Ages, Origin and Tectonic Significance of Halaerci Granites from Northeastern Part of Chinese Altay Mountains
-
摘要: 在岩石地球化学研究基础上,揭示哈拉尔次花岗岩的成因、侵位时代及构造背景,进行锆石U-Pb及Nd同位素测试,并与阿尔泰造山带内其他花岗岩进行对比,有助于为阿尔泰造山带构造演化提供依据.出露于中阿尔泰构造带的哈拉尔次花岗岩主要岩石类型有花岗闪长岩、二长花岗岩、正长花岗岩,LA-ICP-MS锆石U-Pb年代学研究结果表明,其形成时代为454.8±2.4 Ma(MSWD=0.32),为晚奥陶世岩浆活动产物.地球化学研究表明,岩石具有高硅、富碱、高钾(K2O/Na2O>1)、低钛、低镁及低磷等地球化学特征,铝饱和指数(A/CNK)平均为1.05,CIPW计算中刚玉分子含量大于1,显示出高钾钙碱性过铝质花岗岩的特征;岩石轻稀土相对富集、重稀土平坦,有显著的Eu负异常,富集Th、Rb,亏损Sr、Ti、P等元素,有明显的Nb、Ta、Ti负异常,显示出火山弧花岗岩的特征;其接近于0的εNd(t)(-2.0~+0.5) 和较老的两阶段模式(TDM2)年龄(1.15~1.35 Ga)暗示其源区含有较多的壳源组分并有一定量幔源物质加入.综合分析研究表明,哈拉尔次花岗岩可能由富含白云母和黑云母的含泥质杂砂岩在较低压力和较高温度下经历部分熔融形成,其源区有斜长石、钛铁矿和磷灰石的残留,同时幔源物质有一定的混入,形成于活动大陆边缘挤压背景下,局部伸展减压以及异常地幔不均匀上升提供热量,导致中上地壳沉积物发生部分熔融并有少量的幔源物质混入,形成哈拉尔次花岗岩.Abstract: In order to study the chronological, geochemical characteristics and tectonic setting of the Halaerci granite from Altay area, the LA-MC-ICPMS zircons U-Pb dating method was employed to assess the ages and Nd isotope composition, preceded by their petrologcial and geochemical studies. In addition, the authors aim to provide more evidences for the structural evolution of Altay tectonic belt by making a comparison with other granites from central Altay orogenic belt. The exposed Halaerci granites of central Altay tectonic belt are dominated by granodiorite, monzonite and syenogranite. LA-ICP-MS zircon U-Pb chronology study suggests that formation age is from 454.8±2.4 Ma (MSWD=0.32), which belongs to the Late Ordovician magma activity. The study of geochemistry indicates that rock is characterized by high silicon, enriched alkali and high potassium (K2O/Na2O > 1) and low titanium, low magnesium and low phosphorus. Average (A/CNK) is 1.5 and corundum molecular content of CIPW calculation is greater than 1, which shows a high potassium calc-alkaline peraluminous granite characteristics. The granites are relatively enriched in light rare earth elements, while flat in heavy rare earth elements, with significant Eu negative anomaly, enrichment of Th and Rb, depletion of Sr, Ti and P elements, pronounced Nb, Ta and Ti negative anomalies, which shows the initial arc characteristic of magmatic rocks. Its εNd(t) is close to 0 (-2.0 to 0.5) and old two-phase model (TDM2) age (1.15 to 1.35) Ga indicate its source area contains more crust-derived source components with a certain amount mantle source materials. Comprehensive analysis and study suggest that Halaerci granites may be composed of partial melting of argillaceous sandstone enriched with muscovite and biotite under low pressure and high temperature. Its source area has residual plagioclase, ilmenite and apatite and mixed with mantle source materials at the same time. It is concluded that Halaerci granites formed in the active continental margin squeezing environment when the heat by local extentional stress reduction and abnormal uneven mantle materials rise led to partial melting of upper crust to mix with mantle source materials.
