• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于嵌入离散裂缝的页岩气藏视渗透率模型

    冯其红 徐世乾 王森 杨毅 高方方 徐亚娟

    冯其红, 徐世乾, 王森, 杨毅, 高方方, 徐亚娟, 2017. 基于嵌入离散裂缝的页岩气藏视渗透率模型. 地球科学, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551
    引用本文: 冯其红, 徐世乾, 王森, 杨毅, 高方方, 徐亚娟, 2017. 基于嵌入离散裂缝的页岩气藏视渗透率模型. 地球科学, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551
    Feng Qihong, Xu Shiqian, Wang Sen, Yang Yi, Gao Fangfang, Xu Yajuan, 2017. A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model. Earth Science, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551
    Citation: Feng Qihong, Xu Shiqian, Wang Sen, Yang Yi, Gao Fangfang, Xu Yajuan, 2017. A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model. Earth Science, 42(8): 1301-1313. doi: 10.3799/dqkx.2017.551

    基于嵌入离散裂缝的页岩气藏视渗透率模型

    doi: 10.3799/dqkx.2017.551
    基金项目: 

    国家重点基础研究发展计划(973计划)项目 2015CB250905

    中国博士后创新人才支持计划项目 BX201600153

    青岛市博士后应用研究项目 2016218

    中国博士后科学基金资助 2016M600571

    详细信息
      作者简介:

      冯其红(1969-), 男, 教授, 主要从事非常规油气勘探开发及提高采收率方面的科研工作

      通讯作者:

      王森

    • 中图分类号: P313.1

    A Stochastic Permeability Model for Shale Gas Reservoirs Based on Embedded Discrete Fracture Model

    • 摘要: 页岩储层具有不同类型的储集空间,但综合考虑不同储集空间,对页岩储层渗透率进行评价的模型未见报道.基于嵌入离散裂缝模型,建立的页岩气藏视渗透率模型包括4个步骤:(1)构建天然裂缝、有机质和无机质的空间分布模型;(2)筛选不同类型储集空间的渗透率计算方法;(3)基于嵌入离散裂缝模型,结合空间分布模型和渗透率计算方法,建立数值模拟模型;(4)在模型的入口和出口端施加压差,求得一定压差下通过该岩心的气体流量,采用达西定律得到该页岩气藏的视渗透率.其计算结果与文献报道的渗透率实验值吻合较好.通过对不同因素的探讨,结果表明,天然裂缝对页岩气藏视渗透率的贡献大于无机质和有机质孔隙.因此,计算页岩视渗透率时有必要对天然裂缝、有机质和无机质孔隙进行综合考虑.

       

    • 图  1  有机质方块尺寸概率密度分布函数

      Fig.  1.  Probability density function for patch-size distribution of organic matter

      图  2  四种随机生成的页岩基质模型

      黑色方块代表有机质;白色部分代表无机质

      Fig.  2.  Four stochastic shale matrix models

      图  3  四种随机生成的天然裂缝、有机质和无机质的空间分布模型

      红色实线代表天然裂缝

      Fig.  3.  Four stochastic spatial distribution models for natural fracture, organic matter and inorganic matter

      图  4  孔隙尺寸的概率密度分布函数

      a.氮气吸附实验测得的双峰孔隙尺寸分布特征曲线(美国鹰滩页岩样品);b.有机质孔隙;c.无机质孔隙

      Fig.  4.  Probability density function for pore size distribution

      图  5  EDFM原理示意

      a.物理模型;b.计算域模型;据Xu et al.(2016)

      Fig.  5.  The working principle diagram for EDFM

      图  6  渗透率分布场

      a.完整模型(200 μm×200 μm);b.局部放大模型(40 μm×30 μm)

      Fig.  6.  Permeability distribution model

      图  7  压力分布场

      模型尺寸为200 μm×200 μm

      Fig.  7.  The pressure distribution

      图  8  模型尺寸对视渗透率计算结果的影响

      Fig.  8.  The effect of model size to shale gas AP

      图  9  两个页岩样品的孔隙尺寸分布特征曲线

      Kuila and Prasad(2013)

