Tectonic Geomorphology Constrains on Quaternary Activity and Segmentation along Chenghai-Binchuan Fault Zone in Northwest Yunnan, China
-
摘要: 青藏高原东南部边缘的程海-宾川断裂带是一条正断与左旋走滑运动兼具的复合型活动断裂,起着调节青藏高原内部物质向东挤出的重要作用,并控制着区域的主要强震活动.基于GIS(Geographic Information System)技术,利用遥感影像和DEM(Digital Elevation Model)数据提取该区的关键构造地貌信息,对其第四纪分段活动性及特征进行了分析探讨.结果表明,程海-宾川断裂带的第四纪活动具有明显的分段性及空间差异性.其北段的金官-程海盆地主边界断层以正断层活动性质为主,并具有整个断裂带上最高的垂直活动速率;中段的期纳断裂以左旋走滑运动为主,且具有最高的走滑活动速率;南段宾川盆地东缘边界断裂也以正断层活动为主,但垂直活动速率略低于北段.总体上看,程海-宾川断裂带第四纪期间的垂直活动性由北往南降低,水平走滑活动性由中段往南北两端降低.在活动强度方面,程海-宾川断裂带百万年尺度的长期活动速率一直保持着较为稳定的状态,垂直活动速率主要集中在0.09~0.69 mm/a,水平走滑速率在0.20~1.40 mm/a.整体而言,程海-宾川断裂带中多数断裂的第四纪活动性以"中等"和"弱"为主.但历史地震活动表明,其不同段落上的未来强震活动趋势值得关注,尤其是历史强震活动相对空缺的中南段.Abstract: Chenghai-Binchuan fault zone in the southeastern margin of the Qinghai-Tibet plateau, which has a composite activity manner of vertical and horizontal left-sliding movement. It plays an important role in regulating the internal matter in the Qinghai-Tibet plateau, and controlling the major strong earthquake activity in the region. Extracting the region tectonic landforms information from the RS (remote sensing) images and DEM (digital elevation model) to quantitative study of tectonic geomorphology of the fault zone. The results show that the fault belt have the characteristics of segmented partitions. The northern boundary faults of the Jinguan-Chenghai basin are dominated by normal faults, and they have the highest vertical movement rate in the zone. Qina faults are dominated by strike-slip movement, which have the highest strike-slip activity rate. The eastern boundary faults in Binchuan basin are also dominated by normal faults. The vertical activity rate is lower than that of the northern section. Comprehensive analysis shows that the Quaternary vertical activity of Chenghai-Binchuan fault zone is lower from north to south, and strike-slip activity in central is strongest, diminishing to south. The long-term activity rate of Binchuan fault zone has maintained a relatively stable state, the vertical activity rates between 0.09-0.69 mm/a. Horizontal strike-slip rate between 0.20-1.40 mm/a. The Quaternary activity of faults mainly is "medium" and "weak", but the future earthquake risk should not be ignored, especially in the south middle of it.
-
Key words:
- Chenghai-Binchuan fault zone /
- active fault /
- tectonic geomorphology /
- Quaternary /
- seismic hazard /
- geophysics
-
图 1 程海-宾川断裂带几何展布
a.区域构造位置;b.程海-宾川断裂带及其遥感影像;F1.金官-程海断裂带(F1-1.金官-程海盆地东缘断裂;F1-2.金官-程海盆地西缘断裂;F1-3.永胜东缘断裂;F1-4.木耳坪-羊坪东缘断裂);F2.期纳断裂带(F2-1.纳盆地西北缘断裂;F2-2.纳盆地东南缘断裂;F2-3.宾川西缘断裂);F3.落漏河断裂;F4.宾川断裂(F4-1.力角-片角段;F4-2.宾川东段;F4-3.宾居-州城段);F5.河曲-上营断裂;F6.河曲-宾居断裂;F7.宾居断裂
Fig. 1. Geometric distribution of the Chenghai-Binchuan fault zone
图 6 盆山高差及第四纪沉积厚度柱状图
研究区内的各盆地沉积最大厚度数据除东富、木耳坪和羊坪盆地之外均来自国家地震局地质研究所和云南省地震局(1990)
Fig. 6. Histogram of mountain and basin height differences and Quaternary sedimentary thicknesses