-
Key words:
- zircon U-Pb dating /
- geochemistry /
- tectonic significance /
- granite /
- Altay
-
图 1 中亚造山带构造位置(a)、阿尔泰造山带构造分区(b)及哈拉尔次花岗岩地质简图(c)
图a据何国琦等(1990);图b据Windley et al.(2002)
Fig. 1. Tectonic position of Central Asian Orogenic Belt (a), tectonic division for Altay Orogenic Belt (b) and geological sketch of Halaerci granites in Altay Orogenic Belt (c)
图 5 阿尔泰地区哈拉尔次花岗岩体主量元素判别图解
图a据Peccerillo and Taylor(1976);图b据Maniar and Piccoli(1989)
Fig. 5. Major element diagram of Halaerci granites in Altay area
图 6 阿尔泰地区哈拉尔次花岗岩稀土配分模式和微量元素蛛网图
a.球粒陨石标准化值据Boynton(1984);b.原始地幔标准值据Sun and McDonough (1989)
Fig. 6. Chondrite-normalized REE pattern and primitive mantle-normalized trace elements patterns for Halaerci granites in Altay area
图 7 阿尔泰地区哈拉尔次花岗岩Na2O-K2O图解和ACF图解
Fig. 7. Na2O-K2O diagram and ACF diagram for Halaerci granites in Altay area
图 8 阿尔泰地区哈拉尔次花岗岩Nb-Nb/Ta图解
Fig. 8. Nb-Nb/Ta diagram for Halaerc granites in Altay area
图 9 阿尔泰地区哈拉尔次花岗岩构造环境判别图解
图例如图 7.a.据Pearce et al.(1984);b.据Harris et al.(1986)
Fig. 9. Diagrams of the tectonic setting for Halaerci granites in Altay area
表 1 阿尔泰地区哈拉尔次花岗岩体(PM5-TW20) 锆石U-Pb同位素测试结果(LA-ICP-MS)
Table 1. LA-ICP-MS U-Pb isotopic data of zircon from Halaerci granites (PM5-TW20) in Altay area
点号 元素含量(10-6) 同位素比值 表面年龄(Ma) PbTotal 232Th 238U Th/
U207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 208Pb/
232Th1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 208Pb/
232Th1σ 1 85 223 533 0.42 0.053 1 0.002 6 0.534 2 0.025 2 0.073 3 0.001 1 0.022 3 0.000 8 332 111 435 17 456 6 446 16 2 74.9 177 528 0.34 0.058 3 0.002 5 0.588 9 0.025 5 0.073 1 0.000 9 0.023 0 0.000 9 539 94 470 16 455 6 459 17 3 126 267 1020 0.26 0.056 8 0.002 1 0.568 1 0.020 3 0.072 5 0.000 8 0.023 6 0.000 8 483 47 457 13 451 5 472 15 4 90.7 148 947 0.16 0.055 3 0.002 2 0.555 1 0.020 8 0.073 1 0.000 9 0.024 0 0.001 0 433 87 448 14 455 5 478 20 5 134 318 833 0.38 0.057 1 0.002 2 0.585 8 0.022 5 0.074 6 0.001 1 0.024 0 0.000 8 494 85 468 14 464 6 480 15 6 136 297 941 0.32 0.054 2 0.002 1 0.592 8 0.023 6 0.078 9 0.001 0 0.024 6 0.000 9 389 82 473 15 490 6 490 17 7 181 276 1 969 0.14 0.056 8 0.001 7 0.573 2 0.017 8 0.072 9 0.000 7 0.023 6 0.000 8 483 69 460 11 454 4 471 16 8 50.8 106 408 0.26 0.054 7 0.003 1 0.549 7 0.030 8 0.072 7 0.001 0 0.023 5 0.001 3 398 94 445 20 453 6 469 25 9 76.6 93.6 937 0.10 0.058 2 0.002 1 0.590 2 0.021 7 0.073 3 0.000 8 0.023 2 0.001 4 600 80 471 14 456 5 464 27 10 58.9 125 535 0.23 0.054 3 0.002 4 0.546 6 0.024 7 0.072 7 0.000 8 0.021 6 0.001 0 383 100 443 16 452 5 432 20 11 99 254 647 0.39 0.056 3 0.002 2 0.566 9 0.021 6 0.073 4 0.000 8 0.021 7 0.000 7 465 85 456 14 457 5 434 14 12 244 432 2 553 0.17 0.054 2 0.001 3 0.548 5 0.013 8 0.072 8 0.000 6 0.021 3 0.000 6 389 57 444 9 453 4 426 12 13 884 1211 9 553 0.13 0.054 9 0.001 3 0.612 6 0.014 0 0.080 3 0.000 8 0.022 6 0.000 6 406 52 485 9 498 5 452 11 14 350 555 2 316 0.24 0.070 9 0.002 6 0.720 7 0.027 4 0.072 8 0.000 8 0.033 9 0.001 6 954 76 551 16 453 5 674 31 15 121.1 203 1 338 0.15 0.053 9 0.001 8 0.550 4 0.019 1 0.073 2 0.001 0 0.020 9 0.000 8 369 71 445 13 455 6 417 17 16 233 782 798 0.98 0.052 9 0.001 9 0.534 6 0.019 4 0.072 9 0.000 9 0.021 3 0.000 6 324 83 435 13 454 5 427 12 17 241 411 798 0.51 0.061 8 0.002 0 0.982 4 0.031 7 0.114 6 0.001 6 0.036 2 0.001 1 665 75 695 16 699 9 719 21 18 107 217 856 0.25 0.051 7 0.001 9 0.532 3 0.020 5 0.074 2 0.000 9 0.024 6 0.000 9 272 92 433 14 461 6 490 17 19 118 236 1 174 0.20 0.054 3 0.001 7 0.551 9 0.017 4 0.073 0 0.000 8 0.020 7 0.000 8 383 64 446 11 454 5 414 16 20 90.5 161 976 0.16 0.055 9 0.002 2 0.566 8 0.022 4 0.072 7 0.000 8 0.021 7 0.001 0 450 119 456 15 453 5 434 20 21 161 492 679 0.73 0.055 3 0.002 5 0.564 7 0.025 2 0.073 6 0.001 0 0.023 0 0.000 8 433 102 455 16 458 6 459 15 表 2 阿尔泰地区哈拉尔次花岗岩主量元素(%)、微量元素(10-6)含量
Table 2. Major (%) and trace element (10-6) concentration of Halaerci granites in Altay area
样品 PM5-GS5 PM5-GS20 PM6-GS4 PM6-GS15 岩性 二长花岗岩 正长花岗岩 花岗闪长岩 花岗闪长岩 SiO2 66.37 67.12 64.03 65.73 TiO2 0.66 0.65 1.22 0.88 Al2O3 15.79 15.07 14.52 15.31 Fe2O3 4.42 4.32 7.06 5.70 FeO 3.05 3.05 4.99 4.07 MnO 0.07 0.07 0.11 0.09 MgO 1.55 1.42 1.87 1.96 CaO 2.86 2.46 3.81 3.11 Na2O 3.28 3.05 2.81 2.96 K2O 3.77 4.18 2.82 3.53 P2O5 0.16 0.16 0.30 0.20 A/NKC 1.08 1.08 0.99 1.07 AR 2.22 2.41 1.89 2.09 σ43 2.16 2.19 1.56 1.92 Rb 158.64 178.10 162.27 155.80 Ba 453.12 474.51 227.30 522.41 Th 14.65 15.62 15.10 17.24 U 1.76 2.16 4.53 2.14 Ta 1.16 1.22 1.17 1.28 Nb 11.69 12.57 12.85 13.79 Sr 150.00 125.37 149.23 155.46 Zr 198.33 199.61 370.78 209.74 Hf 5.54 5.66 9.87 5.72 Sc 13.22 13.06 17.73 16.49 V 76.95 71.54 128.16 100.22 Cr 31.27 27.53 12.55 41.54 Mn 597.28 583.74 857.85 686.87 Co 89.69 116.93 73.09 118.10 Ni 23.34 21.03 13.79 29.32 Ga 19.10 18.38 21.78 19.46 Mo 0.09 0.11 0.21 0.64 Cs 12.23 12.53 10.89 10.26 Pb 26.87 28.20 18.39 23.14 La 32.24 31.54 35.57 41.80 Ce 71.11 68.32 77.74 87.88 Pr 8.54 8.37 9.89 10.55 Nd 32.98 33.00 41.29 42.23 Sm 7.65 7.90 10.30 9.07 Eu 1.45 1.34 1.87 1.60 Gd 7.38 7.39 11.05 8.39 Tb 1.23 1.32 1.88 1.33 Dy 7.85 8.45 11.64 7.96 Ho 1.61 1.77 2.41 1.66 Er 4.70 5.12 7.01 4.51 Tm 0.68 0.76 0.99 0.64 Yb 4.39 4.66 6.20 3.98 Lu 0.68 0.71 0.96 0.62 Y 46.04 50.03 67.03 45.07 ∑REE 182.49 180.64 218.80 222.22 δEu 0.58 0.53 0.53 0.55 (La/Yb)N 4.95 4.56 3.87 7.07 表 3 阿尔泰地区哈拉尔次花岗岩Sr-Nd组成
Table 3. Sr-Nd isotope compositions for Halaerci granites in Altay area
样品 PM5-GS5 PM5-GS20 PM6-GS4 PM6-GS15 Rb 161.3 181.5 167.4 153.7 Sr 144.8 125.8 149.8 152.3 87Rb/86Sr 3.229 4.187 3.240 2.928 87Sr/86Sr 0.728 359 0.732 172 0.726 449 0.725 822 2σ 0.000 011 0.000 014 0.000 011 0.000 015 fRb/Sr 38.04 49.63 38.18 34.40 (87Sr/86Sr)i 0.707 43 0.705 03 0.705 45 0.706 84 Sm 7.341 7.947 10.406 8.936 Nd 32.65 33.80 42.34 42.01 147Sm/144Nd 0.136 1 0.142 3 0.148 8 0.128 8 143Nd/144Nd 0.512 357 0.512 425 0.512 519 0.512 393 2σ 0.000 009 0.000 012 0.000 011 0.000 010 εNd(t) -2.0 -1.0 +0.5 -0.8 TDM 1 559 1 549 1 484 1 359 TDM2 1 351 1 271 1 154 1 258 fSm/Nd -0.31 -0.28 -0.24 -0.35 (143Nd/144Nd)i 0.511 951 0.512 001 0.512 075 0.512 010 注:球粒陨石均一储库(CHUR)值为:87Rb/86Sr=0.082 7,87Sr/86Sr=0.704 5,147Sm/144Nd=0.196 7,143Nd/144Nd=0.512 638.λRb=1.39×10-11 a-1,λSm=6.54×10-12 a-1,t=455 Ma -
[1] Altherr, R., Siebel, W., 2002.I-Type Plutonism in a Continental Back-Arc Setting:Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece.Contributions to Mineralogy and Petrology, 143(4):397-415.doi: 10.1007/s00410-002-0352-y [2] Anderson, T., 2002.Correction of Common Pb in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/S0009-2541(02)00195-X [3] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3/4):197-213.doi: 10.1016/S0009-2541(99)00173-4 [4] Boynton, W.V., 1984.Geochemistry of the Rare Earth Element:Meterorite Studies.In:Henderson, P., ed., Rare Earth Element Geochemistry.Elsevier, Amsterdam, 63-114. [5] Chai, F.M., Dong, L.H., Yang, F.Q., et al., 2010.Age, Geochemistry and Petrogenesis of Tiemierte Granites in the Kelang Basin at the the Southern Margin of Altay, Xinjiang.Acta Petrologica Sinica, 26(2):377-386 (in Chinese with English abstract). [6] Chappell, B.W., White, A.J.R., 1974.Two Contrasting Granite Types.Pacific Geology, 8:173-174. doi: 10.1007/s00710-011-0164-8 [7] Chen, Y.C., Ye, Q.T., Mou, C.L., et al., 1996.The Metallogenic Conditions and