• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古朱日和地区早古生代岩浆岩年代学、地球化学特征及其构造意义

    钱筱嫣 张志诚 陈彦 于海飞 罗志文 杨金福

    钱筱嫣, 张志诚, 陈彦, 于海飞, 罗志文, 杨金福, 2017. 内蒙古朱日和地区早古生代岩浆岩年代学、地球化学特征及其构造意义. 地球科学, 42(9): 1472-1494. doi: 10.3799/dqkx.2017.545
    引用本文: 钱筱嫣, 张志诚, 陈彦, 于海飞, 罗志文, 杨金福, 2017. 内蒙古朱日和地区早古生代岩浆岩年代学、地球化学特征及其构造意义. 地球科学, 42(9): 1472-1494. doi: 10.3799/dqkx.2017.545
    Qian Xiaoyan, Zhang Zhicheng, Chen Yan, Yu Haifei, Luo Zhiwen, Yang Jinfu, 2017. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks in Zhurihe Area, Inner Mongolia and Their Tectonic Significance. Earth Science, 42(9): 1472-1494. doi: 10.3799/dqkx.2017.545
    Citation: Qian Xiaoyan, Zhang Zhicheng, Chen Yan, Yu Haifei, Luo Zhiwen, Yang Jinfu, 2017. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks in Zhurihe Area, Inner Mongolia and Their Tectonic Significance. Earth Science, 42(9): 1472-1494. doi: 10.3799/dqkx.2017.545

    内蒙古朱日和地区早古生代岩浆岩年代学、地球化学特征及其构造意义

    doi: 10.3799/dqkx.2017.545
    基金项目: 

    国家重点基础研究发展计划项目 2013CB429801

    中国地质调查局地质大调查项目 1212010050503

    详细信息
      作者简介:

      钱筱嫣(1992-), 女, 硕士研究生, 主要从事区域大地构造研究

      通讯作者:

      张志诚, E-mail:zczhang@pku.edu.cn

    • 中图分类号: P548

    Geochronology and Geochemistry of Early Paleozoic Igneous Rocks in Zhurihe Area, Inner Mongolia and Their Tectonic Significance

    • 摘要: 中亚造山带早古生代的构造演化一直存在不同的认识,特别是其俯冲转为碰撞的时限.内蒙古朱日和南部的额尔登陶勒盖地区出露的早古生代岩浆岩,对于限定白乃庙岛弧的延伸方向、岛弧演化和拼贴时间具有重要意义.对额尔登地区出露的火山岩和侵入岩进行了精确的锆石SHRIMP和LA-ICP-MS U-Pb定年、锆石Lu-Hf同位素和地球化学分析以确定其时代和成因.研究获得4个岩浆岩年龄,1件英安岩年龄为434.0±4.4 Ma,2件花岗岩年龄分别为432.8±2.6 Ma和428.1±1.8 Ma,此3件样品形成于早中志留世;另有1件流纹岩年龄为411.8±1.0 Ma,形成于早泥盆世.早中志留世侵入岩为低钾、过铝质钙碱性中酸性岩石,富集Rb、Th,弱富集Zr、Hf,明显亏损Nb、Ta、P、Ti.在稀土配分曲线上,侵入岩均不存在Eu的负异常.其中2件花岗岩样品的锆石基本为正εHft)值(-1.19~11.51,3.32~10.28),TDM2为684~1 493 Ma及759~1 202 Ma,主要来自新生地壳;早中志留世火山岩具有中-低钾、偏铝质-过铝质、钙碱性酸性岩石特征,富集Rb、Th,弱富集Zr、Hf,明显亏损Nb、Ta、P、Ti.在稀土配分曲线上,多数火山岩不存在Eu负异常.英安岩中的锆石具有正εHft)值(3.70~7.94),TDM2为912~1 183 Ma,主要来自新生地壳;而早泥盆世流纹岩(411 Ma)存在明显的Eu负异常,其锆石具有负εHft)值(-14.95~-7.07),TDM2为1.8~2.3 Ga,应为古老地壳再循环的产物,与早中志留世岩浆岩源区明显不同,可能代表构造环境的转变.综合区域地质和前人研究资料表明,早志留世英安岩和花岗岩形成于俯冲岛弧环境,白乃庙岛弧向东可延伸至本区,而早泥盆世流纹岩可能形成于后碰撞环境.

