• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    致密油大规模多段压裂水平试井解释及外区渗透率对试井曲线的影响

    李道伦 杨景海 闫术 查文舒 卢德唐 曾亿山

    李道伦, 杨景海, 闫术, 查文舒, 卢德唐, 曾亿山, 2017. 致密油大规模多段压裂水平试井解释及外区渗透率对试井曲线的影响. 地球科学, 42(8): 1324-1332. doi: 10.3799/dqkx.2017.556
    引用本文: 李道伦, 杨景海, 闫术, 查文舒, 卢德唐, 曾亿山, 2017. 致密油大规模多段压裂水平试井解释及外区渗透率对试井曲线的影响. 地球科学, 42(8): 1324-1332. doi: 10.3799/dqkx.2017.556
    Li Daolun, Yang Jinghai, Yan Shu, Zha Wenshu, Lu Detang, Zeng Yishan, 2017. Numerical Well Test Interpretation of Massive Multistage Fractured Horizontal Wells in Tight Oil Reservoirs and Effect of Permeability of Exterior Region on Well Test Curves. Earth Science, 42(8): 1324-1332. doi: 10.3799/dqkx.2017.556
    Citation: Li Daolun, Yang Jinghai, Yan Shu, Zha Wenshu, Lu Detang, Zeng Yishan, 2017. Numerical Well Test Interpretation of Massive Multistage Fractured Horizontal Wells in Tight Oil Reservoirs and Effect of Permeability of Exterior Region on Well Test Curves. Earth Science, 42(8): 1324-1332. doi: 10.3799/dqkx.2017.556

    致密油大规模多段压裂水平试井解释及外区渗透率对试井曲线的影响

    doi: 10.3799/dqkx.2017.556
    基金项目: 

    中石油-中科院战略合作项目 2015A-4812

    十三五国家重大科技专项 2017ZX05009005-002

    详细信息
      通讯作者:

      查文舒

    • 中图分类号: P313

    Numerical Well Test Interpretation of Massive Multistage Fractured Horizontal Wells in Tight Oil Reservoirs and Effect of Permeability of Exterior Region on Well Test Curves

    • 摘要: 多段压裂水平井试井解释能对压裂规模、主裂缝半长等参数进行有效评价,为产能评价等提供基础参数.然而当前缺少针对实际井例数据进行的深入分析.基于PEBI(perpendicular bisector)网格对油水两相渗流方程进行数值求解,利用无限导流的主裂缝与分支缝导致的区域渗透率扩大来描述SRV(stimulated reservoir volume),建立了致密油大规模多段压裂水平井瞬态压力分析方法.基于大庆油田的实测数据进行解释并进行渗透率敏感性分析,研究了复合区域下的参数调整方法.研究表明,当外区渗透率变小时,早期的压力导数变小,后期的压力导数变大,而不是所有的压力导数值都变大.压力导数由小到大的转折点时间与渗透率大小相关.因而,当前期的压力导数曲线拟合效果好、后期的压力导数拟合效果差时,不能仅通过调整外区的渗透率来拟合,还应调整其他参数.另外,大庆致密油藏多段压裂水平井实测曲线中的启动压力梯度特征不明显.相关研究结果对致密油大规模多段压裂水平井实测数据解释具有重要的指导意义.

       

    • 图  1  等效主裂及渗透率提高的区域示意

      Fig.  1.  Schematic of equivalent main fracture and permeability improved region

      图  2  PEBI网格划分与主裂缝

      Fig.  2.  PEBI gridding and equivalent main fracture

      图  3  相渗曲线

      Fig.  3.  Curves of relative permeability

      图  4  所解释的油藏示意

      a.油藏面积约为4 640 m×3 900 m;b.油藏厚度为1.7 m

      Fig.  4.  The sketch of the interpreted reservoir

      图  5  压力拟合结果

      a.压力变化及其导数拟合情况;b.压力史拟合情况

      Fig.  5.  Pressure fitting result

      图  6  不同K1与K2组合下的瞬态压力响应特征

      a.全局图;b.压力导数曲线局部放大

      Fig.  6.  Characteristics of pressure transient response under different combination of K1 and K2

      图  7  外区渗透率K2=4.8 mD与K2=0.8 mD的瞬态压力曲线对比

      a.全局图;b.对方形框的局部放大

      Fig.  7.  Comparison of pressure transient curves between permeability of exterior region K2=4.8 mD and K2=0.8 mD

      图  8  外区渗透率K2=0.8 mD与K2=0.1 mD的瞬态压力曲线对比

      a.全局图;b.对方形框的局部放大

      Fig.  8.  Comparison of pressure transient curves between permeability of exterior region K2=4.8 mD and K2=0.1 mD

      图  9  外区渗透率K2=0.01 mD与K2=0.1 mD的瞬态压力曲线对比

      a.外区渗透率K2对瞬态压力响应的影响;b.局部放大

      Fig.  9.  Comparison of pressure transient curves between permeability of exterior region K2=0.01 mD and K2=0.1 mD