      Fig.  9.  Bimodal pore size distribution curve of two shale samples

      图  10  不同类型储集空间对渗透率的影响.

      a.考虑天然裂缝,有机质和无机质孔隙对渗透率的影响;b.考虑有机质和无机质孔隙对渗透率的影响;c.只考虑有机质孔隙对渗透率的影响

      Fig.  10.  The effect on permeability of different types of pore space

      图  11  单条天然裂缝对视渗透率的影响

      a.存在一条天然裂缝;b.不存在天然裂缝;c.裂缝倾角(θ)示意;d.天然裂缝倾角对视渗透率的影响;模型尺寸为200 μm×200 μm

      Fig.  11.  The effect of single natural fracture to shale gas AP

      图  12  天然裂缝条数对视渗透率的影响

      模型尺寸为200 μm×200 μm;红色直线代表天然裂缝

      Fig.  12.  The effect of natural fracture number to shale gas AP

      图  13  天然裂缝开度对视渗透率的影响

      a.分析天然裂缝开度影响的基础模型(红色直线代表天然裂缝);b.天然裂缝开度对视渗透率的影响规律;模型尺寸为200 μm×200 μm

      Fig.  13.  The effect of natural fracture aperture to shale gas AP

      图  14  页岩气藏视渗透率的参数敏感性分析

      a.迂曲度对视渗透率的影响;b.系统压力对视渗透率的影响;c.有机质孔隙孔径分布特征(均值和标准差)对视渗透率的影响;d.无机质孔隙孔径分布特征(均值和标准差)对视渗透率的影响

      Fig.  14.  Sensitivity analysis for shale gas AP

      表  1  天然裂缝参数

      Table  1.   Natural fracture parameters

      参数 数值
      平均走向 北偏东60°
      Fisher常数K 120
      最小天然裂缝长度lmin 10 μm
      最大天然裂缝长度lmax 160 μm
      天然裂缝条数nf 10
      幂律分布指数α 0.8
      孔隙度φf 0.02
      迂曲度τf 1
      开度h 1 μm
      下载: 导出CSV

      表  3  页岩样品属性

      Table  3.   The properties of shale samples

      岩石样品属性 皮埃尔页岩 曼科斯页岩
      孔隙尺寸分布 图 9 图 9
      孔隙度 0.06 0.06
      体积TOC 18.00% 1.36%
      系统压力 13.8 MPa 13.8 MPa
      实验测量的渗透率 0.017 0 μD 0.016 0 μD
      模型计算的渗透率 0.016 9 μD 0.016 3 μD
      τm估计值 56 68
      Df估计值 2.6 2.8
      注:据Kuila and Prasad(2013).
      下载: 导出CSV

      表  2  示例模型中所用的属性

      Table  2.   Properties used in the sample model

      属性 数值
      孔隙尺寸分布 图 4
      孔隙度φm 0.1
      体积TOC 12.00%
      平均压力 10 MPa
      τm 10
      Df 2.2
      下载: 导出CSV