图 7 金官-程海盆地区各条断裂垂直活动幅度示意
1.金官盆地第四纪最大沉积厚度约为300 m;2.永胜盆地第四纪最大沉积厚度约为200 m;3.金官、永胜之间盆地基底与山地面高差(包含1);4.永胜、羊坪级之间的盆地基底与山地面高差(包含2);5.羊坪盆地和东侧山地之间的地势高差;6.金官盆地基底至羊坪东部抬升山地间的台地的累积高差(包含1);7.金官盆地西侧盆地基底与山地面高差(包含1)
Fig. 7. A profile showing the vertical offset across the F1-1, F1-2, F1-3 and F1-4 of Jinguan-Chenghi faults
图 9 程海-宾川断裂带的地震(公元1886—2014年)分布与Ms≥5.0地震烈度
据国家地震局地质研究所和云南省地震局(1990), 毛玉平等(2003)修改
Fig. 9. Ms≥5.0 seismic intensity in the Chenghai-Binchuan fault zone (A. D. 1886—2014)
表 1 程海-宾川断裂带主干断裂的分段特征与主要历史地震活动情况
Table 1. The segment characteristics of the main fault and primary historical earthquakes in the Chenghai-Binchuan fault zone
主断层编号与名称 断层分段编号 名称 走向 长度(km) 性质 主要历史地震 F1金官—程海断裂带 F1-1(1) 金官盆地东缘正断层 SE 9 正断 F1-1(2) NW-NS 18 正断 1515年永胜北7¾级地震 F1-1(3) 程海东缘正断层 S 22 正断 2003-11-04程海4.6级地震 F1-2(1) 金官盆地西缘正断层 SE 15 正断 F1-2(2) 程海西缘正断层 S 27 正断 2003-11-04程海3.5级地震 F1-3(1) 永胜盆地东缘断裂北段 NW-SE 19 正断 2005-07-27东富4.2级地震 F1-3(2) 永胜盆地东缘断裂南段 S 26 正断 2013-02-21 4.3级地震 F1-4(1) 木耳坪盆地东缘断裂北段 NW-SE 15 正断 F1-4(2) 木耳坪盆地东缘断裂南段 S 18 正断 F2期纳断裂带 F2-1 北段 SW 17 左旋走滑兼正断 1992-12-22期纳5.1级地震 1992-12-18期纳5.4级地震 F2-2 中段 SW 23 左旋走滑兼正断 1959-04-26期纳5¾级地震 2001-09-06期纳4.0级地震 2001-10-27期纳5.6级地震 2014-04-04期纳4.4级地震 F2-3 南段(上沧—鱼棚断裂) SW 48 左旋走滑兼正断 2014-08-24期纳4.3级地震 F3 未分 落漏河断裂(又称周城一清水断裂) SW 100 左旋走滑 F4宾川断裂 F4-1 北段 SSE 30 正断 1959-03-30宾川5¼级地震 2014-04-29宾川4.5级地震 1964-05-03宾川4.7级地震 1974-02-09宾川4.1级地震 F4-2 中段 S 18 正断 2014-01-21宾川4.5级地震 2014-07-31宾川4.4级地震 2014-08-21宾川4.3级地震 F4-3 南段 SW 30 正断兼左旋走滑 1623-05-04大理6¼级地震 F5 未分 河曲一上营断裂 NNE 45 左旋兼正断 1972-09-07宾川4.2级地震 1973-10-20宾川4.2级地震 F6 未分 河曲一宾居断裂 SN 44 左旋兼正断 1998-03-08宾川4.0级地震 2014-07-26宾川4.4级地震 F7宾居断裂 未分 宾居断裂 NWW-E 33 右旋走滑兼正断 1803-02-02宾川6¼级地震 表 2 地形地貌水平偏转参数统计
Table 2. The displacement of topography
编号 水平错动量(km) 偏转角度(°) 断裂编号 描述 1 1.04 45 F2-1 冲沟错动 2 ≤7.00 F2-1
F2-2期纳盆地长轴 3 1.81 50 F2-2 冲沟错动 4 3.00 90 F2-2 金沙江错动 5 ≤3.30 F3 期纳西侧水系错动 6 1.82 80 F2-3 冲沟错动 7 1.23 90 F2-3 水系错动 8 1.13 22 F2-3 冲沟错动 9 1.06 80 F2-3 冲沟错动 10 1.00 F5 岩体错动 11 ≤2.20 F6 岩体错动 12 ≤2.59 F7 岩体错动 表 4 构造地貌参数和断裂活动速率
Table 4. Tectonic landform parameters and fault's active rates
编号 横向沟谷高度(m) 构造抬升幅度(m) 水平位错量(m) 2.5 Ma活动速率
(mm/a)5.0 Ma活动速率
(mm/a)5.0 Ma走滑活动速率
(mm/a)Ks
均值活动性分级 数值 分类 数值 分类 数值 分类 数值 分类 F1-1(1) 750 2 100 0.30 Ⅱ 0.44 Ⅱ 223 Ⅱ 中等 F1-1(2) 850 2 200 0.34 Ⅱ 0.48 Ⅰ 193 Ⅲ 强烈 F1-1(3) 723 2 800 0.29 Ⅲ 0.56 Ⅰ 417 Ⅰ 强烈 F1-2(1) 812 1 200 0.32 Ⅱ 0.24 Ⅲ 223 Ⅱ 中等 F1-2(2) 969 1 200 0.39 Ⅱ 0.24 Ⅲ 473 Ⅰ 中等 F1-3(1) 742 1 110 0.30 Ⅱ 0.22 Ⅲ 391 Ⅱ 中等 F1-3(2) 533 1 000 0.21 Ⅲ 0.20 Ⅲ 190 Ⅲ 弱等 F1-4(1) 397 717 0.16 Ⅲ 0.14 Ⅲ 117 Ⅲ 弱等 F1-4(2) 305 750 0.12 Ⅲ 0.15 Ⅲ 78 Ⅲ 弱等 F1 3 436 0.75 Ⅰ 0.69 Ⅰ 强烈 F2-1 350 2 041 1 043~7 000 0.14 Ⅲ 0.41 Ⅱ 0.21~1.4 Ⅰ 304 Ⅱ 强烈 F2-2 400 2 241 3 000 0.16 Ⅲ 0.45 Ⅱ 0.60 Ⅰ 607 Ⅰ 强烈 F2-3 1 470 ≤1 820 0.29 Ⅲ ≤0.36 Ⅲ 弱等 *F3 ≤3 300 ≤0.66 弱等 F4-1 1 187 2 538 0.47 Ⅰ 0.51 Ⅰ 755 Ⅰ 强烈 F4-2 1 242 2 888 0.50 Ⅰ 0.58 Ⅰ 939 Ⅰ 强烈 F4-3 743 1 780 0.30 Ⅱ 0.36 Ⅱ 370 Ⅱ 中等 F5 450 1 000 0.09 Ⅲ 0.20 Ⅲ 弱等 F6 ≤2 200 ≤0.44 Ⅲ 弱等 F7 ≤2 590 0.17 Ⅲ ≤0.52 Ⅱ 112 Ⅲ 弱等 注:*F3落漏河断裂虽然早期造成金沙江约3.3 km的位错量,但其第四纪活动性已不显著,因此其第四纪活动性判断为弱等. 表 3 各断裂垂直活动速率及Ks指数相关系数
