Molecular Size and Structure Characteristics of Tight Oil of Lucaogou Formation in Jimusar Depression
-
摘要: 致密油分子尺寸及流动性的研究对致密油藏评价及开发具有重要意义.为明确吉木萨尔凹陷芦草沟组致密油的分子尺寸及其对原油流动的影响,综合核磁共振、红外光谱、元素分析和相对分子质量测定等结果,计算了典型井致密油不同馏分段的分子结构参数,采用Chemoffice软件模拟了相应的分子结构.结果显示致密油组分主要集中在350~500℃馏分段,平均分子中含有多环环烷烃和多环芳烃结构,平均分子尺度为1.232~4.026 nm,表明原油分子在纳米孔喉中占有率较高,影响孔喉流动下限.Abstract: The study of the size and fluidity of tight oil is of great significance for the evaluation and development of tight reservoirs. In order to determine the molecular size and its influence on mobility of tight oil of Lucaogou Formation in Jimusar depression, the average structure parameters of different fractions of Ji 174 tight oil were calculated on the basis of 1H-NMR, IR, elemental analysis and molecular weight measurement. According to the parameters, the molecular structures of several fractions from Ji 174 tight oil were simulated by using the Chemoffice software. The results show that the components of the tight oil are mainly concentrated in the fraction from 350 to 500℃, and there are polycyclic naphthene and polycyclic aromatic structures in the average molecules with the sizes of 1.232-4.026 nm. It is the large molecular scale that leads to high shares of oil molecules in nano-pore-throat and affects the pore throat flow limit of the reservoir.
-
Key words:
- Jimusar depression /
- Lucaogou Formation /
- tight oil /
- molecular dimension /
- molecular structure /
- petroleum geology
-
表 1 原油平均结构参数
Table 1. The average structure parameters of crude oil
符号 参数意义 符号 参数意义 H/C 氢碳原子比 CN 分子中环烷碳数 Mn 相对分子质量 CP 分子中烷基碳数 C(%) 碳的百分含量 CS 分子中环烷碳数与烷基碳数和 H(%) 氢的百分含量 RA 分子中芳香环数 S(%) 硫的百分含量 RN 分子中环烷环数 N(%) 氮的百分含量 RT 分子中总环数 O(%) 氧的百分含量 fA 芳碳率 HA 与芳香碳直接相连的氢原子数 fN 环烷碳率 Hα 与芳香环的α碳相连的氢原子数 fP 烷基碳率 Hβ 芳香环的β碳及β以远的CH2、CH基上的氢原子数 σ 芳香环系周边氢取代率 Hγ 芳香环的γ碳及γ以远的CH3基上的氢原子数 HAU/CA 芳香环系缩合度参数 CT 分子中总碳数 NCH2/NCH3 分子中亚甲基与甲基数之比 HT 分子中总氢数 NCH3 分子中甲基数 CA 分子中芳香碳数 L 平均链长参数 表 2 原油馏分样品元素分析与相对分子质量测定结果
Table 2. Results of elemental analysis and relative molecular mass determination of oil fraction samples
项目 馏分段 IBP~200 ℃ 200~350 ℃ 350~500 ℃ >500 ℃ 馏分质量占比(%) 7.11 12.23 43.26 24.84 碳(%) 85.05 86.05 86.91 87.54 氢(%) 14.95 13.95 11.92 10.23 硫(%) 0 0 0.176 0.26 氮(%) 0 0 0.994 1.98 相对分子质量 130 240 748 1 080 平均分子式 C9.20H19.28 C17.20H33.21 C54.13H88.45S0.04N0.53 C78.72H109.61S0.09N1.53 表 3 各种类型H的定义及化学位移
Table 3. The definition and chemical shift regions of different types of hydrogens
符号 归属 化学位移δ(10-6) HA 与芳香碳直接相连的氢原子数 6.0~9.0 Hα 与芳香环的α碳相连的氢原子数 2.0~4.0 Hβ 芳香环的β位以及β位以远的CH2、CH基上的氢原子数 1.0~2.0 Hγ 芳香环的γ位及γ位以远的CH3基上的氢原子数 0.5~1.0 表 4 B-L法计算分子结构参数
Table 4. The average structure parameters of oil fraction samples
参数 馏分段 IBP~200 ℃ 200~350 ℃ 350~500 ℃ >500 ℃ HT 20 35 88 110 HA 0 0 2.021 1 2.720 5 Hα 0 1.293 0 6.117 1 8.589 8 Hβ 8.200 2 19.787 8 53.292 0 67.872 5 Hγ 10.428 0 11.408 0 26.569 6 30.817 0 fA 0 0 0.205 7 0.318 6 CA 0 0 11.139 3 25.080 6 CS 9.206 0 17.195 6 42.989 4 53.639 7 HAU/CA 0 0.679 6 0.456 0 0.279 7 Cα 0 0 3.058 5 4.294 9 CI 0 0 6.059 6 18.065 1 CF 6 6 13.096 9 25.639 6 RA 0 0 2.379 7 7.026 8 RT 0.565 7 1.588 5 5.332 1 12.376 5 RN 0.565 7 1.588 5 2.952 3 5.349 6 CN 0 4.765 5 8.856 9 16.048 8 CP 9.206 0 12.430 0 34.132 4 37.590 9 fN 0 0.277 1 0.163 6 0.203 8 表 5 分子模拟结果
Table 5. Molecular simulation results of oil fraction samples
参数 馏分段 IBP~200 ℃ 200~350 ℃ 350~500 ℃ >500 ℃ 平均分子式 C9H20 C17H34 C55H90 C79H110N 分子直径(nm) 1.232 1.675 2.295~3.619 2.498~4.026 分子体积(nm3) 0.169 0.239 0.864~0.896 1.014~1.109 -
