• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演

    郑贵洲 乐校冬 王红平 花卫华

    郑贵洲, 乐校冬, 王红平, 花卫华, 2017. 基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演. 地球科学, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552
    引用本文: 郑贵洲, 乐校冬, 王红平, 花卫华, 2017. 基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演. 地球科学, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552
    Zheng Guizhou, Le Xiaodong, Wang Hongping, Hua Weihua, 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552
    Citation: Zheng Guizhou, Le Xiaodong, Wang Hongping, Hua Weihua, 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12): 2345-2353. doi: 10.3799/dqkx.2017.552

    基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演

    doi: 10.3799/dqkx.2017.552
    基金项目: 巴拉望岛附近海域基础地质调查遥感解译
    详细信息
      作者简介:

      郑贵洲(1963-), 男, 教授, 博士, 主要从事地理计算与空间分析、三维地理信息系统及地学模拟、空间信息应用工程、资源与环境遥感研究

    • 中图分类号: P237

    Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network

    • 摘要: 遥感水深反演是水深测量的一种重要技术和手段.以美济礁水深反演为例,选择WorldView-02高分影像为数据源,在辐射定标和大气校正的基础上,构建BP(Back Propagation)和RBF(Radial Basis Function)人工神经网络水深反演模型,以遥感影像8个波段为输入层,通过tansig、logsig、高斯函数和purelin函数变换实现从输入层到隐含层、隐含层到输出层的转换,以便反演水深.最后对反演水深与实测水深采用回归分析,求解决定系数(coefficient of determination,R2)、平均决定误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)等进行比较,评价2种模型的精度.结果表明,RBF神经网络模型结构更简单,对样本要求更低,反演精度达到0.995,更适合遥感水深反演.

       

    • 图  1  美济礁遥感影像

      Fig.  1.  Satellite imagery in Mischief Reef

      图  2  大气校正前光谱曲线

      Fig.  2.  Spectral curve before atmospheric correction

      图  3  大气校正后光谱曲线

      Fig.  3.  Spectral curve after atmospheric correction

      图  4  BP神经网络模型

      Fig.  4.  BP neural network model

      图  5  BP网络训练回归图

      a.16, tansig, logsig;b.17, tansig, purelin;c.17, tansig, logsig;d, 17, logsig, logsig;e.18, tansig, logsig

      Fig.  5.  BP training network regression figure

      图  6  BP反演结果水深等值线

      Fig.  6.  The contours of water depth inversion based on BP

      图  7  RBF神经网络模型

      Fig.  7.  RBF neural network model

      图  8  RBF反演结果水深等值线

      Fig.  8.  The contours of water depth inversion based on RBF

      图  9  BP水深反演

      Fig.  9.  Water depth inversion based on BP

      图  10  RBF水深反演

      Fig.  10.  Water depth inversion based on RBF

      表  1  辐射定标参数

      Table  1.   Radiometric calibration parameters

      BandabsCalFactorBandΔλBand
      Coastal9.295 654×10-34.730 000×10-2
      Blue1.783 568×10-25.430 000×10-2
      Green1.364 197×10-26.300 000×10-2
      Yellow6.810 718×10-33.740 000×10-2
      Red1.851 735×10-25.740 000×10-2
      Red Edge6.063 145×10-33.930 000×10-2
      NIR-12.050 828×10-29.890 000×10-2
      VNIR-29.042 234×10-39.960 000×10-2
      下载: 导出CSV

      表  2  水深值与波段反射率值的相关系数

      Table  2.   The correlation coefficient between water depth and band reflectance

      波段CoastalBlueGreenYellowRedRed EdgeNIR-1NIR-2
      相关系数-0.375-0.365-0.439-0.470-0.474-0.467-0.471-0.469
      下载: 导出CSV

      表  3  BP网络训练参数

      Table  3.   BP training parameters

      隐含层个数隐含层函数输出层函数R
      16tansiglogsig0.997 05
      17tansigpurelin0.996 65
      17tansiglogsig0.997 06
      17logsiglogsig0.996 73
      18tansiglogsig0.996 85
      下载: 导出CSV