       

    • 图  1  中亚造山带中国北部-内蒙部分的构造格架(a)和中国北部-蒙古地区构造示意(b)

      图a据Jahn(2004)Zhang et al.(2015)Chen et al.(2016a);图b据Chen et al.(2016a, 2016b).EGFZ.东戈壁断裂带;UCM.乌里雅斯太大陆边缘带;HOB.二连-贺根山蛇绿岩带;NOB.北造山带;SZ.索伦带缝合带,HB.浑善达克地块;SOB.南造山带;NCC.华北克拉通

      Fig.  1.  Tectonic framework of the North China-Mongolian segment of the Central Asian Orogenic Belt (a) and geologic sketch of the North China-Mongolia area (b)

      图  2  额尔登及邻区地质简图(a)、额尔登详细采样点位置(b)以及额尔登地区剖面图(c)

      图a据Luo et al.(2016)修改.图a中的数字“1, 2, …10, 11”为年龄数据位置.1.玄武岩474±7 Ma,英安岩453±7 Ma,英安岩436±9 Ma,SHRIMP(据Zhang et al., 2013).变质火山岩449±3 Ma,LA-ICP-MS(据柳长峰等, 2014);2.变质安山岩450±4 Ma,LA-ICP-MS(据谷丛楠等, 2012);3.石英闪长岩430±3 Ma,LA-ICP-MS(据Zhang et al., 2014);4.英云闪长岩421±2 Ma,英云闪长岩439±5 Ma,LA-ICP-MS(据Zhang et al., 2014);闪长岩419±10 Ma,SHRIMP(据Zhang et al., 2013);5.片麻状石英闪长岩454±14 Ma,片麻状石英闪长岩459±3 Ma,SHRIMP(据童英等, 2010);6.英云闪长岩439±3 Ma,英云闪长岩432±5 Ma,LA-ICP-MS(据Zhang et al., 2014);7.英云闪长岩442±2 Ma,SHRIMP(据白新会等, 2015);8.石英闪长岩432±2 Ma,SHRIMP(据白新会等, 2015);9.花岗斑岩271.8±3.3 Ma,LA-ICP-MS(据鲁颖淮等, 2009);10.花岗闪长岩445.6±2.7 Ma,LA-ICP-MS(据Hao and Hou, 2012);11.英安岩458±3 Ma,SHRIMP(据Jian et al.2008)

      Fig.  2.  Geological sketch of the Eerdeng and adjacent areas (a), detailed locations of the Eerdeng area (b) and geological section of the Eerdeng area (c)

      图  3  额尔登陶勒盖地区火山岩及谷讨勒地区侵入岩野外特征照片及镜下特征照片

      a.额尔登地区英安岩;b.谷讨勒地区花岗岩;c.英安岩;d.英安岩;e.流纹岩;f.粗面岩;g.花岗岩;h.花岗闪长岩.Pl.斜长石;Kfs.碱性长石;Qtz.石英

      Fig.  3.  Field photographs and photomicromgraphs of igneous rocks at the Eerdeng and Taogule areas

      图  4  额尔登地区样品锆石阴极发光照片及测年点位

      a.花岗岩NM13-40;b.花岗岩NM13-42;c.英安岩样品NM10-01;d.流纹岩NM13-20

      Fig.  4.  CL images and dating spots of zircons from samples in the Eerdeng area

      图  5  锆石U-Pb年龄谐和图

      a.花岗岩NM13-40;b.花岗岩NM13-42;c.英安岩样品NM10-01;d.流纹岩NM13-20

      Fig.  5.  Zircons U-Pb concordia diagram from samples in the Eerdeng area

      图  6  额尔登陶勒盖和谷讨勒地区岩浆岩的TAS图解(a),K2O-SiO2图解(b),Na2O+K2O-CaO-SiO2图解(c)和A/NK-A/CNK图解(d)

      图a据MacDonald and Katsura(1964)和Le Maitre(2002);图b据Peccerillo and Taylor(1976);图c据Frost(2001);图d据Maniar and Piccoli(1989)

      Fig.  6.  TAS diagram (a), K2O-SiO2 diagram (b), Na2O+K2O-CaO-SiO2 diagram (c) and A/NK-A/CNK diagram (d) of igneous rocks in the Eerdengtaolegai and Gutaole areas

      图  7  额尔登陶勒盖和谷讨勒地区岩浆岩的稀土元素配分图(a)和微量元素蛛网图(b)

      球粒陨石REE数据、原始地幔数据据Sun and McDougn(1989),图例同图 6

      Fig.  7.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized spidergrams (b) of igneous rocks in the Eerdengtaolegai and Gutaole areas

      图  8  额尔登地区岩浆岩(La/Yb)N-δEu图解(a)和Mg#-SiO2图解(b)