      图  10  可通过调整外区渗透率来拟合的情形

      Fig.  10.  Enable to fit by adjusting permeability of exterior region

      图  11  可通过调整外区渗透率来拟合的情形

      Fig.  11.  Fitting by adjusting permeability of exterior region

      表  1  所解释油藏的相关参数

      Table  1.   The related parameters

      名称 数值
      气藏大小(m×m) 4 640×3 900
      初始压力(MPa) 13.15
      初始水饱和度 0.633
      气藏厚度(m) 1.7
      岩石压缩性(1/MPa) 0.000 58
      油相粘度(mPa·s) 0.6
      油相体积系数 1
      油相粘度(mPa·s) 1.45
      油相体积系数 1.23
      孔隙度 0.139
      SRV面积(m2) 115 716
      水平井表皮因子 0
      水平井井储(m3/MPa) 25
      下载: 导出CSV

      表  2  每种情形的裂缝半长

      Table  2.   Fracture half-length of each case

      算例 裂缝周围区域的渗透率
      K1(mD)
      其他区域的渗透率
      K2(mD)
      解释的结果 4.8 0.8
      敏感性分析算例1 4.8 0.1
      敏感性分析算例2 4.8 0.01
      敏感性分析算例3 4.8 4.8
      下载: 导出CSV
    • [1] Brown, M., Ozkan, E., Raghavan, R., et al., 2009.Practical Solutions for Pressure-Transient Responses of Fractured Horizontal Wells in Unconventional Shale Reservoirs.SPE Reservoir Evaluation & Engineering, 14(6):663-676.doi: 10.2118/125043-PA
      [2] Cai, J.C., 2014.A Fractal Approach to Low Velocity Non-Darcy Flow in a Low Permeability Porous Medium.Chinese Physics B, 23(4):044701.doi: 10.1088/1674-1056/23/4/044701
      [3] Cho, Y., Ozkan, E., Apaydin, O.G., 2013.Pressure-Dependent Natural-Fracture Permeability in Shale and Its Effect on Shale-Gas Well Production.SPE Reservoir Evaluation & Engineering, 16(2):216-228.doi: 10.2118/159801-PA
      [4] Cipolla, C.L., Lolon, E.P., Erdle, J.C., et al., 2010.Reservoir Modeling in Shale-Gas Reservoirs.SPE Reservoir Evaluation & Engineering, 13(4):638-653.doi: 10.2118/125530-pa
      [5] Clarkson, C.R., Beierle, J.J., 2011.Integration of Microseismic and Other Post-Fracture Surveillance with Production Analysis:A Tight Gas Study.Journal of Natural Gas Science and Engineering, 3(2):382-401.doi: 10.1016/j.jngse.2011.03.003
      [6] Clarkson, C.R., Pedersen, P.K., 2010.Tight Oil Production Analysis:Adaptation of Existing Rate-Transient Analysis Techniques.Canadian Unconventional Resources and International Petroleum Conference, Calgary.doi:10.2118/137352-ms
      [7] Deng, Y.E., Liu, C.Q., 2001.Mathematical Model of Nonlinear Flow Law in Low Permeability Porous Media and Its Application.Acta Petrolei Sinica, 22(4):72-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200104018.htm
      [8] Guo, Y.C., Song, Y., Pang, X.Q., et al., 2016.Characteristics and Genetic Mechanism of Near Source Accumulated Accumulation for Continuous Type Tight Sand Gas.Earth Science, 41(3):433-440 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603009.htm
      [9] Li, A.F., Liu, M., Zhang, S.H., et al., 2008.Experimental Study on the Percolation Characteristic of Extra Low-Permeability Reservoir.Journal of Xi'an Shiyou University (Natural Science Edition), 23(2):35-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY200802011.htm
      [10] Li, C.L., Yang, Y.Q., 2008.There is not a Starting Pressure Gradient in Low-Permeability Reservoirs at All.Journal of Southwest Petroleum University (Science & Technology Edition), 30(3):167-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY200803046.htm
      [11] Li, D.L., Xu, C.Y., Wang, J.Y.L., et al., 2014.Effect of Knudsen Diffusion and Langmuir Adsorption on Pressure Transient Response in Shale Gas Reservoir.Journal of Petroleum Science and Engineering, 124:146-154.doi: 10.1016/j.petrol.2014.10.012
      [12] Li, D.L., Yang, J.H., Zha, W.S., et al., 2015.Unsuitability of Using Superposition Principle to Solve Equation Incorporating with Threshold Pressure Gradient.Journal of Southwest Petroleum University (Science & Technology Edition), 37(4):81-89 (in Chinese with English abstract). http://zk.swpuxb.com/EN/Y2015/V37/I4/81
      [13] Li, D.L., Zha, W.S., 2013.Theory and Method of Numerical Welltest.China Petroleum Industry Press, Beijing (in Chinese).