      表  4  天然裂缝的属性

      Table  4.   The properties of natural fractures

      参数 数值
      平均走向 北偏东60°
      Fisher常数K 120
      最小天然裂缝长度lmin 20 μm
      最大天然裂缝长度lmax 60 μm
      天然裂缝条数nf 2
      幂律分布指数α 0.8
      孔隙度φf 0.002
      迂曲度τf 1
      开度h 1 μm
      下载: 导出CSV
    • [1] Agrawal, A., Prabhu, S.V., 2008.Survey on Measurement of Tangential Momentum Accommodation Coefficient.Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 26(4):634-645.doi: 10.1116/1.2943641
      [2] Akkutlu, I.Y., Fathi, E., 2012.Multiscale Gas Transport in Shales with Local Kerogen Heterogeneities.SPE Journal, 17(4):1002-1011.doi: 10.2118/146422-pa
      [3] Cai, J.C., Sun, S.Y., 2013.Fractal Analysis of Fracture Increasing Spontaneous Imbibition in Porous Media with Gas-Saturated.International Journal of Modern Physics C, 24(8):1350056.doi:org/ 10.1142/S0129183113500563.
      [4] Cai, J.C., Wei, W., Hu, X.Y., et al., 2017.Fractal Characterization of Dynamic Fracture Network Extension in Porous Media.Fractals, 25(2):1750023.doi:10.1142/S0218348X17500232" target="_blank">http:org/ 10.1142/S0218348X17500232
      [5] Civan, F., 2010.Effective Correlation of Apparent Gas Permeability in Tight Porous Media.Transport in Porous Media, 82(2):375-384.doi: 10.1007/s11242-009-9432-z
      [6] Darabi, H., Ettehad, A., Javadpour, F., et al., 2012.Gas Flow in Ultra-Tight Shale Strata.Journal of Fluid Mechanics, 710:641-658.doi: 10.1017/jfm.2012.424
      [7] Gale, J.F.W., Laubach, S.E., Olson, J.E., et al., 2014.Natural Fractures in Shale:A Review and New Observations.AAPG Bulletin, 98(11):2165-2216.doi: 10.1306/08121413151
      [8] Grad, H., 1949.On the Kinetic Theory of Rarefied Gases.Communications on Pure and Applied Mathematics, 2(4):331-407.doi: 10.1002/cpa.3160020403
      [9] Javadpour, F., 2009.Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone).Journal of Canadian Petroleum Technology, 48(8):16-21.doi: 10.2118/09-08-16-da
      [10] Javadpour, F., McClure, M., Naraghi, M.E., 2015.Slip-Corrected Liquid Permeability and Its Effect on Hydraulic Fracturing and Fluid Loss in Shale.Fuel, 160:549-559.doi: 10.1016/j.fuel.2015.08.017
      [11] Jendele, L., Kutilek, M., 2005.Parameters Fitting of Soil Hydraulic Functions:Lognormal Pore Size Distribution in Bi-Modal Soils.Geophysical Research Abstracts, 7:02002.
      [12] Kang, Y.S., Deng, Z., Wang, H.Y., et al., 2016.Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs.Earth Science, 41(8):1376-1383 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608009.htm
      [13] Kazemi, M., Takbiri-Borujeni, A., 2015.An Analytical Model for Shale Gas Permeability.International Journal of Coal Geology, 146:188-197.doi: 10.1016/j.coal.2015.05.010
      [14] Kuila, U., Prasad, M., 2013.Specific Surface Area and Pore-Size Distribution in Clays and Shales.Geophysical Prospecting, 61(2):341-362.doi: 10.1111/1365-2478.12028
      [15] Kutílek, M., Jendele, L., Panayiotopoulos, K.P., 2006.The Influence of Uniaxial Compression upon Pore Size Distribution in Bi-Modal Soils.Soil and Tillage Research, 86(1):27-37.doi: 10.1016/j.still.2005.02.001
      [16] Li, L.Y., Lee, S.H., 2008.Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir through Discrete Fracture Networks and Homogenized Media.SPE Reservoir Evaluation & Engineering, 11(4):750-758.doi: 10.2118/103901-pa
      [17] Li, S.F., Wang, S.L., Bi, J.X., 2016.Characteristics of Xujiahe Formation Source Rock and Process of Hydrocarbon-Generation Evolution in Puguang Area.Earth Science, 41(5):843-852 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201605010.htm
      [18] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061
      [19] Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U., 2010.Preliminary Classification of Matrix Pores in Mudrocks.Gulf Coast Association of Geological Societies Transactions, 60:435-441.
      [20] McCain Jr, W.D., 1991.Reservoir-Fluid Property Correlations—State of the Art.SPE Reservoir Engineering, 6(2):266-272.doi:org/ 10.2118/18571-PA