      图a据李兆鼐(2003);图b据马旭(2012),阴影部分数据据Rapp and Watson(1995),图例同图 6

      Fig.  8.  (La/Yb)N-δEu (a) and Mg#-SiO2 (b) diagrams of igneous rocks fromthe Eerdeng area

      图  9  额尔登地区岩浆岩中锆石的εHf(t)-t图解

      中亚造山带东部和华北克拉通数据据Yang et al.(2006)

      Fig.  9.  Diagram of zircon εHf(t) values vs. U-Pb ages for the Early Paleozoic igneous rocks from the Eerdeng area

      图  10  额尔登地区岩浆岩Nb-Y图解(a),Rb-Y+Nb图解(b)和Rb/Zr-Nb图解(c)

      图a和图b据Pearce et al.(1984),图c据Brown(1984),图例同图 6

      Fig.  10.  Nb-Y (a), Rb-Y+Nb (b), Rb/Zr-Nb (c) diagrams of igneous rocks from the Eerdeng area

      图  11  早古生代白乃庙地区构造演化模式

      Fig.  11.  A cartoon for the Early Paleozoic tectonic evolution of the Bainaimiao area

      表  1  本文采样点GPS采样点坐标

      Table  1.   The GPS data of the samples

      样品号 北纬 东经
      NM10-01~03 42°16′25.7″ 112°58′12.0″
      NM13-18~22 42°16′24.6″ 112°58′16.9″
      NM13-23~25 42°16′19.3″ 112°58′04.8″
      NM13-33 42°17′33.5″ 112°59′15.9″
      NM13-36 42°18′17.6″ 113°0′0.6″
      NM13-37 42°18′13.6″ 113°0′5.8″
      NM13-40 42°18′13.3″ 113°0′6.4″
      NM13-42~43 42°17′59.2″ 113°0′15.4″
      下载: 导出CSV

      表  2  额尔登地区岩浆岩(NM13-20、NM13-40、NM13-42) LA-ICP-MS锆石U-Pb同位素分析结果

      Table  2.   LA-ICP-MS U-Pb data for zircons of intrusive rocks (simple NM13-20, NM13-40, NM13-42) from the Eerdeng area

      测试点号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ(Ma) 年龄(Ma) 1σ(Ma) 年龄(Ma) 1σ(Ma)
      NM13-20-01 374.25 875.90 0.43 0.055 1 0.001 4 0.499 9 0.012 0 0.065 9 0.000 8 415 32 412 8 411 5
      NM13-20-02 223.07 362.91 0.61 0.055 1 0.001 1 0.499 9 0.009 9 0.065 9 0.000 8 415 24 412 7 411 5
      NM13-20-03 330.29 610.26 0.54 0.055 0 0.001 2 0.498 2 0.010 2 0.065 7 0.000 8 413 26 410 7 410 5
      NM13-20-04 151.33 297.69 0.51 0.055 0 0.003 3 0.499 2 0.028 9 0.065 8 0.001 4 413 92 411 20 411 8
      NM13-20-05 295.11 530.13 0.56 0.055 0 0.001 1 0.502 4 0.009 7 0.066 3 0.000 8 413 24 413 7 414 5
      NM13-20-06 187.01 378.88 0.49 0.055 8 0.003 2 0.505 4 0.028 2 0.065 7 0.001 4 444 87 415 19 410 8
      NM13-20-07 436.00 718.27 0.61 0.070 7 0.003 3 0.615 6 0.027 2 0.063 1 0.000 8 949 97 487 17 395 5
      NM13-20-08 248.18 406.25 0.61 0.056 3 0.001 3 0.519 0 0.011 5 0.066 8 0.000 8 466 28 425 8 417 5
      NM13-20-09 96.20 230.15 0.42 0.056 0 0.004 6 0.514 3 0.041 0 0.066 6 0.001 8 454 128 421 27 416 11
      NM13-20-10 299.96 459.01 0.65 0.054 8 0.001 0 0.505 1 0.008 7 0.066 8 0.000 7 406 20 415 6 417 4
      NM13-20-11 131.47 333.52 0.39 0.055 3 0.003 5 0.499 2 0.030 4 0.065 5 0.001 4 423 97 411 21 409 9
      NM13-20-12 344.86 520.91 0.66 0.055 0 0.000 8 0.499 1 0.007 5 0.065 8 0.000 7 412 16 411 5 411 4
      NM13-20-13 167.45 551.55 0.30 0.056 3 0.001 8 0.499 0 0.015 2 0.064 3 0.000 9 464 43 411 10 402 5
      NM13-20-14 252.01 663.82 0.38 0.056 2 0.002 8 0.512 0 0.024 4 0.066 1 0.001 2 461 73 420 16 412 7
      NM13-20-15 431.77 771.95 0.56 0.055 2 0.001 9 0.500 7 0.016 7 0.065 8 0.001 0 421 49 412 11 411 6
      NM13-20-16 173.24 319.69 0.54 0.054 9 0.001 2 0.498 0 0.010 8 0.065 8 0.000 8 409 28 410 7 411 5
      NM13-20-17 184.12 365.21 0.50 0.056 2 0.002 1 0.510 8 0.018 2 0.065 9 0.000 9 461 54 419 12 411 6
      NM13-20-18 149.05 259.20 0.58 0.055 1 0.001 7 0.499 4 0.015 1 0.065 8 0.000 9 415 43 411 10 411 5
      NM13-20-19 323.05 414.97 0.78 0.055 0 0.001 1 0.502 2 0.010 1 0.066 3 0.000 8 411 25 413 7 414 5
      NM13-20-20 271.88 450.47 0.60 0.055 0 0.001 1 0.501 1 0.009 5 0.066 2 0.000 8 411 23 412 6 413 5
      NM13-20-21 562.96 880.69 0.64 0.055 1 0.001 4 0.503 0 0.012 3 0.066 2 0.000 8 416 33 414 8 413 5
      NM13-20-22 103.15 256.47 0.40 0.055 1 0.002 5 0.500 6 0.022 0 0.065 9 0.001 1 415 67 412 15 412 7
      NM13-20-23 389.84 779.20 0.50 0.054 7 0.001 3 0.501 3 0.011 9 0.066 4 0.000 8 402 32 413 8 415 5
      NM13-20-24 272.55 400.70 0.68 0.055 7 0.001 3 0.506 3 0.011 7 0.065 9 0.000 8 441 30 416 8 411 5
      NM13-20-25 234.27 408.69 0.57 0.054 9 0.002 2 0.499 1 0.019 3 0.066 0 0.001 0 408 59 411 13 412 6
      NM13-20-26 175.59 320.34 0.55 0.054 9 0.001 4 0.502 6 0.012 6 0.066 4 0.000 8 407 34 413 9 415 5
      NM13-20-27 368.01 465.30 0.79 0.055 6 0.001 2 0.504 6 0.010 6 0.065 9 0.000 8 436 26 415 7 411 5
      NM13-20-28 241.38 485.82 0.50 0.055 0 0.001 1 0.499 1 0.009 8 0.065 8 0.000 8 413 24 411 7 411 5
      NM13-20-29 100.81 132.95 0.76 0.055 7 0.004 9 0.501 4 0.042 9 0.065 3 0.001 9 439 139 413 29 408 11
      NM13-20-30 254.49 351.94 0.72 0.056 0 0.002 6 0.509 1 0.022 9 0.065 9 0.001 2 453 69 418 15 412 7
      NM13-40-01 104.33 236.14 2.26 0.055 3 0.001 2 0.531 9 0.010 9 0.069 8 0.000 8 424 26 433 7 435 5
      NM13-40-02 485.48 550.31 1.13 0.055 1 0.002 6 0.526 9 0.023 8 0.069 5 0.001 2 414 69 430 16 433 7
      NM13-40-03 246.89 319.65 1.29 0.069 0 0.009 9 0.631 7 0.088 2 0.066 4 0.002 2 898 315 497 55 415 13
      NM13-40-04 56.49 87.77 1.55 0.055 5 0.002 2 0.530 8 0.020 2 0.069 4 0.001 0 431 58 432 13 433 6
      NM13-40-05 127.03 208.19 1.64 0.055 2 0.003 9 0.513 9 0.035 1 0.067 5 0.001 5 421 113 421 24 421 9
      NM13-40-06 476.70 540.08 1.13 0.055 4 0.000 8 0.524 8 0.007 9 0.068 8 0.000 7 428 16 428 5 429 4
      NM13-40-07 476.56 533.62 1.12 0.069 0 0.004 3 0.679 7 0.040 8 0.071 4 0.001 2 899 132 527 25 445 7
      NM13-40-08 292.76 372.87 1.27 0.055 4 0.001 5 0.524 9 0.014 2 0.068 8 0.000 9 426 38 428 9 429 5
      NM13-40-09 93.10 200.33 2.15 0.055 5 0.001 9 0.530 6 0.018 1 0.069 4 0.001 0 431 51 432 12 433 6
      NM13-40-10 116.69 228.08 1.95 0.057 9 0.002 8 0.537 3 0.025 7 0.067 3 0.001 1 527 75 437 17 420 7
      NM13-40-11 202.24 312.71 1.55 0.055 5 0.001 3 0.533 9 0.012 0 0.069 8 0.000 8 433 29 434 8 435 5
      NM13-40-12 212.42 371.19 1.75 0.055 7 0.002 4 0.520 3 0.021 3 0.067 8 0.001 1 441 62 425 14 423 7
      NM13-40-13 102.09 208.07 2.04 0.055 5 0.001 8 0.529 5 0.016 3 0.069 2 0.001 0 432 44 431 11 432 6
      NM13-40-14 91.54 147.19 1.61 0.055 2 0.001 4 0.517 3 0.013 2 0.068 0 0.000 8 422 35 423 9 424 5
      NM13-40-15 334.81 372.52 1.11 0.055 7 0.001 1 0.540 6 0.010 4 0.070 4 0.000 8 441 23 439 7 439 5
      NM13-40-16 202.06 338.18 1.67 0.055 8 0.003 5 0.536 5 0.032 6 0.069 8 0.001 5 443 98 436 22 435 9
      NM13-40-17 169.36 344.15 2.03 0.055 6 0.001 2 0.540 2 0.011 2 0.070 5 0.000 8 438 26 439 7 439 5
      NM13-40-18 177.39 290.60 1.64 0.055 8 0.001 4 0.540 8 0.013 2 0.070 4 0.000 8 444 33 439 9 438 5
      NM13-40-19 357.77 490.17 1.37 0.055 8 0.001 1 0.545 0 0.010 8 0.070 8 0.000 8 446 24 442 7 441 5
      NM13-40-20 89.58 206.89 2.31 0.055 6 0.001 5 0.538 4 0.014 1 0.070 2 0.000 9 438 36 437 9 437 5
      NM13-40-21 163.76 309.68 1.89 0.055 8 0.001 3 0.544 6 0.012 4 0.070 8 0.000 9 444 30 441 8 441 5
      NM13-40-22 144.50 251.59 1.74 0.055 8 0.001 7 0.546 5 0.016 2 0.071 1 0.000 9 444 43 443 11 443 5
      NM13-40-23 176.65 273.63 1.55 0.057 1 0.001 8 0.538 5 0.017 1 0.068 5 0.000 9 494 47 437 11 427 5
      NM13-40-24 48.70 590.46 12.12 0.071 8 0.001 3 1.407 6 0.021 8 0.142 2 0.001 5 980 39 892 9 857 8
      NM13-40-25 222.67 364.94 1.64 0.055 3 0.001 2 0.516 8 0.011 0 0.067 8 0.0008 424 27 423 7 423 5
      NM13-40-26 204.20 367.67 1.80 0.055 7 0.001 8 0.525 0 0.016 3 0.068 4 0.001 0 440 44 428 11 427 6
      NM13-40-27 193.49 242.02 1.25 0.055 6 0.001 5 0.537 3 0.014 3 0.070 1 0.000 9 438 37 437 9 437 5
      NM13-40-28 700.63 688.99 0.98 0.067 4 0.010 4 0.611 9 0.092 0 0.065 9 0.002 1 849 341 485 58 411 13
      NM13-40-29 163.09 289.63 1.78 0.055 4 0.001 2 0.525 7 0.011 3 0.068 8 0.000 8 430 27 429 8 429 5
      NM13-40-30 223.09 355.68 1.59 0.057 8 0.006 5 0.547 8 0.059 4 0.068 7 0.002 5 523 175 444 39 429 15
      NM13-42-01 183.83 314.63 1.71 0.055 5 0.001 1 0.523 5 0.010 4 0.068 5 0.000 8 431 24 427 7 427 5
      NM13-42-02 394.82 508.09 1.29 0.058 1 0.001 9 0.558 4 0.017 3 0.069 7 0.001 0 534 43 450 11 435 6
      NM13-42-03 415.81 604.26 1.45 0.055 4 0.000 8 0.524 7 0.007 5 0.068 7 0.000 7 428 15 428 5 428 4
      NM13-42-04 186.49 331.71 1.78 0.055 6 0.001 0 0.523 6 0.008 8 0.068 4 0.000 8 435 19 428 6 426 5
      NM13-42-05 221.63 398.58 1.80 0.055 7 0.000 9 0.539 1 0.008 5 0.070 2 0.000 8 440 17 438 6 438 5
      NM13-42-06 205.17 463.21 2.26 0.055 5 0.002 1 0.531 8 0.020 0 0.069 6 0.001 1 431 57 433 13 434 6
      NM13-42-07 444.58 540.31 1.22 0.055 4 0.001 2 0.522 0 0.010 9 0.068 3 0.000 8 430 26 426 7 426 5
      NM13-42-08 332.65 705.00 2.12 0.059 8 0.002 7 0.559 1 0.024 0 0.067 9 0.001 2 596 63 451 16 423 7
      NM13-42-09 383.59 559.31 1.46 0.055 6 0.001 6 0.522 3 0.015 0 0.068 2 0.000 9 435 40 427 10 425 6
      NM13-42-10 288.06 541.6 1.88 0.055 5 0.001 1 0.529 4 0.010 0 0.069 2 0.000 8 433 23 431 7 431 5
      NM13-42-11 257.85 373.56 1.45 0.064 7 0.004 7 0.627 4 0.043 6 0.070 4 0.001 9 763 102 494 27 439 11
      NM13-42-12 326.16 480.13 1.47 0.055 5 0.001 7 0.527 3 0.015 5 0.069 0 0.000 9 430 41 430 10 430 6
      NM13-42-13 104.28 227.66 2.18 0.055 6 0.001 2 0.535 9 0.010 9 0.069 9 0.000 8 438 25 436 7 436 5
      NM13-42-14 200.01 322.69 1.61 0.055 4 0.003 1 0.526 1 0.028 4 0.069 0 0.001 3 427 86 429 19 430 8
      NM13-42-15 401.75 744.01 1.85 0.054 6 0.000 8 0.513 9 0.007 7 0.068 3 0.000 7 395 16 421 5 426 4
      NM13-42-16 442.36 597.69 1.35 0.055 2 0.000 8 0.514 1 0.007 4 0.067 6 0.000 7 420 15 421 5 422 4
      NM13-42-17 158.08 344.65 2.18 0.055 3 0.001 1 0.515 9 0.010 1 0.067 7 0.000 8 424 24 422 7 422 5
      NM13-42-18 249.40 402.20 1.61 0.055 5 0.001 0 0.531 9 0.009 0 0.069 5 0.000 8 434 19 433 6 433 5
      NM13-42-19 242.38 434.88 1.79 0.055 3 0.001 0 0.517 5 0.009 3 0.067 9 0.000 8 423 21 423 6 424 5
      NM13-42-20 551.54 667.74 1.21 0.055 0 0.002 1 0.509 5 0.019 1 0.067 2 0.001 0 414 56 418 13 419 6
      NM13-42-21 174.08 342.34 1.97 0.055 9 0.001 1 0.523 9 0.010 0 0.068 0 0.000 8 447 23 428 7 424 5
      NM13-42-22 491.13 725.89 1.48 0.055 1 0.000 8 0.529 3 0.007 9 0.069 8 0.000 8 414 16 431 5 435 5
      NM13-42-23 546.01 603.17 1.10 0.055 4 0.000 9 0.516 4 0.008 3 0.067 7 0.000 7 428 18 423 6 422 4
      NM13-42-24 137.42 294.14 2.14 0.055 5 0.001 6 0.520 9 0.014 4 0.068 1 0.000 9 434 38 426 10 424 5
      NM13-42-25 325.36 484.36 1.49 0.055 5 0.001 0 0.536 6 0.009 3 0.070 1 0.000 8 434 20 436 6 437 5
      NM13-42-26 309.96 496.88 1.60 0.055 4 0.000 9 0.526 2 0.008 0 0.069 0 0.000 7 427 16 429 5 430 4
      NM13-42-27 298.97 469.82 1.57 0.055 1 0.001 1 0.521 5 0.010 0 0.068 7 0.000 8 416 23 426 7 428 5
      NM13-42-28 227.26 313.07 1.38 0.055 5 0.001 0 0.522 4 0.009 3 0.068 4 0.000 8 430 21 427 6 426 5
      NM13-42-29 348.11 572.45 1.64 0.055 4 0.000 8 0.521 2 0.007 8 0.068 3 0.000 7 427 16 426 5 426 4
      NM13-42-30 185.23 339.65 1.83 0.055 6 0.001 0 0.538 1 0.009 7 0.070 2 0.000 8 437 21 437 6 437 5
      下载: 导出CSV