      表  4  BP与RBF网络模型

      Table  4.   BP and RBF neural network model

      网络模型R2MAE(m)RMSE(m)t(s)
      BP0.955 61.149 31.832 121
      RBF0.995 00.406 70.892 29
      下载: 导出CSV
    • [1] Ceyhun, Ö., Yalcin, A., 2010.Remote Sensing of Water Depths in Shallow Waters via Artificial Neural Networks.Estuarine Coastal and Shelf Science, 89(1):89-96. doi: 10.1016/j.ecss.2010.05.015
      [2] Anctil, F., Coulibaly, P., 2004.Wavelet Analysis of the Interannual Variability in Southern Québec Streamflow.Journal of Climate, 17(1):163-173.doi:10.1175/1520-0442(2004)017<0163:WAOTIV>2.0.CO;2
      [3] Dang, F.X., Ding, Q., 2003.The Use of Multi-Band Satellite Data to Study Shallow Water Depth Inversion.Marine Science Bulletin, 22(3):55-60(in Chinese).
      [4] Deng, Z.D., Ye, X., Guan, H.J., et al., 2013.Remote Sensing of Water Depth Based on RBF Neural Network.Journal of PLA University of Science and Technology (Natural Science Edition), 14(1):101-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JFJL201301020.htm
      [5] Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016.A Comparative Study on Plum-Rain Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract). doi: 10.1186/s40677-017-0078-9
      [6] Gao, G.D., Zhang, W.X, Mu, G.Y., 2011.A Comparative Study on RBF Network and BP Network in the Model of Salinity.Marine Science Bulletin, 30(1):12-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HUTB201101003.htm
      [7] Gao, W., Liu, X.G., Peng, P., Chen, Q.H., 2010.An Improved Method of High-Resolution Remote Sense Image Segmentation.Earth Science, 35(3):421-425 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201003020.htm
      [8] Han, X.Q., Su, Y., Li, J., et al., 2012.Atmospheric Correction and Verification of the SPOT Remote Sensing Image in Coastal Zones.Geographical Research, 31(11):2007-2016(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201211010.htm
      [9] Huang, W.Q., Wu, D., Yang, Y., et al., 2003.Multi-Spectral Remote Sensing Water Depth Retrieval Technique in Shallow Sea.Ocean Technology, 32(2):43-46(in Chinese with English abstract).
      [10] Liu, M.T., Zhang, C.C., Tian, Z.Z., et al., 2016.RBF Neural Networks Based-Study on Data Fusion for Measurement of Sediment Concentration of Yellow River.Water Resources and Hydropower Engineering, 46(1):126-130(in Chinese with English abstract).
      [11] López-Serrano, P.M., Corral-Rivas, J.J., et al., 2016.Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data.Remote Sensing, 8(5):369.doi: 10.3390/rs8050369
      [12] Lyzenga, D.R., 1978.Passive Remote Sensing Techniques for Mapping Water Depth and Botton Features.Applied Optics, 17(3):379-383.doi: 10.1364/AO.17.000379
      [13] Ma, H.Z., Liu, S.M., 2016.The Potential Evaluation of Multisource Remote Sensing Data for Extracting Soil Moisture Based on the Method of BP Neural Network.Canadian Journal of Remote Sensing, 42(2):117-124. doi: 10.1080/07038992.2016.1160773
      [14] Poupardin, A., Idier, D., De Michele, M., et al., 2015.Water Depth Inversion from a Single SPOT-5 Dataset.IEEE Transactions on Geoscience and Remote Sensing, 54(4):2329-2342.doi: 10.1109/TGRS.2015.2499379
      [15] Su, H.B., Liu, H.X., Wu, Q.S., 2015.Prediction of Water Depth From Multispectral Satellite Imagery-The Regression Kriging Alternative.IEEE Geoscience and Remote Sensing Letters, 12(12):2511-2515.doi: 10.1109/LGRS.2015.2489678