[1] Alexander, P., Michael, G., 2004.Water-Graphite Interaction and Behavior of Water near the Graphite Surface.The Journal of Physics Chemistry B, 108:1357-1364. doi: 10.1021/jp0356968 [2] Ding, F.C., Wang, Y.H., Jin, G.Z., et al., 2001.Macro-Size of Asphaltene Colloidal Particles in Organic Solvents.Journal of Petrochemical Universities, 14(2):31-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYHX200102006.htm [3] Dong, X.G., Lei, Q.F., Yu, Q.S., 2004.NMR Determination of Petroleum Asphaltenes and Their Model Molecules Evaluation.Journal of Fuel Chemistry and Technology, 32(6):668-672 (in Chinese with English abstract). https://www.researchgate.net/publication/296910452_NMR_determination_of_petroleum_asphaltenes_and_their_model_molecules_evaluation [4] Dwyer-Joycea, R.S., Harpera, P., Drinkwater, B.W., 2004.A Method for the Measurement of Hydrodynamic Oil Films Using Ultrasonic Reflection.Tribology Letters, 17(2):337-348. doi: 10.1023/B:TRIL.0000032472.64419.1f [5] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012a.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development.Petroleum Exploration and Development, 39(2):129-136 (in Chinese with English abstract). https://www.researchgate.net/publication/257709895_Unconventional_hydrocarbon_resources_in_China_and_the_prospect_of_exploration_and_development_J [6] Jia, C.Z., Zou, C.N., Li, J.Z., et al., 2012b.Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China.Acta Petrolei Sinica, 33(3):343-350 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201203000.htm [7] Li, Z.F., He, S.L., 2005.Influence of Boundary Layers upon Filtration Law in Low-Permeability Oil Reservoirs.Petroleum Geology & Oilfield Development in Daqing, 42(2):57-59 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/effect-of-absorption-boundary-layer-on-nonlinear-flow-in-low-G2vCfNADAS [8] Michon, L., Mzrtin, D., Planche, J.P., et al., 1997.Estimation of Average Structural Parameters of Bitumens by 13C Nuclear Magnetic Resonance Spectroscopy.Fuel, 76(1):9-15. doi: 10.1016/S0016-2361(96)00184-6 [9] Ren, D.Z., Sun, W., Huang, H., et al., 2016.Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin.Earth Science, 41(10):1735-1744 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610009.htm [10] Xiong, S.C., Chu, S.S., Pi, S.H., et al., 2017.Micro-Pore Characteristics and Recoverability of Tight Oil Reservoirs.Earth Science, 42(8):1379-1385 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201708015.htm [11] Xu, S.L., Yue, X.A., Hou, J.R., et al., 2007.Influence of Boundary-Layer Fluid on the Seepage Characteristic of Low-Permeability Reservoir.Journal of Xi'an Shiyou University(Natural Science Edition), 22(2):26-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY200702006.htm [12] Zou, C.N., Yang, Z., Tao, S.Z., et al., 2012.Nano-Hydrocarbon and the Accumulation in Coexisting Source and Reservoir.Petroleum Exploration and Development, 39(1):13-26 (in Chinese with English abstract). https://www.researchgate.net/publication/257709961_Nano-hydrocarbon_and_the_accumulation_in_coexisting_source_and_reservoir [13] 丁福臣, 王宇航, 靳广洲, 等, 2001.石油沥青质胶态粒子宏观结构尺寸的研究.石油化工高等学校学报, 14(2):31-34. doi: 10.3969/j.issn.1006-396X.2001.02.007 [14] 董喜贵, 雷群芳, 俞庆森, 2004.石油沥青的NMR测定及其模型分子推测.燃料化学学报, 32(6):668-672. http://mall.cnki.net/magazine/Article/RLHX200406006.htm [15] 贾承造, 郑民, 张永峰, 2012a.中国非常规油气资源与勘探开发前景.石油勘探与开发, 39(2):129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm [16] 贾承造, 邹才能, 李建忠, 等, 2012b.中国致密油评价标准、主要类型、基本特征及资源前景.石油学报, 33(3):343-350. http://mall.cnki.net/magazine/Article/SYXB201203000.htm [17] 李中锋, 何顺利, 2005.低渗透储层原油边界层对渗流规律的影响.大庆石油地质与开发, 42(2):57-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsydzykf200502020 [18] 任大忠, 孙卫, 黄海, 等, 2016.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理.地球科学, 41(10):1735-1744. http://www.earth-science.net/WebPage/Article.aspx?id=3375 [19] 熊生春, 储莎莎, 皮淑慧, 等, 2017.致密油藏储层微观孔隙特征与可流动性评价.地球科学, 42(8):1379-1385. http://www.earth-science.net/WebPage/Article.aspx?id=3619 [20] 徐绍良, 岳湘安, 侯吉瑞, 等, 2007.边界层流体对低渗透油藏渗流特性的影响.西安石油大学学报(自然科学版), 22(2):26-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb200702007 [21] 邹才能, 杨智, 陶士振, 等, 2012.纳米油气与源储共生型油气聚集.石油勘探与开发, 39(1):13-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm