• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    降雨驱动泥石流危险性评价

    常鸣 窦向阳 唐川 李宁 范宣梅

    常鸣, 窦向阳, 唐川, 李宁, 范宣梅, 2019. 降雨驱动泥石流危险性评价. 地球科学, 44(8): 2794-2802. doi: 10.3799/dqkx.2017.547
    引用本文: 常鸣, 窦向阳, 唐川, 李宁, 范宣梅, 2019. 降雨驱动泥石流危险性评价. 地球科学, 44(8): 2794-2802. doi: 10.3799/dqkx.2017.547
    Chang Ming, Dou Xiangyang, Tang Chuan, Li Ning, Fan Xuanmei, 2019. Hazard Assessment of Typical Debris Flow Induced by Rainfall Intensity. Earth Science, 44(8): 2794-2802. doi: 10.3799/dqkx.2017.547
    Citation: Chang Ming, Dou Xiangyang, Tang Chuan, Li Ning, Fan Xuanmei, 2019. Hazard Assessment of Typical Debris Flow Induced by Rainfall Intensity. Earth Science, 44(8): 2794-2802. doi: 10.3799/dqkx.2017.547

    降雨驱动泥石流危险性评价

    doi: 10.3799/dqkx.2017.547
    基金项目: 

    地质灾害防治与地质环境保护国家重点实验室自由探索课题 SKLGP2018Z013

    四川省科技厅重大科技项目 2019YFS0073

    四川省教育厅科研课题 17ZB0054

    国家重点研发计划 2018YFC1505405

    第二次青藏高原综合科学考察研究 No.2019QZKK0903

    详细信息
      作者简介:

      常鸣(1985-), 男, 副教授, 博士, 主要从事环境地质分析、地质灾害评价及遥感与GIS应用的工作

    • 中图分类号: P694

    Hazard Assessment of Typical Debris Flow Induced by Rainfall Intensity

    • 摘要: “5·12”汶川地震后大量滑坡崩塌体出现,伴随极端降雨极易向泥石流转换,其规模及危害程度远高于预期.2010年8月13日都江堰龙池场镇突发暴雨,导致八一沟泥石流暴发,冲毁拦挡坝,掩埋道路、房屋及农田.为了探索降雨驱动泥石流的危险性,选取八一沟泥石流作为研究对象,通过分析不同降雨频率下的泥石流暴发强度及周期,采用FLO-2D数值模拟方法开展危险性评价.经验证模拟精度可达78%,结合降雨频率(5年、20年、50年、100年、200年)、流速和堆积深度构建八一沟泥石流危险性评价模型并绘制分布图.结果表明,八一沟泥石流危险范围内高危险区占62%,中危险性区占28%,低危险区占10%,该结论为危险范围内重点设施的监测预警提供科学依据.

       

    • 图  1  八一沟流域平面示意

      Fig.  1.  Drainage basins of the Bayi Gully

      图  2  八一沟泥石流堆积扇对比

      a. “5·12”地震后八一沟堆积扇全貌; b. “8·13”泥石流后八一沟堆积扇全貌

      Fig.  2.  Comparison chart of Bayi gully fan

      图  3  “8·13”泥石流降雨数据

      Fig.  3.  Rainfall data of meteorological station on Aug. 13. 2010

      图  4  八一沟③号集水点不同降雨强度下清水流量过程线

      Fig.  4.  The water flow process of ③ set point in Bayi Basin under different rainfall frequency

      图  5  八一沟泥石流不同降雨强度下数值模拟结果及验证

      Fig.  5.  Numerical simulation results of Bayi debris flow under different rainfall frequency

      图  6  八一沟泥石流危险性评价标准

      Fig.  6.  Debris flow hazard assessment standards in Bayi gully

      图  7  八一沟泥石流危险性评价

      Fig.  7.  Debris flow Hazard assessment result in Bayi gully

      表  1  八一沟泥石流③号集水点20年一遇参数选取

      Table  1.   The parameter of ③ set point in Bayi basin under 20 years rainfall frequency

      参数 数值
      流域面积F(km2 2.08
      沟道长度L(km) 2.5
      径流系数ψ 0.918
      洪峰流量QP(m3/s) 37.46
      洪水流量WP(104m3 5.62
      体积浓度CV 0.6
      径流深度H(cm) 27
      汇流时间τ(h) 1.2
      曼宁系数 0.05
      屈服强度τy(MPA) 4 903
      粘滞系数η 5 704
      放大系数BF 2.5
      下载: 导出CSV

      表  2  八一沟泥石流数值模拟精度表

      Table  2.   Accuracy of numerical simulation in Bayi gully

      泥石流名称 “8·13”泥石流堆积面积
      实测值(103 m2) 模拟值(103 m2) 重叠区(103 m2) 精确程度
      八一沟泥石流 136.48 112.28 109.09 0.78
      下载: 导出CSV

      表  3  八一沟泥石流强度划分表

      Table  3.   Debris flow intensity partition in Bayi gully

      八一沟泥石流强度 堆积深度(m) 关系式 堆积深度与流速乘积(m2/s)
      H≥2.5 OR VH≥2.5
      0.5≤H<2.5 AND 0.5≤VH<2.5
      0.0≤H<0.5 AND VH<0.5
      下载: 导出CSV
    • [1] Chang, M., Tang, C., Zhang, D.D., et al., 2014. Debris Flow Susceptibility Assessment Using a Probabilistic Approach: a Case Study in the Longchi Area, Sichuan Province, China. Journal of Mountain Science, 11(4): 1001-1014. https://doi.org/10.1007/s11629-013-2747-9
      [2] Chang, M., Tang, C., 2014. Study on Typical Movement Model in Mine Debris Flow Based on Hydrodynamic Force Conditions. Journal of Hydraulic Engineering, 33:116-121(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201411007
      [3] Christen, M., Kowalski, J., Bartelt, P., et al., 2010. RAMMS: Numerical Simulation of Dense Snow Avalanches in Three-Dimensional Terrain. Cold Regions Science and Technology, 63: 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
      [4] Cui, P., Zou, Q., 2016. Theory and Method of Risk Assessment and Risk Management of Debris Flows and Flash Floods. Progress in Geography, 35(2):137-147(in Chinese with English abstract). doi: 10.18306/dlkxjz.2016.02.001
      [5] Dai, F.C., Lee, C.F., Ngai, Y.Y., et al., 2012. Landslide Risk Assessment and Management an Overview. Engineering Geology, 64:65-87. https://doi.org/10.1016/S0013-7952(01)00093-X
      [6] Du, J., Yang, Q.H., Yan, J., et al., 2010. Hazard Evaluation of Secondary Geological Disaster Based on GIS and Information Value Method. Earth Science, 35(2):324-330(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201002018
      [7] Huang, Y., Cheng, H.L., Dai, Z.L., et al., 2015. SPH-Based Numerical Simulation of Catastrophic Debris Flows after the 2008 Wenchuan Earthquake. Bulletin of Engineering Geology and the Environment, 74:1137-1151. https://doi.org/10.1007/s10064-014-0705-6
      [8] Liu, X.L., Shang, Z.H., 2012. Integrated Risk Analysis Methodology of Debris Flow Disaster and the Study Case. Geography and Geo-Information Science, 28(5):86-89(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201205019
      [9] Ma, Y., Yu, B., Wu, Y.F., et al., 2011. Research on the Disaster of Debris Flow of Bayi Gully, Longchi, Dujiangyan, Sichuan on August 13, 2010. Journal of Sichuan University (Engineering Science Edition), 43(1):92-98(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=dda1fe1941a33d48a80190ca6dddb3bf&encoded=0&v=paper_preview&mkt=zh-cn
      [10] Mamodu, A., Dinand, A., 2013. Post Seismic Debris Flow Modelling Using FLO-2D; Case Study of Yingxiu, Sichuan Province, China. Journal of Geography and Geology, 5(3): 101-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002747885
      [11] Nocentini, M., Tofani, V., Gigli, G., et al., et al., 2015. Modeling Debris Flows in Volcanic Terrains for Hazard Mapping: the Case Study of Ischia Island (Italy). Landslides, 12(5):831-846. https://doi.org/10.1007/s10346-014-0524-7
      [12] Peng, S.X., Lu, S.C., 2012. FLO-2D Simulation of Mudflow Caused by Large Landslide Due to Extremely Heavy Rainfall in Southeastern Taiwan during Typhoon Morakot. Journal of Mountain Science, 10(2): 207-218. https://doi.org/10.1007/s11629-013-2510-2
      [13] Qin, Y., Zhang, H.C., 2013. Initiation Conditions for the 8·13 Debris Flows in Bayi Gully of Dujiangyan. South-to-North Water Transfers and Water Science & Technology, 11(4):101-104(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsbdyslkj201304023
      [14] Quan, L. B., Blahut, J., Van Westen, C.J., et al., 2011. The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves. Natural Hazards and Earth System Sciences, 11: 2047-2060. doi: 10.5194/nhess-11-2047-2011
      [15] Quan, L. B., Cepeda, J., Stumpf, A., et al., 2013. Analysis and Uncertainty Quantification of Dynamic Run-Out Model Parameters for Landslides. In: Margottini, C., Canuti, P., Sassa, K., eds., Landslide Science and Practice. Springer, Berlin, Heidelberg, 315-318.
      [16] Shen, J.H., Zhu, R.C., Liu, W.G., et al., 2008. Possibility Geological Analysis of Gangou Debris Flow in Longchi Town in Dujiangyan Induced by the Earthquake of May 12 in Wenchuan. Mountain Science, 26(5):513-517(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200805001
      [17] Tang, C., Li, W.L., Ding, J., et al., 2011. Field Investigation and Research on Giant Debris Flow on August 14, 2010 in Yingxiu Town, Epicenter of Wenchuan Earthquake. Earth Science, 36(1):172-180(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201101018
      [18] Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall-Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science, 35(2):317-323(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201002017
      [19] Tang, C., Van Asch., T.W.J., Chang, M., et al., 2011. Catastrophic Debris Flows on 13 August 2010 in the Qingping Area, Southwestern China: The Combined Effects of a Strong Earthquake and Subsequent Rainstorms. Geomorphology, 139: 559-576. https://doi.org/10.1016/j.geomorph.2011.12.021
      [20] Zhan, Q.D., Xiao, K.W., Xu, Y.C., 2015. Applying FLO-2D and Debris 2D Model to Simulate Characteristics of Debris Flow in Qianghuangkeng Watershed. Journal of the Taiwan Disaster Prevention Society, 7(2):239-247(in Chinese with English abstract).
      [21] Zhang, Z.G., Zhang, Z.M., Zhang, S.B., et al., 2010. Formation Conditions and Dynamics Features of the Debris Flow in Bayi Gully in Dujiangyan County. The Chinese Journal of Geological Hazard and Control, 21(1):34-38(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201001007
      [22] Zhou, W., Chen, N.S., Deng, M.F., et al., 2011. Dynamic Characteristics and Hazard Risk Assessment of Debris Flows in Bayi Gully of Dujiangyan City of Sichuan Province. Bulletin of Soil and Water Conservation, 31(5):138-143(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201105027
      [23] Zhou, W., Tang, C., 2014. Rainfall Thresholds for Debris Flow Initiation in the Wenchuan Earthquake-Stricken Area, Southwestern China. Landslides, 11(5):877-887. https://doi.org/10.1007/s10346-013-0421-5
      [24] 常鸣, 唐川, 2014.基于水动力的典型矿山泥石流运动模式研究.水利学报, 33:116-121. http://d.old.wanfangdata.com.cn/Periodical/slxb201411007
      [25] 崔鹏, 邹强, 2016.山洪泥石流风险评估与风险管理理论与方法.地理科学进展, 35(2):137-147. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201602001
      [26] 杜军, 杨青华, 严嘉, 等, 2010.基于GIS与信息量模型的汶川次生地质灾害危险性评价.地球科学, 35(2):324-330. http://earth-science.net/WebPage/Article.aspx?id=1958
      [27] 刘希林, 尚志海, 2012.泥石流灾害综合风险分析方法及其应用.地理与地理信息科学, 28(5):86-89. http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201205019
      [28] 马煜, 余斌, 吴雨夫, 等, 2011.四川都江堰龙池"8·13"八一沟大型泥石流灾害研究.四川大学学报(工程科学版), 43(1):92-98. http://www.cqvip.com/QK/90462B/2011S1/1003577949.html
      [29] 沈军辉, 朱容辰, 刘维国, 等, 2008. "5·12"汶川地震诱发都江堰龙池镇干沟泥石流可能性地质分析.山地学报, 26, (5):513-517. doi: 10.3969/j.issn.1008-2786.2008.05.001
      [30] 覃怡, 郑洪春, 2013.都江堰八一沟8·13泥石流的形成条件分析.南水北调与水利科技, 11(4):101-104. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201304023
      [31] 唐川, 李为乐, 丁军, 等, 2011.汶川震区映秀镇"8.14"特大泥石流灾害调查.地球科学, 36(1):172-180. http://earth-science.net/WebPage/Article.aspx?id=2076
      [32] 唐川, 齐信, 丁军, 等, 2010.汶川地震高烈度区暴雨滑坡活动的遥感动态分析.地球科学(, 35(2):317-323. http://earth-science.net/WebPage/Article.aspx?id=1957
      [33] 詹钱登, 萧凯文, 徐郁超, 等, 2015.应用FLO-2D及Debris 2D模拟羌黄坑集水区内土石流流动特性差异之研究.中华防灾学刊, 7(2):239-247.
      [34] 张自光, 张志明, 张顺斌, 等, 2010.都江堰市八一沟泥石流形成条件与动力学特征分析.中国地质灾害与防治学报, 21(1):34-38. doi: 10.3969/j.issn.1003-8035.2010.01.007
      [35] 周伟, 陈宁生, 邓明枫, 等, 2011.四川省都江堰市八一沟泥石流动力学特征及危险性评估.水土保持通报, 31(5):138-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201105027
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  4257
    • HTML全文浏览量:  1795
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-25
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回