      表  3  额尔登地区英安岩(NM10-01) SHRIMP锆石U-Pb同位素分析结果

      Table  3.   SHRIMP U-Pb data for zircons of the dacite (simple NM10-01) from the Eerdeng area

      分析点号206Pbc
      (%)
      U
      (10-6)
      Th
      (10-6)
      232Th/
      238U
      206Pb*
      (10-6)
      207Pb/
      206Pb
      误差
      (±%)
      206Pb/
      238U
      误差
      (±%)
      207Pb/
      235U
      误差
      (±%)
      206Pb/
      238U(Ma)
      误差
      (1σ)
      207Pb/
      206Pb(Ma)
      误差
      (1σ)
      NM10-01-1.10.403912440.6423.80.052 53.70.070 51.40.514.0439.35.930984
      NM10-01-2.10.075373430.6631.90.054 82.70.069 21.40.523.1431.15.740361
      NM10-01-3.10.195723470.6334.80.055 42.90.070 81.30.543.1440.75.742964
      NM10-01-4.10.214774000.8728.80.056 12.80.070 21.40.543.1437.65.745662
      NM10-01-5.10.493741550.4323.00.054 14.00.071 21.40.534.2443.56.037390
      NM10-01-6.10.096434450.7138.60.054 42.00.069 81.40.522.5435.16.138846
      NM10-01-7.10.136625820.9139.10.056 32.10.068 71.30.532.5428.15.446347
      NM10-01-8.10.197525180.7144.80.055 32.20.069 21.30.532.6431.65.542549
      NM10-01-9.10.136205170.8635.90.055 02.30.067 21.50.512.7419.46.041450
      NM10-01-10.10.296665220.8140.00.055 83.40.069 81.50.543.8434.76.244677
      NM10-01-11.10.216235360.8937.30.054 42.40.069 61.30.522.7433.75.538753
        注:误差为1σ;Pbc和Pb*分别代表普通铅和放射成因铅;假设206Pb/238U-208Pb/232Th年龄结合校正普通铅.
      下载: 导出CSV

      表  4  额尔登地区岩浆岩锆石LA-MC-ICP-MS Lu-Hf同位素分析结果

      Table  4.   Hf isotope analyses of zircons of the intrusive rocks from the Eerdeng area

      测试点号176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σ年龄(Ma)εHf(t)±2σTDM1(Ma)fLu/HfTDM2(Ma)±2σ(Ma)
      NM13-20-10.046 1200.001 1980.282 1790.000 024412-12.250.861 520-0.962 17434
      NM13-20-20.045 2190.001 1500.282 2810.000 021412-8.620.761 375-0.971 94630
      NM13-20-30.040 3480.001 1270.282 3230.000 022412-7.110.781 315-0.971 85131
      NM13-20-40.051 5700.001 2470.282 2780.000 023412-8.740.801 383-0.961 95332
      NM13-20-50.034 6220.000 9850.282 2970.000 024412-8.010.861 347-0.971 90734
      NM13-20-60.049 2430.001 1930.282 2980.000 024412-8.030.861 353-0.961 90834
      NM13-20-80.051 4580.001 2860.282 2730.000 025412-8.950.891 392-0.961 96736
      NM13-20-90.044 5620.001 1260.282 3110.000 021412-7.570.731 333-0.971 87929
      NM13-20-100.051 6530.001 2540.282 3250.000 024412-7.070.841 317-0.961 84833
      NM13-20-120.039 5560.000 9760.282 2420.000 027412-9.940.971 423-0.972 02938
      NM13-20-150.074 2720.001 6340.282 1060.000 028412-14.951.011 641-0.952 34440
      NM13-40-10.048 3540.001 5040.282 7390.000 0264337.950.91736-0.9591137
      NM13-40-20.104 0640.003 0810.282 6130.000 0304333.011.06958-0.911 22544
      NM13-40-50.036 0950.001 0980.282 4780.000 038433-1.191.331 098-0.971 49353
      NM13-40-60.147 1710.003 7120.282 8580.000 02743311.510.97602-0.8968442
      NM13-40-80.117 0370.003 1800.282 7200.000 0294336.791.02800-0.9098543
      NM13-40-90.078 9450.002 2550.282 6230.000 0304333.611.06921-0.931 18744
      NM13-40-110.048 7030.001 3780.282 5000.000 018433-0.480.651 074-0.961 44726
      NM13-40-120.062 1870.002 1880.282 6000.000 0274332.810.97953-0.931 23840
      NM13-40-140.033 6280.000 9070.282 5150.000 0224330.170.771 040-0.971 40630
      NM13-40-160.078 0070.002 1460.282 7660.000 0334338.711.16710-0.9486348
      NM13-40-200.052 3050.001 4780.282 5520.000 0244331.310.861 004-0.961 33435
      NM13-42-10.114 6230.003 0210.282 7030.000 0304286.141.06821-0.911 02244
      NM13-42-30.099 9840.002 6470.282 6210.000 0294283.321.02935-0.921 20243
      NM13-42-40.125 7370.003 2850.282 8220.000 02842810.281.00648-0.9075943
      NM13-42-50.076 6730.002 0880.282 6500.000 0244284.500.86879-0.941 12735
      NM13-42-60.070 8290.002 1950.244 5790.000 453428-1 343.1516.0338 920-0.9359 984325
      NM13-42-70.039 0250.001 3520.204 7450.000 445428-2 752.9215.7660 928-0.9696 214207
      NM13-42-80.058 2630.001 8580.217 3550.000 901428-2 306.6931.9055 211-0.9485 978473
      NM13-42-100.086 6140.002 6390.231 3060.000 738428-1 813.0926.1148 052-0.9273 208452
      NM13-42-120.038 0160.001 2370.195 3170.000 454428-3 086.6016.0765 012-0.96102 997195
      NM13-42-130.049 1360.001 7890.193 6850.002 265428-3 144.5580.1866 273-0.95103 449970
      NM10-01-10.065 9560.002 5490.282 6860.000 0244345.780.85836-0.921 05035
      NM10-01-20.064 6520.002 6130.282 6280.000 0254343.700.88924-0.921 18337
      NM10-01-30.058 6490.002 2500.282 6670.000 0234345.180.80857-0.931 08833
      NM10-01-40.064 3500.002 4960.282 6670.000 0254345.140.87862-0.921 09136
      NM10-01-50.035 7750.001 4080.282 6770.000 0234345.790.82823-0.961 05033
      NM10-01-60.036 7030.001 5840.282 7200.000 0214347.250.74766-0.9595730
      NM10-01-70.075 4300.002 9220.282 7050.000 0194346.360.67816-0.911 01328
      NM10-01-80.074 0380.002 9320.282 6580.000 0244344.680.84887-0.911 12035
      NM10-01-90.055 5540.002 1630.282 7070.000 0224346.630.78797-0.9399632
      NM10-01-100.069 6260.002 7060.282 7480.000 0224347.940.79748-0.9291233
      NM10-01-110.080 3790.003 1610.282 7130.000 0234346.550.82810-0.901 00135
      下载: 导出CSV