Table 3. The correlation coefficients of faults' activity rates
2.5 Ma垂直活动速率 5.0 Ma垂直活动速率 Ks指数 2.5 Ma垂直活动速率 1 5.0 Ma垂直活动速率 0.67 1 Ks指数 0.70 0.65 1 -
[1] Allen, C.R., Gillespie, A.R., Han, Y., et al., 1984.Red River and Associated Faults, Yunnan Province, China:Quaternary Geology, Slip Rates, and Seismic Hazard.Geological Society of America Bulletin, 95(6):686-700.https://doi.org/10.1130/0016-7606(1984)95<686:rraafy>2.0.co;2 doi: 10.1130/0016-7606(1984)95<686:rraafy>2.0.co;2 [2] Burbank, D.W., 2002.Rates of Erosion and Their Implications for Exhumation.Mineralogical Magazine, 66(1):25-52. https://doi.org/10.1180/0026461026610014 [3] Duvall, A., Kirby, E., Burbank, D., 2004.Tectonic and Lithologic Controls on Bedrock Channel Profiles and Processes in Coastal California.Journal of Geophysical Research, 109(F3):F03002. https://doi.org/10.1029/2003JF000086 [4] Gao, M.X., Zeilinger, G., Xu, X.W., et al., 2013.DEM and GIS Analysis of Geomorphic Indices for Evaluating Recent Uplift of the Northeastern Margin of the Tibetan Plateau, China.Geomorphology, 190(439):61-72. https://doi.org/10.1016/j.geomorph.2013.02.008 [5] Gasparini, N.M., Brandon, M.T., 2011.A Generalized Power Law Approximation for Fluvial Incision of Bedrock Channels.Journal of Geophysical Research:Earth Surface, 116(F2):564-570. https://doi.org/10.1029/2009jf001655 [6] Han, M.K., 1992.Tectonic.Geomorphology Advance in Earth Sciences, 7(5):61-62 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201702006 [7] Han, S.Q., Chen, Q.L., Zhang, Y.S., et al., 2007.The Late Cenozoic Activity of the Zhoucheng-Qingshui Fault Zone in Northwest Yunnan Region.Geoscience, 21(3):498-504 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200703010 [8] Han, Z.J., Xiang, H.F., Guo, S.M., 2005.Quaternary Left-Slip Shearing and Stretching in the Northern Area of Lijiang Basin in Northwest Yunnan.Chinese Science Bulletin, 50(4):356-362 (in Chinese). doi: 10.1007/BF02897577 [9] Hu, X.F., Pan, B.T., Kirby, E., et al., 2010.Spatial Differences in Rock Uplift Rates Inferred from Channel Steepness Indices along the Northern Flank of the Qilian Mountain, Northeast Tibetan Plateau.Chinese Science Bulletin, 55(23):2329-2338 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002274589 [10] Huangfu, G., Qin, J.Z., Li, Z.H., et al., 2007.Subarea Characteristics of Earthquake Types in Yunnan.Acta Seismologica Sinica, 29(2):142-150, 229 (in Chinese with English abstract). doi: 10.1007/s11589-007-0147-3 [11] Huangfu, G., Shi, S.X., Su, Y.J., 2000.Study on Seismicity in Yunnan in the 20th Century.Journal of Seismological Research, 23(1):1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj200001001 [12] Huang, X.J., Wu, Z.H., Li, J.C., et