      [16] Wang, J.J., Tian, Q.J., 2007.Study on Shallow Coastal Water Depth Derived Method Based on Hyperspectral Remote Sensing.Scientia Geographica Sinica, 27(6):843-848(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200706019.htm
      [17] Wang, Y.J., Zhang, P.Q., Dong, W.J., et al., 2007.Study on Remote Sensing of Water Depths Based on BP Artifical Neural Network.Marine Science Bulletin, 9(1):26-35.
      [18] Yu, R.H., Xu, Y.P., Liu, T.X., et al., 2009.Reversing Water Depth in Shallow Lake of Arid Area Using Multi-Spectral Remote Sensing Information.Advances in Water Science, 20(1):111-117(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200901019.htm
      [19] Yu, Y.F., Yang, J.Z., Chen, S.B., et al., 2015.Lithologic Classification from Remote Sensing Images Based on Spectral Index.Earth Science, 40(8):1415-1419(in Chinese with English abstract). https://www.researchgate.net/publication/285601688_Lithologic...
      [20] Zhou, P., Li, N., Huo, H.Y., 2015.The Quality Assessment of Hymap Simulation Spaceborne Hyperspectral Data.Earth Science, 40(8):1310-1318(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqkx201508004.aspx
      [21] Zhu, Y., Zhao, Q., Zhou, X, D., 2013.Remote Sensing Water Depth Inversion Based on Chaotic Immune Optimization RBF Network.Computer Engineering, 39(5):187-191(in Chinese with English abstract). http://www.ecice06.com/EN/abstract/abstract24779.shtml
      [22] 党福星, 丁谦, 2003.利用多波段卫星数据进行浅海水深反演方法研究.海洋通报, 22(3):55-60. http://www.cqvip.com/QK/92854X/200303/7858666.html
      [23] 邓正栋, 叶欣, 关洪军, 等, 2013.基于RBF神经网络的水深遥感研究.解放军理工大学学报:自然科学版, 14(1):101-106. http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201301019
      [24] 冯杭建, 周爱国, 俞建君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. http://www.earth-science.net/WebPage/Article.aspx?id=3259
      [25] 高国栋, 张文孝, 慕光宇, 2011.RBF网络和BP网络在海水盐度建模中的比较研究.海洋通报, 30(1):12-15. http://www.cqvip.com/QK/92854X/201101/37179382.html
      [26] 高伟, 刘修国, 彭攀, 等, 2010.一种改进的高分辨率遥感影像分割方法.地球科学, 35(3):421-425. http://www.earth-science.net/WebPage/Article.aspx?id=1978
      [27] 韩晓庆, 苏艺, 李静, 等, 2012.海岸带地区SPOT卫星影像大气校正方法比较及精度验证.地理研究, 31(11):2007-2016. http://www.oalib.com/paper/4252438
      [28] 黄文骞, 吴迪, 杨杨, 等, 2013.浅海多光谱遥感水深反演技术.海洋技术, 32(2):43-46. http://www.cnki.com.cn/Article/CJFDTotal-HYJS201302011.htm
      [29] 刘明堂, 张成才, 田壮壮, 等, 2015.基于RBF神经网络的黄河含沙量测量数据融合研究.水利水电技术, 46(1):126-130. doi: 10.3969/j.issn.1000-0860.2015.01.029
      [30] 王晶晶, 田庆久, 2007.海岸带浅海水深高光谱遥感反演方法研究.地理科学, 27(6):843-848. http://www.oalib.com/paper/4168021
      [31] 于瑞宏, 许有鹏, 刘廷玺, 等, 2009.应用多光谱遥感信息反演干旱区浅水湖泊水深.水科学进展, 20(1):111-117. http://www.wenkuxiazai.com/doc/a1fc38186529647d2628528f.html
      [32] 于亚凤, 杨金中, 陈圣波, 等, 2015.基于光谱指数的遥感影像岩性分类.地球科学, 40(8):1415-1419. http://www.earth-science.net/WebPage/Article.aspx?id=3144
      [33] 周萍, 李娜, 霍红元, 2015.基于Hymap模拟的星载高光谱数据质量评价.地球科学, 40(8):1310-1318. http://www.earth-science.net/WebPage/Article.aspx?id=3147
      [34] 朱玉, 赵卿, 周兴东, 2013.基于混沌免疫优化RBF网络的遥感水深反演.计算机工程, 39(5):187-191. http://www.cqvip.com/QK/95200X/201305/45778853.html
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  5757
    • HTML全文浏览量:  1879
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-24
    • 刊出日期:  2017-12-15

    目录

      /

      返回文章
      返回