Metallogenic Prediction of Ashele Copper-Zinc Ore. Geological Publishing House, Beijing, 1-85 (in Chinese). [8] Clemens, J.D., Vielzuf, D., 1987.Constraints on Melting and Magma Production in the Crust.Earth and Planetary Scirnce Letters, 86:287-306.doi: 10.1016/0012-821X(87)90227-5 [9] Collins, W.J., 1982.Nature and Origin of a Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200.doi: 10.1007/BF00374895 [10] Dong, L.H., Qu, X., Zhao, T.Y., et al., 2012.Magmatic Sequence of Early Palaeozoic Granitic Intrusions and Its Tectonic Implications in North Altay Orogen, Xinjiang.Acta Petrologica Sinica, 28(8):2307-2316 (in Chinese with English abstract). http://www.springer.com/in/book/9783540279457 [11] Han, B.F., He, G.Q., 1991.The Tectonic Nature of Devonian Volcanic Rocks Belt of the Southern Altay.Xinjiang Geological Science, 3:89-100 (in Chinese). [12] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society, London, Special Publications, 19(5):67-81.doi: 10.1144/GSL.SP.1986.019.01.04 [13] Harris, N.B.W., Inger, S., 1992.Trace Element Modelling of Pelite-Derived Granites.Contributions to Mineralogy and Petrology, 110(1):46-56.doi: 10.1007/BF00310881 [14] He, G.Q., Han, B.F., Yue, Y.J., et al., 1990.Structural Zoning and Crustal Evolution in the Altay Orogenic Belt, China.Xinjiang Geological Science, 2(9):9-20 (in Chinese). [15] Jahn, B.M., Wu, F., Chen, B., 2000a.Masssive Granitoid Generation in Central Asia:Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic.Episodes, 23(2):82-92. doi: 10.1134/S0869591111010085 [16] Jahn, B.M., Wu, F., Hong, D., 2000b.Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia.Journal of Earth System Science, 109(1):5-20.doi: 10.1007/BF02719146 [17] Li, C.F., Chu, Z.Y., Guo, J.H., et al., 2015.A Rapid Single Column Separation Scheme for High Precision Sr-Nd-Pb Isotopic Analysis in Geological Samples Using Thermal Ionization Mass Spectrometry.Analytical Methods, 7(11):4793-4802.doi: 10.1039/C4AY02896A [18] Li, C.F., Li, X.H., Li, Q.L., et al., 2012.Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionozation Mass Spectrometry Employing a Single-Step Separation Scheme.Analytical Chimica Acta, 727(10):54-60.doi: 10.1016/j.aca.2012.03.040 [19] Liu, F., Cao, F., Zhang, Z.X., et al., 2014.Chronology and Geochemistry of the Granite near the Keketuohai No.3 Pegmatite in Xinjiang.Acta Petrologica Sinica, 30(1):1-15 (in Chinese with English abstract). [20] Liu, F., Yang, F.Q., Mao, J.W., et al., 2009.Study on Chronology and Geochemistry for Abagong Granite in Altay Orogen.Acta Petrologica Sinica, 25(3):1416-1425 (in Chinese with English abstract). doi: 10.1007/s00531-011-0700-0 [21] Li, J.Y., Xiao, W.J., Wang, K.Z., et al., 2003.Neoproterozoic-Paleozoic Tectonostratigraphy, Magmatic Activities and Tectonic Evolution of Eastern Xinjiang, NW China.In:Mao, J.W., Goldfarb, R.J., Seltman, R., et al., eds., Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan.IAGOD Guidebook Series 10 CERCAM/NHM, London, 31-74. [22] Liu, J.L., Sun, F.Y., Zhang, Y.J., et al., 2016.Zircon U-Pb Geochronology, Geochemistry and Hf Isotope of Nankouqian Granitic Intrusion in Qingyuan Region, Liaoning Province.Earth Science, 41(1):55-66 (in Chincsc with English abstract). [23] Liu, W., 1990.Petrogenetic Epoches and Peculiarities of Genetic Types of Granitoids in the Altai Mts, Xinjiang Uygur Autonomous Region, Chian.Geotectonica et Metallogenia, 14(1):43-56 (in Chinese with English abstract). [24] Liu, X.M., Gao, S., Diwu, C.R., et al., 2007.Simulataneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20 μm Spot Size.Chinese Science Bulletin, 52(2):228-235 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXTW200709016.htm [25] Ludwig, K.R., 2001.Isoplot/Ex Version 2.49:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley, 1-56. [26] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Bulletin of the Geologcial Society of America, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635 [27] Patchett, P.J., Samson, S.D., 2003.Rudnick Treatise of Geochemistry 3.Elsevier Pergamon, Oxford, 321-348. [28] Patino-Douce, A.E., Johnston, A.D., 1991.