al., 2014.Tectonic Geomorphology and Quaternary Tectonic Activity in the Northwest Yunnan Rift Zone.Geological Bulletin of China, 33(4):578-593 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201404013 [13] Huang, X.L., Wu, Z.H., Wu, K.G., et al., 2016.The Main Active Faults and Tectonic System in Yongsheng Area, Northwestern Yunnan.Journal of Geomechanics, 22(3):531-547 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201603010 [14] Institute of Geology, China Earthquake Administration, Yunnan Earthquake Prevention and Disaster Reduction, 1990.Active Faults in Northwestern Yunnan.Seismological Press, Beijing, 116-120 (in Chinese). [15] Kirby, E., Whipple, K.X., 2012.Expression of Active Tectonics in Erosional Landscapes.Journal of Structural Geology, 44:54-75. https://doi.org/10.1016/j.jsg.2012.07.009 [16] Kirby, E., Whipple, K.X., Tang, W.Q., et al., 2003.Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau:Inferences from Bedrock Channel Longitudinal Profiles.Journal of Geophysical Research:Solid Earth, 108(B4):2217. https://doi.org/10.1029/2001jb000861 [17] Lacassin, R., Replumaz, A., Hervé Leloup, P., 1998.Hairpin River Loops and Slip-Sense Inversion on Southeast Asian Strike-Slip Faults.Geology, 26(8):703-706.https://doi.org/10.1130/0091-7613(1998)026<0703:hrlass>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0703:hrlass>2.3.co;2 [18] Leloup, P.H., Harrison, T.M., Ryerson, F.J., et al., 1993.Structural, Petrological and Thermal Evolution of a Tertiary Ductile Strike-Slip Shear Zone, Diancang Shan, Yunnan.Journal of Geophysical Research:Solid Earth, 98(B4):6715-6743. https://doi.org/10.1029/92jb02791 [19] Li, G.R., Jin, D.S., 1990.Neoid Activity on the Chenghai Fracture.Yunnan Geology, 9(1):1-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003601946 [20] Li, L.B., Xu, G., Hu, J.M., et al., 2012.An Analysis of Relative Active Tectonics Based on DEM.Geology in China, 39(3):595-604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201203003 [21] Li, Z.L., Pan, M., Han, D.K., et al., 2016.Three-Dimensional Structural Modeling Technique.Earth Science, 41(12):2136-2146 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.149 [22] Liu, G.X., Li, F.Q., Li, G.R., 1986.Active Tectonics and State of Stress in Seismic Region of North-West Yunnan Province, China.Seismology and Geology, 8(1):1-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348646 [23] Luo, R.J., Wu, Z.H., Huang, X.L., et al., 2015.The Main Active Faults and the Active Tectonic System of Binchuan Area, Northwestern Yunnan.Geological Bulletin of China, 34(1):155-170 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201501013 [24] Mao, Y.P., Han, X.M., Gu, Y.S., et al., 2003.The Study of Strong Earthquake (M ≥ 6) in Yunnan.Yunnan Science and Technology Press Co.Ltd., Kunming, 217-228 (in Chinese). [25] Molnar, P., England, P., 1990.Late Cenozoic Uplift of Mountain Ranges and Global Climate Change:Chicken or Egg.Nature, 346(6279):29-34. https://doi.org/10.1038/346029a0 [26] O'Callaghan, J.F., Mark, D.M., 1984.The Extraction of Drainage Networks from Digital Elevation Data.Computer Vision, Graphics, and Image Processing, 28(3):323-344. https://doi.org/10.1016/s0734-189x(84)80011-0 [27] Peng, G., Jiao, W.Q., 1986.The Radiocarbon Dates of Late Quaternary Sediments of Yongsheng and Jinguan Basins and Their Geological Significances.Seismology and Geology, 8(3):10 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005185645 [28] Ren, J.J., Zhang, S.M., Hou, Z.H., et al., 2007.Study of Late Quaternary Slip Rate in the Mid-Segment of the Tongdian-Weishan Fault.Seismology and Geology, 29(4):756-764 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200704006 [29] Replumaz, A., Lacassin, R., Tapponnier, P., et al., 2001.Large River Offsets and Plio-Quaternary Dextral Slip Rate on the Red River Fault (Yunnan, China).Journal of Geophysical Research:Solid Earth, 106(B1):819-836. https://doi.org/10.1029/2000jb900135 [30] Schoenbohm, L.M., Burchfiel, B.C., Chen, L.Z., et al., 2006.Miocene to Present Activity along the Red River Fault, China, in the Context of Continental Extrusion, Upper-Crustal Rotation, and Lower-Crustal Flow.Geological Society of America Bulletin, 118(5-6):672-688. https://doi.org/10.1130/b25816.1 [31] Sklar, L., Dietrich, W.E., 1998.River Longitudinal Profiles and Bedrock Incision Models:Stream Power and the Influence of Sediment Supply.Rivers over Rock:Fluvial Processes in Bedrock Channels, 107:237-260. https://doi.org/10.1029/GM107p0237 [32] Summerfield, M.A., 1999.Geomorphology and Global Tectonics.John Wiley & Sons Ltd.Press, London. [33] van der Beek, P., Bishop, P., 2003.Cenozoic River Profile Development in the Upper Lachlan Catchment (SE Australia) as a Test of Quantitative Fluvial Incision Models.Journal of Geophysical Research:Solid Earth, 108(B6):ETG11-1. https://doi.org/10.1029/2002jb002125 [34] Wang, E.C., Burchfiel, B.C., Royden, L.H., et al., 1998.Late Cenozoic Xianshuihe-Xiaojiang Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China.Geological Society of America Special Paper, 327:1-108. [35] Wang, J.N., Huangfu, G., 1992.Correlation between the Lateral Migration and Seismicity at the Ends of Chenghai Fault Zone.Journal of Seismological Research, 15(2):180-185 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000384331 [36] Wang, L., He, Z.T., Ma, B.Q., 2008.Geomorphic Evolution and Its Implication for the Fault Activity in the Daihai Drainage Basin.Quaternary Sciences, 28(2):310-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200802013 [37] Whipple, K.X., Tucker, G.E., 1999.Dynamics of the Stream-Power River Incision Model:Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs.Journal of Geophysical Research:Solid Earth, 104(B8):17661-17674. https://doi.org/10.1029/1999jb900120 [38] Wobus, C., Whipple, K.X., Kirby, E., et al., 2006.Tectonics from Topography:Procedures, Promise, and Pitfalls.Geological Society of America Special Papers, 398(12):55-74. [39] Wu, J.P., Ming, Y.H., Wang, C.Y., 2004.Source Mechanism of Small-to-Moderate Earthquakes and Tectonic Stress Field in Yunnan Province.Acta Seismologica Sinica, 26(5):457-465 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dizhen-e200405001.aspx [40] Wu, Z.H., Long, C.X., Fan, T.Y., et al., 2015.The Arc Rotational-Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism.Geological Bulletin of China, 34(1):1-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201501002 [41] Wu, Z.H., Zhang, Y.S., Hu, D.G., et al., 2008.Late Quaternary Faulting and Its Dynamic Mechanism of the Haba-Yulong Mountain in the Northwest of Yunnan.Science in China (Series D:Earth Sciences), 38(11):1361-1375 (in Chinese). [42] Wu, Z.H., Zhou, C.J., Feng, H., et al., 2014.Active Faults and Earthquake around Yushu in Eastern Tibetan Plateau.Geological Bulletin of China, 33(4):419-469 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201404003 [43] Xiang, H.F., Guo, S.M., Ran, Y.K., et al., 1986.Recent Tectonic Stress Field in the Northwest of the Yunnan Province.Seismology and Geology, 8(1):15-23, 97-98 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348647 [44] Xu, X.W., Wen, X.Z., Zheng, R.Z., et al., 2003.The Latest Tectonic Variations of Active Blocks in Sichuan and Yunnan Provinces.Science in China (Series D:Earth Sciences), 33(S1):151-162 (in Chinese). [45] Yu, W.X., Wang, B., Mao, Y., et al., 2004.The SEM Characteristics of the Surface of Quartz Grains in the Gouge of Chenghai Fault and Evaluation of Its Activity.Earthquake Research in China, 20(4):347-352 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdz200404004 [46] Zaprowski, B.J., Pazzaglia, F.J., Evenson, E.B., 2005.Climatic Influences on Profile Concavity and River Incision.Journal of Geophysical Research:Earth Surface, 110(F3):F03004. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022698471/ [47] Zhang, D., Wu, Z.H., Li, J.C., et al., 2016.Analysis of the Influential Factor of Landslide in Yongsheng-Binchuan Region of Northwest Yunnan and the Exploration of Its Dynamic Cause and Significance.Journal of Natural Disasters, 25(1):176-190 (in Chinese with English abstract). https://doi.org/10.13577/j.jnd.2016.0121 [48] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.016 [49] 韩慕康, 1992.构造地貌学.地球科学进展, 7(5):61-62. http://d.old.wanfangdata.com.cn/Periodical/ytsfxyxb200202008 [50] 韩淑琴, 陈情来, 张永双, 等, 2007.滇西北周城-清水断裂带晚新生代活动性初步研究.现代地质, 21(3):498-504. doi: 10.3969/j.issn.1000-8527.2007.03.010 [51] 韩竹军, 向宏发, 虢顺民, 2005.滇西北丽江盆地北部区第四纪时期的左旋剪切拉张.科学通报, 50(4):356-362. doi: 10.3321/j.issn:0023-074X.2005.04.010 [52] 胡小飞, 潘保田, Kirby, E., 等, 2010.河道陡峭指数所反映的祁连山北翼抬升速率的东西差异.科学通报, 55(23):2329-2338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001931028 [53] 皇甫岗, 秦嘉政, 李忠华, 等, 2007.云南地震类型分区特征研究.地震学报, 29(2):142-150, 229. doi: 10.3321/j.issn:0253-3782.2007.02.003 [54] 皇甫岗, 石绍先, 苏有锦, 2000.20世纪云南地震活动研究.地震研究, 23(1):1-9. doi: 10.3969/j.issn.1000-0666.2000.01.001 [55] 黄小巾, 吴中海, 李家存, 等, 2014.滇西北裂陷带的构造地貌特征与第四纪构造活动性.地质通报, 33(4):578-593. doi: 10.3969/j.issn.1671-2552.2014.04.013 [56] 黄小龙, 吴中海, 吴坤罡, 等, 2016.滇西北永胜地区主要活动断裂与活动构造体系.地质力学学报, 22(3):531-547. doi: 10.3969/j.issn.1006-6616.2016.03.010 [57] 国家地震局地质研究所, 云南省地震局, 1990.滇西北地区活动断裂.北京:地震出版社, 116-120. [58] 李光容, 金德山, 1990.程海断裂带挽近期活动性研究.云南地质, 9(1):1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003601946 [59] 李利波, 徐刚, 胡健民, 等, 2012.基于DEM的活动构造研究.中国地质, 39(3):595-604. doi: 10.3969/j.issn.1000-3657.2012.03.003 [60] 李兆亮, 潘懋, 韩大匡, 等, 2016.三维构造建模技术研究.地球科学, 41(12):2136-2146. doi: 10.11764/j.issn.1672-1926.2016.12.2136 [61] 刘光勋, 李方全, 李桂荣, 1986.我国滇西北地震活动区的活动构造与应力状态.地震地质, 8(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348646 [62] 罗睿洁, 吴中海, 黄小龙, 等, 2015.滇西北宾川地区主要活动断裂及其活动构造体系.地质通报, 34(1):155-170. doi: 10.3969/j.issn.1671-2552.2015.01.013 [63] 毛玉平, 韩新民, 谷一山, 等, 2003.云南地区强震(M ≥ 6)研究.昆明:云南科技出版社, 217-228. [64] 彭贵, 焦文强, 1986.永胜、金官盆地晚第四纪沉积物的14C年龄测定及其地质意义.地震地质, 8(3):10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005185645 [65] 任俊杰, 张世民, 侯治华, 等, 2007.滇西北通甸-巍山断裂中段的晚第四纪滑动速率.地震地质, 29(4):756-764. doi: 10.3969/j.issn.0253-4967.2007.04.006 [66] 王晋南, 皇甫岗, 1992.程海断裂尾端侧向迁移与地震的相关性.地震研究, 15(2):180-185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000384331 [67] 王林, 何仲太, 马保起, 2008.岱海流域地貌演化及其对断裂活动性的指示意义.第四纪研究, 28(2):310-318. doi: 10.3321/j.issn:1001-7410.2008.02.013 [68] 吴建平, 明跃红, 王椿镛, 2004.云南地区中小地震震源机制及构造应力场研究.地震学报, 26(5):457-465. doi: 10.3321/j.issn:0253-3782.2004.05.001 [69] 吴中海, 龙长兴, 范桃园, 等, 2015.青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制.地质通报, 34(1):1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002 [70] 吴中海, 张永双, 胡道功, 等, 2008.滇西北哈巴-玉龙雪山东麓断裂的晚第四纪正断层作用及其动力学机制探讨.中国科学(D辑:地球科学), 38(11):1361-1375. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200811004.htm [71] 吴中海, 周春景, 冯卉, 等, 2014.青海玉树地区活动断裂与地震.地质通报, 33(4):419-469. doi: 10.3969/j.issn.1671-2552.2014.04.003 [72] 向宏发, 虢顺民, 冉勇康, 等, 1986.滇西北地区的现代构造应力场.地震地质, 8(1):15-23, 97-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348647 [73] 徐锡伟, 闻学泽, 郑荣章, 等, 2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑:地球科学), 33(S1):151-162. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2003z1017 [74] 俞维贤, 王彬, 毛燕, 等, 2004.程海断裂带断层泥中石英碎砾表面SEM特征及断层活动状态的分析.中国地震, 20(4):347-352. doi: 10.3969/j.issn.1001-4683.2004.04.004 [75] 张铎, 吴中海, 李家存, 等, 2016.滇西北永胜-宾川地区滑坡发育的影响因子分析及其动力成因与意义探讨.自然灾害学报, 25(1):176-190. http://www.cqvip.com/QK/97398X/201601/667963575.html [76] 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. http://earth-science.net/WebPage/Article.aspx?id=3179