      [14] Li, D.L., Zhang, L.J., Wang, J.Y.L., et al., 2016a.Effect of Adsorption and Permeability Correction on Transient Pressures in Organic Rich Gas Reservoirs:Vertical and Hydraulically Fractured Horizontal Wells.Journal of Natural Gas Science and Engineering, 31:214-225.doi: 10.1016/j.jngse.2016.02.033
      [15] Li, D.L., Zha, W.S., Liu, S.F., et al., 2016b.Pressure Transient Analysis of Low Permeability Reservoir with Pseudo Threshold Pressure Gradient.Journal of Petroleum Science and Engineering, 147:308-316.doi: 10.1016/j.petrol.2016.05.036
      [16] Li, S.S., Duan, Y.G., Chen, W., et al., 2006.Well Testing Analysis of Fractured Horizontal Well.Petroleum Geology & Oilfield Development in Daqing, 25(3):67-69, 78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200603026.htm
      [17] Medeiros, F., Kurtoglu, B., Ozkan, E., et al., 2010.Analysis of Production Data from Hydraulically Fractured Horizontal Wells in Shale Reservoirs.SPE Reservoir Evaluation & Engineering, 13(3):559-568.doi: 10.2118/110848-pa
      [18] Nobakht, M., Clarkson, C.R., 2011.A New Analytical Method for Analyzing Production Data from Shale Gas Reservoirs Exhibiting Linear Flow:Constant Rate Production.North American Unconventional Gas Conference and Exhibition, Woodlands.doi:10.2118/143990-ms
      [19] Ozkan, E., Brown, M.L., Raghavan, R., et al., 2011.Comparison of Fractured-Horizontal-Well Performance in Tight Sand and Shale Reservoirs.SPE Reservoir Evaluation & Engineering, 14(2):248-259.doi: 10.2118/121290-pa
      [20] Pascal, H., 1981.Nonsteady Flow through Porous Media in the Presence of a Threshold Gradient.Acta Mechanica, 39(3-4):207-224.doi: 10.1007/bf01170343
      [21] Prada, A., Civan, F., 1999.Modification of Darcy's Law for the Threshold Pressure Gradient.Journal of Petroleum Science and Engineering, 22(4):237-240.doi: 10.1016/S0920-4105(98)00083-7
      [22] Ren, D.Z., Sun, W., Huang, H., et al., 2016.Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin.Earth Science, 41(10):1735-1744 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610009.htm
      [23] Wang, B.C., Jia, Y.L., Li, Y.Q., et al., 2013.A New Solution of Well Test Model for Multistage Fractured Horizontal Wells.Acta Petrolei Sinica, 36(6):1150-1156 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2013/V34/I6/1150
      [24] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0016236116303118
      [25] Yao, J., Yin, X.X., Fan, D.Y., et al., 2011.Trilinear-Flow Well Test Model of Fractured Horizontal Well in Low Permeability Reservoir.Well Testing, 20(5):1-5 (in Chinese with English abstract). https://www.onepetro.org/conference-paper/SPE-170971-MS?sort=&start=0&q=gas+trilinear+flow&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10
      [26] 邓英尔, 刘慈群, 2001.低渗油藏非线性渗流规律数学模型及其应用.石油学报, 22(4): 72-77. doi: 10.7623/syxb200104014
      [27] 郭迎春, 宋岩, 庞雄奇, 等, 2016.连续型致密砂岩气近源累计聚集的特征及成因机制.地球科学, 41(3): 433-440. doi: 10.11764/j.issn.1672-1926.2016.03.0433
      [28] 李爱芬, 刘敏, 张少辉, 等, 2008.特低渗透油藏渗流特征实验研究.西安石油大学学报(自然科学版), 23(2): 35-39. http://cdmd.cnki.com.cn/Article/CDMD-10220-2004050749.htm
      [29] 李传亮, 杨永全, 2008.启动压力其实并不存在.西南石油大学学报(自然科学版), 30(3): 167-170. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200803046.htm
      [30] 李道伦, 杨景海, 查文舒, 等, 2015.叠加原理不能求解含启动压力梯度渗流方程.西南石油大学学报(自然科学版), 37(4): 81-89. doi: 10.11885/j.issn.1674-5086.2014.11.28.01
      [31] 李道伦, 查文舒, 2013.数值试井理论与方法.北京:石油工业出版社.
      [32] 李树松, 段永刚, 陈伟, 等, 2006.压裂水平井多裂缝系统的试井分析.大庆石油地质与开发, 25(3): 67-69, 78. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK200603026.htm
      [33] 任大忠, 孙卫, 黄海, 等, 2016.鄂尔多斯盆地姬塬油田长致密砂岩储层成因机理.地球科学, 41(10): 1735-1744. http://www.earth-science.net/WebPage/Article.aspx?id=3375
      [34] 王本成, 贾永禄, 李友全, 等, 2013.多段压裂水平井试井模型求解新方法.石油学报, 36(6): 1150-1156. doi: 10.7623/syxb201306015
      [35] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [36] 姚军, 殷修杏, 樊冬艳, 等, 2011.低渗透油藏的压裂水平井三线性流试井模型.油气井测试, 20(5): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201105002.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  5361
    • HTML全文浏览量:  1758
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-03
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回