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Per-Aluminous Granitoids and Aluminous Granulites.Contributions to Mineralogy and Petrology, 107(2):202-218.doi: 10.1007/BF00310707 [29] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/Petrology/25.4.956 [30] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonuarea, Northern Trukey.Contrubutions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/BF00384745 [31] Riley, T.R., Leat, P.T., Pankhurst, R.J., et al., 2001.Origins of Large Volume Rhyolotic Volcanism in the Antarctic Peninsula and Patagonia by Crustal Melting.Journal of Petrology, 42(6):1043-1065.doi: 10.1093/Petrology/42.6.1043 [32] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Paritioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184:123-138.doi: 10.1016/S0009-2541(01)00355-2 [33] Sengor, A.M., Natalin, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic College and Paleozoic Crustal Growth in Eurasia.Nature, 364(6435):299-307. doi: 10.1038/364299a0 [34] Shen, X.M., Zhang, H.X., Ma, L., 2013.LA-ICP-MS Zircon U-Pb Dating for Jieerkuduke Acidic Dykes in the Southern Altay Range.Xinjiang Geology, 31(3):157-161 (in Chinese with English abstract). [35] Skjerlie, K.P., Johnston, A.D., 1996.Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases:Implications for Anatexis in the Deep to Very Deep Continental Crust and Active Continental Margins.Journal of Petrology, 37(3):661-691.doi: 10.1093/Petrology/37.3.661 [36] Stevens, G., Clemens, J.D., Droop, G.R.T., 1997.Melt Production during Granulite-Facies Anatexis:Experimental Data from "Primitive" Metasedimentary Protolith.Contributions to Mineralogy and Petrology, 128(4):352-370.doi: 10.1007/s004100050314 [37] Sun, G.H., Li, J.Y., Yang, T.N., et al., 2009.Zircon SHRIMP U-Pb Dating of Two Linear Granite Plutons in Southern Altay Mountains and Its Tectonic Implications.Geology in China, 36(5):976-987 (in Chinese with English abstract). [38] Sun, M., Long, X.P., Cai, K.D., et al., 2009.Early Paleozoic Ridge Subduction in the Chinese Altai:Insight from the Abrupt Change in Zircon Hf Isotopic Compositions.Science China Earth Sciences, 39(7):935-948 (in Chinese). [39] Sun, S, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process.In:Sunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins.Geological Society, London, Special Publication, 42(1):313-345. [40] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1):29-44.doi: 10.1016/S0024-4937(98)00024-3 [41] Taylor, S.R., McLenann, S.M., 1985.The Continental Crust:Its Composition and Evolution.Oxford Press, Blackwell, 1-312. [42] Tong, Y., 2006.Geochronology, Origin of the Late Paleozoic Granitoids from the Altai Orogen in China and Their Geological Significance (Dissertation).Chinese Academy of Geological Sciences, Beijing, 12-101 (in Chinese with English abstract). [43] Tong, Y., Wang, T., Hong, D.W., et al., 2007.Ages and Origin of the Early Devonian Granites from the North Part of Chinese Altai Mountains and Its Tectonic Implications.Acta Petrologica Sinica, 23(8):1933-1944 (in Chinese with English abstract). [44] Vielzeuf, D., Montel, J.M., 1994.Partial Melting of Metagreywackes.Part Ⅰ:Fluid-Absent Experiments and Phase Relationships.Contributions to Mineralogy and Petrology, 117(4):375-393.doi: 10.1007/BF00307272 [45] Wang, D.Z., Liu, C.S., Shen, W.Z., et al., 1993.The Contrast between Tonglu I-Type and Xiangshan S-Type Clastoporphyritic Lava.Acta Petrologica Sinica, 9(1):44-54 (in Chinese). doi: 10.1007/s12583-014-0448-0 [46] Wang, D.H., Chen, Y.C., Xu, Z.G., et al., 2002.Metallogenic Series and Regularities in Altai Metallogenic Province.Atomic Energy Press, Beijing, 114-185 (in Chinese with English abstract). [47] Wang, G.Y., Xu, P.C., 1983.Magamatites in the Altai Area, Xinjiang and Its Relation to Mineralization.Northwest Geology, (1):8-21 (in Chinese with English abstract). http://www.academia.edu/13671215/Revisiting_the_Irtish_tectonic_belt_Implications_for_the_Paleozoic_tectonic_evolution_of_the_Altai_orogen [48] Wang, J., Sun, F.Y., Li, B.L., et al., 2016.Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia.Earth Scicnce, 41(5):792-808 (in Chinese with English abstract). doi: 10.1007/s11434-015-0890-0 [49] Wang, T., Hong, D.W., Jahn, B.M., et al., 2006.Timing, Petrogenesis and Setting of Paleozoic Syn-Orogenic Intrusions from the Altai Mountains, Northwest China:Implications for the Tectonic Evolution of an Accretionary Orogen.The Journal of Geology, 114(6):735-751.doi: 10.1086/507617 [50] Wang, T., Hong, D.W., Tong, Y., et al., 2005.Zircon U-Pb SHRIMP Age and Origin of Post-Orogenic Lamazhao Granitic Pluton from Altai Orogen:Its Implications for Vertical Continental Growth.Acta Petrologica Sinica, 21(3):640-650 (in Chinese with English abstract). http://www.oalib.com/paper/1470624 [51] Wang, T., Tong, Y., Jahn, B.M., et al., 2007.SHRIMP U-Pb Zircon Geochronology of the Altai No.3 Pegmatite, NW China and Its Implications for the Origin and Tectonic Setting of the Pegmatite.Ore Geology Reviews, 32(1):325-336.doi: 10.1016/j.oregeorev.2006.10.001 [52] Wang, T., Jahn, B.M., Kovach, V.P., et al., 2009.Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt.Lithos, 110(1):359-372.doi: 10.1016/j.lithos.2009.02.001 [53] Wang, T., Tong, Y., Li, S., et al., 2010.Spatial and Temporal Variations of Granitoids in the Altay Orogen and Their Implications for Tectonic Setting and Crustal Growth:Perspectives from Chinese Altay.Acta Petrologica et Mineralogica, 29(6):595-618 (in Chinese with English abstract). [54] Wang, T., Wang, X.X., Tian, W., et al., 2009.North Qinling Paleozoie Granite Associations and Their Variation in Space and Time:Implications for Orogenic Processes in the Orogens of Central China.Science China Earth Sciences, 39(7):947-971 (in Chinese). doi: 10.1007%2Fs11430-009-0129-5.pdf [55] Wang, Z.G., Zhao, Z.H., Zou, T.R., 1998.Geochemistry of Granitoids in Altai, Xinjiang.Science Press, Beijing, 1-152 (in Chinese). [56] Windley, B.F., Krner, A., Guo, J.H., et al., 2002.Neoproterozoic to Palaeozoic Geology of the Altai Orogen, NW China:New Zircon Age Data and Tectonic Evolution.The Journal of Geology, 110(6):719-737.doi: 10.1086/342866 [57] Wu, Y.B., Zheng, Y.F., 2004.Zircon Minerageny and Its Restriction on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). [58] Xiao, W.J., Windley, B.F., Badarch, G., et al., 2004.Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids:Implications for the Growth of Central Asia.Journal of the Geological Society, 161(3):339-342.doi: 10.1144/0016-764903-165 [59] Yang, F.Q., Mao, J.W., Yan, S.H., et al., 2008.Geochronology, Geochemistry and Geological Implications of the Mengku Synorogenic Plagiogranite Pluton in Altay, Xinjiang.Acta Geologica Sinica, 82(4):485-499 (in Chinese with English abstract). [60] Yang, G., Xiao, L., Wang, G.C., et al., 2015.Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar.Earth Science, 40(3):548-562 (in Chinese with English abstract). [61] Yuan, F., Zhou, T.F., Yue, S.C., 2001.The Ages and the Genetic Types of the Granites in the Nurt Area, Altay.Xinjiang Geology, 19(4):292-296 (in Chinese with English abstract). [62] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductively Coupled Plasma Mass Spectrometry.Geostandards & Geoanalytical Research, 28(3):353-370.doi: 10.1111/j.1751-908X.2004.tb00755.x [63] Zeng, Q.S., Chen, G.H., Wang, H., et al., 2007.Geochemical Characteristic, SHRIMP Zircon U-Pb Dating and Tectonic Implication for Granitoids in Chonghuer Basin, Altai, Xinjiang.Acta Petrologica Sinica, 23(8):1921-1932 (in Chinese with English abstract). http://www.oalib.com/paper/1471232 [64] Zhang, Y.F., Lin, X.W., Guo, Q.M., et al., 2015.LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significance.Acta Geologica Sinica, 89(2):339-354 (in Chinese with English abstract). [65] Zhang, Z.X., Chai, F.M., Wang, L.F., et al., 2014.Geochemical Characteristics and Its Significance of Biotite Monzogranite in the Keyinbulake Copper-Zinc Deposit at the Southern Margin of Altay, Xinjiang.Geoscience, 28(3):461-471 (in Chinese with English abstract). [66] Zhao, Y.J., Yuan, C., Zhou, M.F., et al., 2007.Geochemistry and Petrogenesis of Laojungou and Mengtonggou Granites in Western Sichuan, China:Constraints on the Nature of Songpan-Ganzi Basement.Acta Petrologica Sinica, 23(5):995-1006 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20070595 [67] Zhao, Z.H., Wang, Z.G., Zou, T.R., 1993.The REE, Isotopic Compositons of O, Pb, Sr and Nd Diagenetic Model of Granitoids in Altay Region.In:Tu, G.Z., ed., New Improvement of Solid Geosciences in Northern Xinjiang.Science Press, Beijing, 239-266 (in Chinese with English abstract). [68] Zhong, C.T., Deng, J.F., Wu, Y.P., et al., 2006.Geochemical Characteristics and Tectonic Significations of Paleoproterozoic Strongly Peraluminous Granitoids in the Central Segment of the Northern Margin of the North China Craton.Geological Bulletin of China, 25(3):389-397 (in Chinese with English abstract). [69] Zhou, G., Zhang, Z.C., Luo, S.B., et al., 2007.Confirmation of High-Temperature Strongly Peraluminous Mayin'ebo Granites in South Margin of Altay, Xinjiang:Age, Geochemistry and Tectonic Implications.Acta Petrologica Sinica, 23(8):1909-1920 (in Chinese with English abstract). [70] 柴凤梅, 董连慧, 杨富全, 等, 2010.阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因.岩石学报, 26(2): 377-386. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002004.htm [71] 陈毓川, 叶庆同, 牟传龙, 等, 1996.阿舍勒铜锌矿带成矿条件和成矿预测.北京:地质出版社, 1-85. [72] 董连慧, 屈迅, 赵同阳, 等, 2012.新疆北阿尔泰造山带早古生代花岗岩类侵入序列及其构造意义.岩石学报, 28(8): 2307-2316. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208002.htm [73] 韩宝福, 何国琦, 1991.阿尔泰山南缘泥盆纪火山岩带的大地构造性质.新疆地质科学, 3: 89-100. [74] 何国琦, 韩宝福, 岳永君, 等, 1990.中国阿尔泰造山带的构造分区和地壳演化.新疆地质科学, 2(9): 9-20. http://cdmd.cnki.com.cn/Article/CDMD-10491-1015709852.htm [75] 刘锋, 曹峰, 张志欣, 等, 2014.新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究.岩石学报, 30(1): 1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401001.htm [76] 刘锋, 杨富全, 毛景文, 等, 2009.阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究.岩石学报, 25(3): 1416-1425. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906012.htm [77] 刘金龙, 孙丰月, 张雅静, 等, 2016.辽宁省清原县南口前岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(1): 55-66. http://earth-science.net/WebPage/Article.aspx?id=3218 [78] 刘伟, 1990.中国新疆阿尔泰花岗岩的时代及成因类型特征.