Palaeoclimatology, Provenance and Tectonic Setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China
-
摘要: 二叠纪-三叠纪之交重大地质转折期,海相地质记录指示全球发生了一系列显著的生物和环境事件, 但是,该时期陆相古气候、古风化作用等方面的研究还很薄弱,争议较大.为了恢复新疆准噶尔盆地玛湖凹陷上二叠统乌尔禾组至中三叠统克拉玛依组的古气候、物源特征等, 本研究对玛湖凹陷钻井岩心中的泥岩样品开展了全岩主量和微量元素测试,采用多种化学风化指数判定源区风化程度及古气候条件,通过多种地球化学比值及图解来恢复源岩岩性及其构造背景.化学蚀变指数(Chemical Index of Alteration, CIA)、化学风化指数(Chemical Index of Weathering, CIW)、Parker风化指数(Weathering Index of Parker, WIP)和斜长石蚀变指数(Plagioclase Index of Alteration, PIA)等多种化学风化作用指标均指示,玛湖凹陷自晚二叠世至早三叠世发生显著的风化作用变化,由低等程度的化学风化作用转变为中等程度的化学风化作用,某些季节可能会较为温暖湿润,且在整个早三叠世保持大致稳定,在早三叠世晚期稍减弱,这与锶同位素反映的全球风化作用变化趋势一致.中三叠世时的化学风化作用与早三叠世相比,并未降低,反而稍有增加,这可能代表了地区性事件.早三叠世化学风化作用显著增强的原因可能在于全球变暖、植被破坏及季节性降雨增加等.此外,上二叠统乌尔禾组至中三叠统克拉玛依组的物源岩性主要为长英质火成岩,源岩形成时的构造背景可能为大洋岛弧环境.Abstract: A series of distinct biological and environmental events have occurred during the Permian-Triassic transitional period, which are mainly indicated by marine geological record. However, little study has been done on palaeoclimate and palaeoweathering on land in Early Triassic. In order to reconstruct the palaeoclimatological information, provenance and tectonic setting from Late Permian to Middle Triassic in Mahu sag, Junggar basin, bulk-rock major and trace elemental analyses were carried out on the core mudstone samples. Palaeoweathering condition and palaeoclimatology were reconstructed through various chemical weathering indices, while the provenance and tectonic setting were inferred from various discrimination diagrams. The chemical weathering switched from lower level to middle level from Late Permian to Early Triassic, and remained steady during the Early Triassic with minor weakened trend in the late Early Triassic, indicated by the CIA (Chemical Index of Alteration), CIW (Chemical Index of Weathering), WIP (Weathering Index of Parker) and PIA (Plagioclase Index of Alteration), which agrees with the global weathering evolutionary trend shown by Sr isotopes. The palaeoclimatology from Early to Middle Triassic was warm and wet seasonally, in comparison with the cool and dry environments during the Late Permian. However, the chemical weathering of Middle Triassic in Mahu sag did not weaken simultaneously with the global trend, but increased slightly, which might be a local event. In addition, the provenance of the Upper Permian Wuerhe Formation, Early Triassic Baikouquan Formation and Middle Triassic Kelamayi Formation should be felsic igneous rocks, and the tectonic setting during the formation of source rocks probably was the oceanic island arc setting.
-
Key words:
- Junggar basin /
- Early Triassic /
- Baikouquan Formation /
- chemical weathering /
- palaeoclimate /
- paleontology
-
图 1 新疆准噶尔盆地玛湖凹陷地理位置(a)、早三叠世准噶尔盆地古地理图(b)、下三叠统百口泉组一段沉积相划分及取样井位分布(c)与玛18井地层柱状图(d)
Fig. 1. Locality of Mahu sag, Junggar basin, Xinjiang (a), Early Triassic palaeogeography of Jungar basin (b), palaeogeography of the first member of Lower Triassic Baikouquan Formation (c), and Lithostratigraphy of MA 18 well (d)
图 6 玛湖凹陷晚二叠世至中三叠世化学风化作用与全球表层海水温度、锶同位素曲线对比
SST.表层海水温度;牙形石δ18O,FR/FM,87Sr/86Sr曲线引自Song et al.(2015)
Fig. 6. Comparison of the chemical weathering of Mahu sag with global sea surface temperatures and Strontium isotope curves from the Late Permian to the Middle Triassic
表 1 玛湖凹陷上二叠统至中三叠统泥岩样品全岩主量元素含量(%)及常用化学风化指标数值
Table 1. Major element contents (%) of mudstone and their chemical weathering indices values from the Upper Permian to the Middle Triassic in Mahu sag, Junggar basin
序号 井位 层位 岩性 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 灼失量 总量 CIA CIW WIP PIA 1 玛18 T2k 灰白色泥岩 51.89 20.45 0.96 1.82 8.85 0.49 1.36 2.18 0.50 0.31 0.12 10.94 99.88 85 93 26 93 2 玛18 T1b3 紫红色泥岩 63.86 17.13 0.82 4.88 1.85 0.54 1.47 3.22 2.10 0.10 0.09 3.81 99.87 70 80 49 76 3 玛18 T1b2 灰绿色泥岩 61.13 18.32 0.91 5.15 2.55 0.46 1.52 4.10 1.39 0.10 0.03 4.21 99.86 73 86 48 82 4 玛18 T1b1 灰绿色泥岩 61.47 19.85 1.00 2.38 2.31 0.63 1.71 4.43 1.23 0.09 0.03 4.68 99.83 73 86 50 83 5 玛18 T1b1 灰白色泥岩 64.53 18.64 0.91 1.87 1.78 1.04 1.25 3.70 1.63 0.09 0.14 4.29 99.87 71 81 48 78 6 风南401 T1b3 紫红色泥岩 55.12 19.99 0.98 9.15 1.78 0.81 2.27 1.33 1.99 0.18 0.03 6.22 99.86 77 81 37 80 7 风南401 T1b3 紫红色泥岩 60.03 18.87 0.99 6.80 1.02 0.90 1.53 2.48 1.92 0.09 0.17 5.05 99.85 73 81 43 79 8 风南401 T1b2 紫红色泥岩 57.07 19.43 1.02 8.48 1.44 0.67 1.57 2.51 1.49 0.08 0.10 5.99 99.84 77 85 39 83 9 风南10 T2k 灰色泥岩 59.05 20.12 0.87 3.91 3.39 0.41 1.41 3.19 1.05 0.06 0.05 6.32 99.84 79 89 38 88 10 风南10 T2k 紫红色泥岩 57.59 22.10 0.93 4.46 1.93 0.46 1.26 3.08 1.29 0.06 0.07 6.60 99.84 79 89 40 87 11 风南10 T1b3 紫红色泥岩 62.22 17.37 1.03 7.13 1.20 0.53 1.01 2.65 2.12 0.07 0.10 4.41 99.85 72 80 44 77 12 风南10 T1b3 紫红色泥岩 56.20 19.67 1.07 9.72 1.19 0.61 1.19 2.55 1.83 0.08 0.08 5.65 99.83 75 83 41 81 13 玛001 P3w 灰黑色泥岩 64.08 15.29 0.71 1.84 3.74 1.22 2.69 2.50 2.04 0.11 0.14 5.41 99.76 66 74 48 71 14 玛001 P3w 灰黑色泥岩 58.04 14.76 0.75 2.66 3.57 4.36 2.98 2.80 1.29 0.12 0.17 8.35 99.85 54 60 53 55 15 玛6 T2k 灰色泥岩 63.93 15.89 0.76 3.76 2.22 1.14 2.10 3.25 1.95 0.11 0.05 4.67 99.83 66 75 51 71 16 玛604 T1b2 紫红色泥岩 60.39 21.10 0.96 3.57 1.66 0.46 1.07 4.13 0.91 0.05 0.02 5.49 99.81 78 90 42 88 17 玛604 T1b2 紫红色泥岩 58.60 20.72 0.98 5.28 1.50 0.55 1.50 5.26 0.47 0.09 0.02 4.82 99.81 76 92 46 90 18 玛604 T1b1 紫红色泥岩 60.83 18.64 0.89 6.12 1.95 0.71 1.06 4.21 0.80 0.08 0.06 4.46 99.82 75 88 42 85 19 玛604 T1b1 紫红色泥岩 63.98 16.94 0.84 5.92 0.86 0.82 1.67 3.64 0.75 0.07 0.09 4.21 99.80 74 87 40 84 20 玛6 P3w 灰黑色泥岩 63.20 17.16 0.78 2.66 1.75 1.47 2.11 3.49 1.91 0.12 0.14 5.00 99.80 66 76 53 71 21 玛6 P3w 灰黑色泥岩 63.76 15.81 0.71 3.34 2.68 1.30 2.24 3.07 1.90 0.14 0.12 4.74 99.81 66 75 50 70 22 玛152 T2k 灰色泥岩 63.89 18.25 0.96 2.90 2.75 0.38 1.09 2.75 1.44 0.05 0.07 5.31 99.85 77 86 38 84 23 玛152 T2k 灰色泥岩 57.79 20.00 0.89 2.17 3.22 0.38 1.11 2.91 1.14 0.07 0.04 10.14 99.84 79 89 36 87 24 玛134 T1b2 紫红色泥岩 57.25 19.52 0.99 8.05 1.22 0.95 1.22 3.61 1.73 0.09 0.25 4.99 99.85 72 83 48 80 25 玛134 T1b2 紫红色泥岩 60.36 19.06 0.97 7.63 0.82 0.64 0.93 3.10 1.63 0.06 0.03 4.63 99.86 74 83 43 81 26 玛004 T1b1 紫红色泥岩 63.50 15.41 0.75 6.97 1.02 1.03 2.02 3.97 0.64 0.08 0.14 4.33 99.85 73 88 41 84 27 玛004 P3w 灰黑色泥岩 52.75 13.23 0.64 2.63 2.79 9.26 2.48 2.32 1.18 0.12 0.24 12.28 99.92 68 77 38 73 表 2 常用化学风化指标及其计算公式
Table 2. Various chemical weathering indices and their computational formulas
风化指标及简称 计算公式 资料来源 Parker风化指数 WIP WIP=100×[(2Na2O/0.35)+(MgO/0.9)+(2K2O/0.25)+(CaO*/0.7)] Parker, 1970 化学蚀变指数 CIA CIA=100×[Al2O3/(Al2O3+CaO*+Na2O+K2O)] Nesbitt and Young, 1982 化学风化指数 CIW CIW=100×[Al2O3/(Al2O3+CaO*+Na2O)] Harnois, 1988 斜长石蚀变指数 PIA PIA=100×[(Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O)] Fedo et al., 1995 注:各元素含量均指摩尔分数,CaO*指硅酸盐中的CaO,即全岩中的CaO扣除化学沉积的CaO的摩尔分数,采用公式(CaO*=CaO-10/3×P2O5)计算,比较校正后的CaO与Na2O的摩尔分数大小,摩尔分数值小的作为CaO*的摩尔分数(McLennan, 1993). -
[1] Armstrong-Altrin, J.S., Verma, S.P., 2005.Critical Evaluation of Six Tectonic Setting Discrimination Diagrams Using Geochemical Data of Neogene Sediments from Known Tectonic Settings.Sedimentary Geology, 177(1-2):115-129.doi: 10.1016/j.sedgeo.2005.02.004 [2] Benton, M.J., Newell, A.J., 2014.Impacts of Global Warming on Permo-Triassic Terrestrial Ecosystems.Gondwana Research, 25(4):1308-1337.doi: 10.1016/j.gr.2012.12.010 [3] Benton, M.J., Tverdokhlebov, V.P., Surkov, M.V., 2004.Ecosystem Remodelling among Vertebrates at the Permian-Triassic Boundary in Russia.Nature, 432:97-100.doi: 10.1038/nature02950 [4] Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.Journal of Geology, 91(6):611-627.doi: 10.1086/628922 [5] Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/BF00375292 [6] Brayard, A., Escarguel, G., Bucher, H., et al., 2009.Good Genes and Good Luck:Ammonoid Diversity and the End-Permian Mass Extinction.Science, 325(5944):1118-1121.doi: 10.1126/science.1174638 [7] Chen, B., Jahn, B.M., 2004.Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence.Journal of Asian Earth Science, 23(5):691-703.doi: 10.1016/S1367-9120(03)00118-4 [8] Chen, J., Tong, J.N., Song, H.J., et al., 2015.Recovery Pattern of Brachiopods after the Permian-Triassic Crisis in South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 433:91-105.doi: 10.1016/j.palaeo.2015.05.020 [9] Chen, Z.Q., Benton, M.J., 2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience, 5:375-383.doi: 10.1038/ngeo1475 [10] Chu, D.L., Tong, J.N., Song, H.J., et al., 2015.Lilliput Effect in Freshwater Ostracods during the Permian-Triassic Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 435:38-52.doi: 10.1016/j.palaeo.2015.06.003 [11] Chu, D.L., Yu, J.X., Tong, J.N., et al., 2016.Biostratigraphic Correlation and Mass Extinction during the Permian-Triassic Transition in Terrestrial-Marine Siliciclastic Settings of South China.Global and Planetary Change, 146:67-88.doi: 10.1016/j.gloplacha.2016.09.009 [12] Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51(3):181-203.doi: 10.1016/S0024-4937(99)00063-8 [13] Cullers, R.L., Podkovyrov, V.M., 2000.Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia:Implications for Mineralogical and Provenance Control, and Recycling.Precambrian Research, 104(1-2):77-93.doi: 10.1016/S0301-9268(00)00090-5 [14] Cullers, R.L., Podkovyrov, V.M., 2002.The Source and Origin of Terrigenous Sedimentary Rocks in the Mesoproterozoic Ui Group, Southeastern Russia.Precambrian Research, 117(3-4):157-183.doi: 10.1016/S0301-9268(02)00079-7 [15] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO; 2 [16] Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2003.CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks.Earth Science Frontiers, 10(4):539-544 (in Chinese with English abstract). [17] Gao, D., Cheng, R.H., Shen, Y.J., et al., 2016.Southwestern Provenance-Sedimentary System and Provenance Tectonic Setting of Eastern Sag in the North Yellow Sea Basin.Earth Science, 41(7):1171-1187 (in Chinese with English abstract). [18] Girty, G.H., Ridge, D.L., Knaack, C., et al., 1996.Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California.Journal of Sedimentary Research, 66(1):107-118.doi: 10.1306/D42682CA-2B26-11D7-8648000102C1865D [19] Gong, Q.S., Huang, G.P., Ni, G.H., et al., 2010.Characteristics of Alluvial Fan in Baikouquan Formation of Wuerhe Oil Field in Junggar Basin and Petroleum Prospecting Significance.Acta Sedimentologica Sinica, 28(6):1135-1144 (in Chinese with English abstract). [20] Gong, Y.M., Zong, R.W., 2015.Paleozoic Stratigraphy Regionalization and Paleogeographic Evolution in Western Junggar, Northwestern China.Earth Science, 40(3):461-484 (in Chinese with English abstract). http://www.academia.edu/20243398/Late_Paleozoic_paleogeographic_reconstruction_of_Western_Central_Asia_based_upon_paleomagnetic_data_and_its_geodynamic_implications [21] Grasby, S.E., Beauchamp, B., Embry, A., et al., 2013.Recurrent Early Triassic Ocean Anoxia.Geology, 41(2):175-178.doi: 10.1130/G33599.1 [22] Grauvogel-Stamm, L., Ash, S.R., 2005.Recovery of the Triassic Land Flora from the End-Permian Life Crisis.Comptes Rendus Palevol, 4(6-7):593-608.doi: 10.1016/j.crpv.2005.07.002 [23] Hallam, A., Wignall, P.B., 1997.Mass Extinctions and Their Aftermath.Oxford University Press, New York, 320. [24] Han, B.F., Ji, J.Q., Song, B., et al., 2006.Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I):Timing of Post-Collisional Plutonism.Acta Petrologica Sinica, 22(5):1077-1086 (in Chinese with English abstract). http://www.oalib.com/paper/1472627 [25] Harnois, L., 1988.The CIW Index:A New Chemical Index of Weathering.Sedimentary Geology, 55(3-4):319-322.doi: 10.1016/0037-0738(88)90137-6 [26] Hayashi, K., Fujisawa, H., Holland, H.D., et al., 1997.Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61(19):4115-5137.doi: 10.1016/S0016-7037(97)00214-7 [27] Huang, S., Qing, H.R., Huang, P., et al., 2008.Evolution of Strontium Isotope Composition of Seawater from Late Permian to Early Triassic Based on Study of Marine Carbonates, Zhongliangshan Mountain, Chongqing.Science China, Series D, 51:528-539.doi: 10.1007/s11430-008-0034-3 [28] Huang, Y.F., Tong, J.N, Fraiser, M.L., et al., 2014.Extinction Patterns among Bivalves in South China during the Permian-Triassic Crisis.Palaeogeography, Palaeoclimatology, Palaeoecology, 399:78-88.doi: 10.1016/j.palaeo.2014.01.030 [29] Huang, Y.F., Tong, J.N., Xiang, Y., et al., 2015.The Extinction and Delayed Recovery of Bivalves during the Permian-Triassic Crisis.Earth Science, 40(2):334-345 (in Chinese with English abstract). [30] Joachimski, M.M., Lai, X., Shen, S., et al., 2012.Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction.Geology, 40(3):195-198.doi: 10.1130/G32707.1 [31] Kiehl, J.T., Shields, C.A., 2005.Climate Simulation of the Latest Permian:Implications for Mass Extinction.Geology, 33(9):757-760.doi: 10.1130/G21654.1 [32] Korte, C., Kozur, H.W., Brukschen, P., et al., 2003.Strontium Isotope Evolution of Late Permian and Triassic Seawater.Geochimica et Cosmochimica Acta, 67(1):47-62.doi: 10.1016/S0016-7037(02)01035-9 [33] Kump, L.R., Brantley, S.L., Arthur, M.A., 2000.Chemical Weathering, Atmospheric CO2, and Climate.Annual Review of Earth and Planetary Sciences, 28:611-667.doi: 10.1146/annurev.earth.28.1.611 [34] Kutzbach, J.E., Gallimore, R.G., 1989.Pangaean Climates:Megamonsoons of the Megacontinent.Journal of Geophysical Research, 94(D3):3341-3357.doi: 10.1029/JD094iD03p03341 [35] Liu, B., Xu, B., Meng, X.Y., et al., 2007.Study on the Chemical Index of Alteration of Neoproterozoic Strata in the Tarim Plate and Its Implications.Acta Petrologica Sinica, 23(7):1664-1670 (in Chinese with English abstract). [36] Looy, C.V., Brugman, W.A., Dilcher, D.L., et al., 1999.The Delayed Resurgence of Equatorial Forests after the Permian-Triassic Ecologic Crisis.Proceedings of the National Academy of Sciences of the United States of America, 96(24):13857-13862.doi: 10.1073/pnas.96.24.13857 [37] Lupker, M., France-Lanord, C., Galy, V., et al., 2013.Increasing Chemical Weathering in the Himalayan System since the Last Glacial Maximum.Earth and Planetary Science Letters, 365:243-252.doi: 10.1016/j.epsl.2013.01.038 [38] Ma, Y.P., Huang, L.J., Teng, T.Y., et al., 2015.Study on the High-Resolution Sequence Stratigraphy of Triassic Baikouquan Formation in the Slope Zone of Mahu Depression in the Junggar Basin.Natural Gas Geoscience, 26 (Suppl.1):33-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYHN201405015.htm [39] McLennan, S.M., 1993.Weathering and Global Denudation.The Journal of Geology, 101(2):295-303.doi: 10.1086/648222 [40] Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299:715-717.doi: 10.1038/299715a0 [41] Nesbitt, H.W., Young, G.M., 1984.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1523-1534.doi: 10.1016/0016-7037(84)90408-3 [42] Nützel, A., 2005.Recovery of Gastropods in the Early Triassic.Comptes Rendus Palevol, 4(6-7):501-515.doi: 10.1016/j.crpv.2005.02.007 [43] Orchard, M.J., 2007.Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals.Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2):93-117.doi: 10.1016/j.palaeo.2006.11.037 [44] Palmer, M.R., Edmond, J.M., 1989.The Strontium Isotope Budget of the Modern Ocean.Earth and Planetary Science Letters, 92(1):11-26.doi: 10.1016/0012-821X(89)90017-4 [45] Panahi, A., Young, G.M., Rainbird, R.H., 2000.Behavior of Major and Trace Elements (Including REE) during Paleoproterozoic Pedogenesis and Diagenetic Alteration of an Archean Granite near Ville Marie, Quebec, Canada.Geochimica et Cosmochimica Acta, 64(13):2199-2220.doi: 10.1016/S0016-7037(99)00420-2 [46] Parker, A., 1970.An Index of Weathering for Silicate Rocks.Geological Magazine, 107(6):501-504.doi: 10.1017/S0016756800058581 [47] Payne, J.L., Lehrmann, D.J., Wei, J.Y., et al., 2004.Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction.Science, 305(5683):506-509.doi: 10.1126/science.1097023 [48] Retallack, G.J., 1995.Permian-Triassic Life Crisis on Land.Science, 267:77-80.doi: 10.1126/science.267.5194.77 [49] Retallack, G.J., Sheldon, N.D., Carr, P.F., et al., 2011.Multiple Early Triassic Greenhouse Crises Impeded Recovery from Late Permian Mass Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2):233-251.doi: 10.1016/j.palaeo.2010.09.022 [50] Retallack, G.J., Veevers, J.J., Morante, R., 1996.Global Coal Gap between Permian-Triassic Extinction and Middle Triassic Recovery of Peat-Forming Plants.Geological Society of America Bulletin, 108(2):195-207.doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO; 2 [51] Roscher, M., Stordal, F., Svensen, H., 2011.The Effect of Global Warming and Global Cooling on the Distribution of the Latest Permian Climate Zones.Palaeogeography, Palaepclimatology, Palaeoecology, 309(3-4):186-200.doi: 10.1016/j.palaeo.2011.05.042 [52] Sedlacek, A.R., Saltzman, M.R., Algeo, T.J., et al., 2014.87Sr/86Sr Stratigraphy from the Early Triassic of Zal, Iran:Linking Temperature to Weathering Rates and the Tempo of Ecosystem Recovery.Geology, 42(9):779-782.doi: 10.1130/G35545.1 [53] Sepkoski, J.J., 1981.A Factor Analytic Description of the Phanerozoic Marine Fossil Record.Paleobiology, 7(1):36-53. doi: 10.1017/S0094837300003778 [54] Sheldon, N.D., 2006.Abrupt Chemical Weathering Increase across the Permian-Triassic Boundary.Palaeogeography, Palaeoclimatology, Palaeoecology, 231(3-4):315-321.doi: 10.1016/j.palaeo.2005.09.001 [55] Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011.Calibrating the End-Permian Mass Extinction.Science, 334:1367-1372.doi: 10.1126/science.1213454 [56] Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918 (in Chinese with English abstract). [57] Song, H.J., Wignall, P.B., Chen, Z.Q., et al., 2011.Recovery Tempo and Pattern of Marine Ecosystems after the End-Permian Mass Extinction.Geology, 39(8):739-742.doi: 10.1130/G32191.1 [58] Song, H.J., Wignall, P.B., Chu, D.L., et al., 2014.Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath.Scientific Reports, 4:1-7.doi: 10.1038/srep04132 [59] Song, H.J., Wignall, P.B., Tong, J.N., et al., 2012.Geochemical Evidence from Bio-apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery.Earth and Planetary Science Letters, 353-354:12-21.doi: 10.1016/j.epsl.2012.07.005 [60] Song, H.J., Wignall, P.B., Tong, J.N., et al., 2013.Two Pulses of Extinction during the Permian-Triassic Crisis.Nature Geoscience, 6:52-56.doi: 10.1038/ngeo1649 [61] Song, H.J., Wignall, P.B., Tong, J.N., et al., 2015.Integrated Sr Isotope Variations and Global Environmental Changes through the Late Permian to Early Late Triassic.Earth and Planetary Science Letters, 424:140-147.doi: 10.1016/j.epsl.2015.05.035 [62] Song, L.J., Liu, C.Y., Zhao, H.G., et al., 2016.Geochemical Characteristics, Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin.Earth Science, 41(8):1295-1308, 1321 (in Chinese with English abstract). [63] Sun, Y., Joachimski, M.M., Wignall, P.B., et al., 2012.Lethally Hot Temperatures during the Early Triassic Greenhouse.Science, 338(6105):366-370.doi: 10.1126/science.1224126 [64] Tang, Y., Xu, Y., Qu, J.H., et al., 2014.Fan-Delta Group Characteristics and Its Distribution of the Triassic Baikouquan Reservoirs in Mahu Sag of Junggar Basin.Xinjiang Petroleum Geology, 35(6):628-635 (in Chinese with English abstract). [65] Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006.The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area.Geological Review, 52(5):577-585 (in Chinese with English abstract). doi: 10.1007/s11434-009-0443-5 [66] Ward, P.D., Montgomery, D.R., Smith, R., 2000.Altered River Morphology in South Africa Related to the Permian-Triassic Extinction.Science, 289(5485):1740-1743.doi: 10.1126/science.289.5485.1740 [67] Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2014.Global Continental Weathering Trends across the Early Permian Glacial to Postglacial Transition:Correlating High-and Low-Paleolatitude Sedimentary Records.Geology, 42(10):835-838.doi: 10.1130/G35892.1 [68] Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2016.Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices.Geological Society of America Bulletin, 128(5-6):739-751.doi: 10.1130/B31371.1 [69] Yang, J.H., Du, Y.S., Cawood, P.A., et al., 2012.Modal and Geochemical Compositions of the Lower Silurian Clastic Rocks in North Qilian, NW China:Implications for Provenance, Chemical Weathering, and Tectonic Setting.Journal of Sedimentary Research, 82(2):92-103.doi: 10.2110/jsr.2012.6 [70] Ye, H., Zhang, K.X., Ji, J.L., et al., 2010.Major and Trace Element Characters of the Sediments and Paleoclimatic Evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai.Earth Science, 35(5):811-820 (in Chinese with English abstract). [71] Young, G.M., 2002.Geochemical Investigation of a Neoproterozoic Glacial Unit:The Mineral Fork Formation in the Wasatch Range, Utah.Geological Society of America Bulletin, 114(4):387-399.doi:10.1130/0016-7606(2002)114<0387:GIOANG>2.0.CO; 2 [72] Young, G.M., Nesbitt, H.W., 1999.Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada:A Chemostratigraphic Approach.Geological Society of America Bulletin, 111(2):264-274.doi:10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO; 2 [73] Yin, H.F., Xie, S.C., Luo, G.M., et al., 2012.Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan.Earth-Science Reviews, 115(3):163-172.doi: 10.1016/j.earscirev.2012.08.006 [74] Yu, J.X., Broutin, J., Chen, Z.Q., et al., 2015.Vegetation Changover across the Permian-Triassic Boundary in Southwest China.Extinction, Survival, Recovery and Palaeoclimate:A Critical Review.Earth-Science Reviews, 149:203-224.Doi: 10.1016/j.earscirev.2015.04.005 [75] Yu, X.H., Qu, J.H., Tan, C.P., et al., 2014.Conglomerate Lithofacies and Origin Models of Fan Deltas of Baikouquan Formation in Mahu Sag, Junngar Basin.Xinjiang Petroleum Geology, 35(6):619-627 (in Chinese with English abstract). [76] Zhang, S.C., Zou, N.N., Shi, J.A., et al., 2015.Depositional Model of the Triassic Baikouquan Formation in Mabei Area of Junggar Basin.Oil & Gas Geology, 36(4):640-650 (in Chinese with English abstract). [77] Zou, N.N., Shi, J.A., Zhang, D.Q., et al., 2015.Fan Delta Depositional Model of Triassic Baikouquan Formation in Mabei Area, NW Junggar Basin.Acta Sedimentologica Sinica, 33(3):607-615 (in Chinese with English abstract). [78] Zou, Z.W., Li, H., Xu, Y., et al., 2015.Sedimentary Characteristics of the Baikouquan Formation, Lower Triassic in the Mahu Depression, Junggar Basin.Geological Science and Technology Information, 34(2):20-26 (in Chinese with English abstract). [79] 冯连君, 储雪蕾, 张启锐, 等, 2003.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用.地学前缘, 10(4): 539-544. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304027.htm [80] 高丹, 程日辉, 沈艳杰, 等, 2016.北黄海盆地东部坳陷侏罗纪西南物源-沉积体系与源区构造背景.地球科学, 41(7): 1171-1187. http://earth-science.net/WebPage/Article.aspx?id=3326 [81] 宫清顺, 黄革萍, 倪国辉, 等, 2010.准噶尔盆地乌尔禾油田百口泉组冲积扇沉积特征及油气勘探意义.沉积学报, 28(6): 1135-1144. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201006012.htm [82] 龚一鸣, 纵瑞文, 2015.西准噶尔古生代地层区划及古地理演化.地球科学, 40(3): 461-484. http://earth-science.net/WebPage/Article.aspx?id=3028 [83] 韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限.岩石学报, 22(5): 1077-1086. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [84] 黄云飞, 童金南, 向烨, 等, 2015.二叠纪-三叠纪之交双壳类的灭绝与复苏过程.地球科学, 40(2): 334-345. http://earth-science.net/WebPage/Article.aspx?id=3048 [85] 刘兵, 徐备, 孟祥英, 等, 2007.塔里木板块新元古代地层化学蚀变指数研究及其意义.岩石学报, 23(7): 1664-1670. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707011.htm [86] 马永平, 黄林军, 滕团余, 等, 2015.准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组高精度层序地层研究.天然气地球科学, 26(增刊1): 33-40. http://youxian.cnki.com.cn/yxdetail.aspx?filename=CJXB20171024000&dbname=CAPJ2015 [87] 宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6): 901-918. http://earth-science.net/WebPage/Article.aspx?id=3307 [88] 宋立军, 刘池阳, 赵红格, 等, 2016.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景.地球科学, 41(8): 1295-1308, 1321. http://earth-science.net/WebPage/Article.aspx?id=3338 [89] 唐勇, 徐洋, 瞿建华, 等, 2014.玛湖凹陷百口泉组扇三角洲群特征及分布.新疆石油地质, 35(6): 628-635. http://youxian.cnki.com.cn/yxdetail.aspx?filename=CJXB20170629000&dbname=CAPJ2015 [90] 王自强, 尹崇玉, 高林志, 等, 2006.宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论.地质论评, 52(5): 577-585. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200605000.htm [91] 叶荷, 张克信, 季军良, 等, 2010.青海循化盆地23.1~5.0 Ma沉积地层中常量元素、微量元素组成特征及其古气候演变.地球科学, 35(5): 811-820. http://earth-science.net/WebPage/Article.aspx?id=2025 [92] 于兴河, 瞿建华, 谭程鹏, 等, 2014.玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式.新疆石油地质, 35(6): 619-627. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201406002.htm [93] 张顺存, 邹妞妞, 史基安, 等, 2015.准噶尔盆地玛北地区三叠系百口泉组沉积模式.石油与天然气地质, 36(4): 640-650. doi: 10.11743/ogg20150414 [94] 邹妞妞, 史基安, 张大权, 等, 2015.准噶尔盆地西北缘玛北地区百口泉组扇三角洲沉积模式.沉积学报, 33(3): 607-615. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201503021.htm [95] 邹志文, 李辉, 徐洋, 等, 2015.准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征.地质科技情报, 34(2): 20-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502004.htm