.1016/j.scitotenv.2013.08.092
      [16] Li, P., Qian, H., Wu, J., et al., 2010.Geochemical Modeling of Groundwater in Southern Plain Area of Pengyang County, Ningxia, China.Water Science and Engineering, 3(3):282-291.
      [17] Machevsky, M.L., Anderson, M.A., 1986.Calorimetric Acid-Base Titrations of Aqueous Goethite and Rutile Suspensions.Langmuir, 2(5):583-587. https://doi.org/10.1021/la00071a009
      [18] Mao, R.Z., Fitzpatrick, R.W., Liu, X.J.et al., 2002.Chemical Properties of Selected Soils from the North China Plain.Ochrona Srodowiska I Zasobów Naturalnych, 27(2):173-186. https://www.sciencedirect.com/science/article/pii/S0140196306001753
      [19] Nagata, T., Fukushi, K., Takahashi, Y., 2009.Prediction of Iodide Adsorption on Oxides by Surface Complexation Modeling with Spectroscopic Confirmation.Journal of Colloid and Interface Science, 332(2):309-316. https://doi.org/10.1016/j.jcis.2008.12.037
      [20] Otosaka, S., Schwehr, K.A., Kaplan, D.I., et al., 2011.Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site.Science of the Total Environment, 409(19):3857-3865. https://doi.org/10.1016/j.scitotenv.2011.05.018
      [21] Qian, Y., Zhang, Z., Fei, Y., et al., 2013.Preliminary Study on Distribution and Iodine's Origin of Iodine-Rich Groundwater in North China Plain.International Conference on Digital Manufacturing & Automation, Qingdao, 940-943.
      [22] Shen, H.M., Zhang, S.B., Liu, S.J., et al., 2007.Study on the Geographic Distribution of National High Water Iodine Areas and the Contours of Water Iodine in High Iodine Areas.Chinese Journal of Endemiology, 26(6):658-661(in Chinese with English abstract). https://doi.org/10.3760/cma.j.issn.1000-4955.2007.06.021
      [23] Shimamoto, Y.S., Itai, T., Takahashi, Y., 2010.Soil Column Experiments for Iodate and Iodide Using K-Edge XANES and HPLC-ICP-MS.Journal of Geochemical Exploration, 107(2):117-123. https://doi.org/10.1016/j.gexplo.2009.11.001
      [24] Sun, D.P., 2006.Distribution and Evolution Characteristics of China's Iodine-Rich Brines.Journal of Salt Lake Research, 14(2):7-16(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1008-858X.2006.02.002
      [25] Tian, W.F., Zhao, Z.H., 1997.Underground Iodine Formation Mechanism of Water Resources and Its Development Significance in Eastern Hebei Plain.Hydrogeology & Engineering Geology, (5):33-36(in Chinese with English abstract).
      [26] Wang, Y.X., Su, C.L., Xie, X.J., et al., 2010.The Genesis of High Arsenic Groundwater:A Case Study in Datong Basin.Geology in China, 37(3):771-780(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2010.03.033
      [27] Wu, C., Xu, Q.H., Zhang, X.Q., et al., 1996.Palaeochannels on the North China Plain:Types and Distributions.Geomorphology, 18(1):5-14.https://doi.org/10.1016/0169-555x(95)00147-w doi: 10.1016/0169-555X(95)00147-W
      [28] Xia, M., 2003.The Essential Trace Elements and Human Health.Guangdong Weiliang Yuansu Kexue, (1):11-16(in Chinese with English abstract).
      [29] Xing, L.N., 2012.Groundwater Hydrochemical Characteristics and Hydrogeochemical Processes Approximately along Flow Paths in the North China Plain(Dissertation).China University of Geosciences, Beijing, 19-28(in Chinese with English abstract).
      [30] Xing, L.N., Guo, H.M., Wei, L., et al., 2012.Evolution Feature and Genesis of Fluoride Groundwater in Shallow Aquifer from North China Plain.Journal of Earth Sciences and Environment, 34(4):57-67(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-6561.2012.04.008
      [31] Xu, F., Ma, T., Shi, L., et al., 2012.The Hydrogeochemical Characteristics of the High Iodine Groundwater in the Hetao Plain, Inner Mongolia.Hydrogeology & Engineering Geology, 39(5):8-15(in Chinese with English abstract). https://core.ac.uk/download/pdf/82454304.pdf
      [32] Xu, L.Q., Li, S.Z., Cao, X.Z., et al., 2016.Holocene Intracontinental Deformation of the Northern North China Plain:Evidence of Tectonic Ground Fissures.Journal of Asian Earth Sciences, 119:49-64.https://doi.org/10.13039/501100001809 doi: 10.1016/j.jseaes.2016.01.003
      [33] Xu, Q., Liu, X.D., Tang, Q.F., et al., 2010.High Iodic Geochemical Characteristics of the Groundwater in Central Shanxi Province.Geology in China, 37(3):809-815(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2010.03.038
      [34] Xu, Q.H., Wu, C., Zhu, X.Q., et al., 1996.Palaeochannels on the North China Plain:Stage Division and Palaeoenvironments.Geomorphology, 18(1):15-25.https://doi.org/10.1016/0169-555x(95)00148-x doi: 10.1016/0169-555X(95)00148-X
      [35] Zhan, Y., Teng, Y., Zuo, R., 2015.Chemical Characteristics and Geochemical Evolution of Groundwater in the North China Plain.EGU General Assembly Conference, Vienna, 17.
      [36] Zhang, E.Y., Wang, Y.Y., Qian, Y., et al., 2013.Iodine in Groundwater of the North China Plain:Spatial Patterns and Hydrogeochemical Processes of Enrichment.Journal of Geochemical Exploration, 135:40-53.https://doi.org/10.13039/501100004613 doi: 10.1016/j.gexplo.2012.11.016
      [37] Zhang, E.Y., Zhang, F.C., Qian, Y., et al., 2010.The Distribution of High Iodine Groundwater in Typical Areas of China and Its Inspiration.Geology in China, 37(3):797-802(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2010.03.036
      [38] Zhang, Y.J., Zhang, Y.X., Xiang, X.P., et al., 2014.Distribution Characteristics and Cause Analysis of Iodine in Groundwater of Cangzhou Region.Earth Science Frontiers, 21(4):59-65(in Chinese with English abstract).
      [39] Zhang, Z.H., Shen, Z.L., Xue, Y.Q., et al., 2000.The Environmental Evolution of Groundwater in the North China Plain.Geological Publishing House, Beijing (in Chinese).
      [40] Zhou, H.L., Su, C.L., Li, J.X., et al., 2017.Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to Iodine Enrichment.Earth Science, 42(2):298-306(in Chinese with English abstract).
      [41] 戴九兰, 2004. 碘在土壤-植物系统中的生物有效性(博士学位论文). 青岛: 山东农业大学, 26-29.
      [42] 方继敏, 2008. 铁(氢)氧化物的制备、负载及对HIOCs类污染物的吸附研究(博士学位论文). 武汉: 武汉理工大学, 15-17.
      [43] 郭华明, 王焰新, 李永敏, 2003.山阴水砷中毒区地下水砷的富集因素分析.环境科学, 24(4):60-67. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hjkx200304011
      [44] 郎旭娟, 蔺文静, 刘志明, 等, 2016.贵德盆地地下热水水文地球化学特征.地球科学, 41(10):1723-1734. http://www.earth-science.net/WebPage/Article.aspx?id=3374
      [45] 李洪伟, 2009. 黄河下游流域地下水和土壤中不同形态碘的分离测定及应用研究(硕士学位论文). 北京: 北京化工大学, 26-32.
      [46] 申红梅, 张树彬, 刘守军, 等, 2007.全国高水碘地区地理分布及高碘地区水碘等值线研究.中国地方病学杂志, 26(6):658-661.
      [47] 孙大鹏, 2006.我国高碘卤水分布规律及其形成.盐湖研究, 14(2):7-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhyj200602002
      [48] 田文法, 赵振宏, 1997.河北平原东部地下碘水资源形成机理及其开发意义.水文地质工程地质, (5):33-36. http://www.cqvip.com/Main/Detail.aspx?id=2757457
      [49] 王焰新, 苏春利, 谢先军, 等, 2010.大同盆地地下水砷异常及其成因研究.中国地质, 37(3):771-780. http://www.docin.com/p-1305631496.html
      [50] 夏敏, 2003.必需微量元素与人体健康.广东微量元素科学, (1):11-16. http://d.wanfangdata.com.cn/Periodical_fjsdfqfxxb200602023.aspx
      [51] 邢丽娜, 2012. 华北平原典型剖面上地下水化学特征和水文地球化学过程(硕士学位论文). 北京: 中国地质大学(北京), 19-28.
      [52] 邢丽娜, 郭华明, 魏亮, 等, 2012.华北平原浅层含氟地下水演化特点及成因.地球科学与环境学报, 34(4):57-67. doi: 10.3969/j.issn.1672-6561.2012.04.008
      [53] 徐芬, 马腾, 石柳, 等, 2012.内蒙古河套平原高碘地下水的水文地球化学特征.水文地质工程地质, 39(5):8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201205002
      [54] 徐清, 刘晓端, 汤奇峰, 等, 2010.山西晋中地区地下水高碘的地球化学特征研究.中国地质, 37(3):809-815. http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_7460124
      [55] 张二勇, 张福存, 钱永, 等, 2010.中国典型地区高碘地下水分布特征及启示.中国地质, 37(3):797-802. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201003036
      [56] 张媛静, 张玉玺, 向小平, 等, 2014.沧州地区地下水碘分布特征及其成因浅析.地学前缘, 21(4):59-65. http://www.cqvip.com/QK/98600X/201404/49830510.html
      [57] 张宗祜, 沈照理, 薛禹群, 等, 2000.华北平原地下水环境演化.北京:地质出版社.
      [58] 周海玲, 苏春利, 李俊霞, 等, 2017.大同盆地沉积物REE分布特征及其对碘富集的指示.地球科学, 42(2):298-306. http://www.earth-science.net/WebPage/Article.aspx?id=3425
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  4180
    • HTML全文浏览量:  1664
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-03
    • 刊出日期:  2018-03-15

    目录

      /

      返回文章
      返回