大地构造与成矿学, 14(1): 43-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199001005.htm [79] 柳小明, 高山, 第五春荣, 等, 2007.单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定.科学通报, 52(2): 228-235. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb200702017&dbname=CJFD&dbcode=CJFQ [80] 沈晓明, 张海祥, 马林, 2013.阿尔泰南缘杰尔库杜克酸性岩脉LA-ICP-MS锆石U-Pb测年.新疆地质, 31(3): 157-161. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201303005.htm [81] 孙桂华, 李锦轶, 杨天南, 等, 2009.阿尔泰山脉南部线性花岗岩锆石SHRIMP U-Pb定年及其地质意义.中国地质, 36(5): 976-987. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200905005.htm [82] 孙敏, 龙晓平, 蔡克人, 等, 2009.阿尔泰早古生代末期洋中脊俯冲:锆石Hf同位素组成突变的启示.中国科学:地球科学, 39(7): 935-948. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907007.htm [83] 童英, 2006. 阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义(博士学位论文). 北京: 中国地质科学院, 12-101. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213441.htm [84] 童英, 王涛, 洪大卫, 等, 2007.中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义.岩石学报, 23(8): 1933-1944. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708013.htm [85] 王德滋, 刘昌实, 沈渭洲, 等, 1993.桐庐Ⅰ型和相山S型两类碎斑熔岩对比.岩石学报, 9(1): 44-54. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199301004.htm [86] 王登红, 陈毓川, 徐志刚, 等, 2002.阿尔泰成矿省的成矿系列及成矿规律.北京:原子能出版社, 114-185. [87] 王广耀, 许培春, 1983.新疆阿尔泰地区岩浆岩的特征及其与成矿的关系.西北地质, (1): 8-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198301001.htm [88] 王键, 孙丰月, 李碧乐, 等, 2016.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学, 41(5): 792-808. http://earth-science.net/WebPage/Article.aspx?id=3299 [89] 王涛, 洪人卫, 童英, 等, 2005.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义.岩石学报, 21(3): 640-650. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503007.htm [90] 王涛, 童英, 李舢, 等, 2010.阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例.岩石矿物学杂志, 29(6): 595-618. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006002.htm [91] 王涛, 王晓霞, 田伟, 等, 2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学:地球科学, 39(7): 949-971. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907008.htm [92] 王中刚, 赵振华, 邹天人, 1998.阿尔泰花岗岩类地球化学.北京:科学出版社, 1-152. [93] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [94] 杨富全, 毛景文, 闫升好, 等, 2008.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义.地质学报, 82(4): 485-499. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804006.htm [95] 杨钢, 肖龙, 王国灿, 等, 2015.西准噶尔谢米斯台西段花岗岩午代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义.地球科学, 40(3): 548-562. http://earth-science.net/WebPage/Article.aspx?id=3236 [96] 袁峰, 周涛发, 岳书仓, 2001.阿尔泰诺尔特地区花岗岩形成时代及成因类型.新疆地质, 19(4): 292-296. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200104017.htm [97] 曾乔松, 陈广浩, 王核, 等, 2007.阿尔泰冲乎尔盆地花岗质岩类的锆石SHRIMP U-Pb定年及其构造意义.岩石学报, 23(8): 1921-1932. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708012.htm [98] 张亚峰, 蔺新望, 郭岐明, 等, 2015.阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其地质意义.地质学报, 89(2): 339-354. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502010.htm [99] 张志欣, 柴凤梅, 王丽芬, 等, 2014.新疆阿尔泰南缘克因布拉克铜锌矿区黑云母二长花岗岩地球化学特征及意义.现代地质, 28(3): 461-471. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201403002.htm [100] 赵永久, 袁超, 周美夫, 等, 2007.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约.岩石学报, 23(5): 995-1006. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705014.htm [101] 赵振华, 王中刚, 邹天人, 1993.阿尔泰花岗岩类型与成岩模型的REE及O、Pb、Sr、Nd同位素组成依据.见:涂光炽主编, 新疆北部固体地球科学新进展.北京:科学出版社, 239-266. [102] 钟长汀, 邓晋福, 武永平, 等, 2006.华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构造意义.地质通报, 25(3): 389-397. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200603008.htm [103] 周刚, 张招崇, 罗世宾, 等, 2007.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义.岩石学报, 23(8): 1909-1920. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708011.htm