      [21] Naraghi, M.E., Javadpour, F., 2015.A Stochastic Permeability Model for the Shale-Gas Systems.International Journal of Coal Geology, 140:111-124.doi: 10.1016/j.coal.2015.02.004
      [22] Shakiba, M., Sepehrnoori, K., 2015.Using Embedded Discrete Fracture Model (EDFM) and Microseismic Monitoring Data to Characterize the Complex Hydraulic Fracture Networks.SPE Annual Technical Conference and Exhibition, Dubai.
      [23] Singh, H., Javadpour, F., Ettehadtavakkol, A., et al., 2014.Nonempirical Apparent Permeability of Shale.SPE Reservoir Evaluation & Engineering, 17(3):414-424.doi: 10.2118/170243-pa
      [24] Sun, J.L., Gamboa, E.S., Schechter, D., et al., 2016.An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data.Journal of Natural Gas Science and Engineering, 34:1347-1360.doi: 10.1016/j.jngse.2016.08.024
      [25] Vafaie, A., Habibnia, B., Moallemi, S.A., 2015.Experimental Investigation of the Pore Structure Characteristics of the Garau Gas Shale Formation in the Lurestan Basin, Iran.Journal of Natural Gas Science and Engineering, 27:432-442.doi: 10.1016/j.jngse.2015.06.029
      [26] Wang, S., Feng, Q.H., Javadpour, F., et al., 2016a.Breakdown of Fast Mass Transport of Methane through Calcite Nanopores.The Journal of Physical Chemistry C, 120(26):14260-14269.doi: 10.1021/acs.jpcc.6b05511
      [27] Wang, S., Javadpour, F., Feng, Q.H., 2016b.Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores.Scientific Reports, 6:20160.doi: 10.1038/srep20160
      [28] Wang, S., Javadpour, F., Feng, Q.H., 2016c.Fast Mass Transport of Oil and Supercritical Carbon Dioxide through Organic Nanopores in Shale.Fuel, 181:741-758.doi: 10.1016/j.fuel.2016.05.057
      [29] Wu, S.T., Zou, C.N., Zhu, R.K.et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      [30] Xu, Y.F., 2015.Implementation and Application of the Embedded Discrete Fracture Model (EDFM) for Reservoir Simulation in Fractured Reservoirs (Dissertation).University of Texas at Austin, Austin.
      [31] Xu, Y.F., CavalcanteFilho, J.S.A., Yu, W., et al.2016.Discrete-Fracture Modeling of Complex Hydraulic-Fracture Geometries in Reservoir Simulators.SPE Reservoir Evaluation & Engineering, 20(2):SPE-183647-PA.doi: org/10.2118/183647-PA
      [32] Yang, F., Ning, Z.F., Hu, C.P., et al., 2013a.Characterization of Microscopic Pore Structures in Shale Reservoirs.ActaPetroleiSinica, 34(2):301-311 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201302013.htm
      [33] Yang, F., Ning, Z.F., Kong, D.T., et al., 2013b.Pore Structure of Shale from High Pressure Mercury Injection and Nitrogen Adsorption Method.Natural Gas Geoscience, 24(3):450-455 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201303002.htm
      [34] Yang, Y.F., Wang C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      [35] Zhang, L.H., Li, J.Y., Li, Z., et al., 2105.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). http://europepmc.org/articles/PMC5024126/
      [36] Zuloaga-Molero, P., Yu, W., Xu, Y., et al., 2016.Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries.Scientific Reports, 6:33445.doi: 10.1038/srep33445
      [37] 康永尚, 邓泽, 王红岩, 等, 2016.流-固耦合物理模拟实验及其对页岩压裂改造的启示.地球科学, 41(8): 1376-1383. http://earth-science.net/WebPage/Article.aspx?id=3344
      [38] 李松峰, 王生朗, 毕建霞, 等, 2016.普光地区须家河组烃源岩特征及成烃演化过程.地球科学, 41(5): 843-852. http://earth-science.net/WebPage/Article.aspx?id=3306
      [39] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
      [40] 杨峰, 宁正福, 胡昌蓬, 等, 2013a.页岩储层微观孔隙结构特征.石油学报, 34(2): 301-311. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201603007.htm
      [41] 杨峰, 宁正福, 孔德涛, 等, 2013b.高压压汞法和氮气吸附法分析页岩孔隙结构.天然气地球科学, 24(3): 450-455. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303002.htm
      [42] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [43] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://earth-science.net/WebPage/Article.aspx?id=3189
    • 加载中
    图(14) / 表(4)
    计量
    • 文章访问数:  4659
    • HTML全文浏览量:  1804
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-28
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回