      表  5  岩石主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果

      Table  5.   Major (%), trace and rare elements (10-6) for the volcanic rocks and intrusive rocks

      样品NM10-01NM10-02NM10-03NM13-18NM13-19NM13-20NM13-21NM13-22
      火山岩
      综合定名英安岩粗面岩英安岩英安岩英安岩流纹岩英安岩英安岩
      SiO263.4667.1063.3768.6469.9275.1464.2272.15
      TiO20.380.310.410.410.390.120.460.35
      Al2O319.7516.3920.2615.0513.4316.3817.3814.44
      Fe2O32.532.332.504.563.561.534.272.74
      MnO0.050.060.060.110.100.020.100.08
      MgO2.331.411.971.521.180.811.831.39
      CaO0.711.541.670.912.450.041.771.50
      Na2O3.316.881.605.484.431.943.085.30
      K2O5.092.425.401.101.582.073.160.70
      P2O50.130.110.130.110.120.020.120.10
      LOI2.161.382.482.012.691.853.481.16
      Total99.9099.9299.8699.9199.8599.9299.8699.93
      Mg#64.6454.5761.0039.8239.6851.2445.950.17
      里特曼指数σ3.443.582.401.681.340.501.831.23
      A/CNK1.610.971.751.260.992.971.481.18
      Li26.309.8520.9011.1011.805.0633.3015.50
      Be1.261.051.241.191.252.011.451.13
      P508407521553531166570450
      Sc9.107.479.639.679.351.929.765.58
      Ti2 6072 1122 7862 6492 4708172 9222 296
      V38.223.835.149.450.914.035.627.5
      Mn550576618849834134724637
      Co3.435.673.265.054.461.323.352.30
      Cu1.676.882.15080.214.3100
      Ga17.912.217.312.212.116.316.711.2
      Rb161.070.7173.078.8101.0156.0213.055.8
      Sr153.0318.0233.0198.0254.093.1191.0385.0
      Y24.518.826.415.817.727.824.616.5
      Zr173130182127115172159142
      Nb10.287.6910.128.395.4311.509.947.81
      Cs5.434.474.735.4811.043.2113.404.38
      Ba908640956492874549988374
      Hf5.043.835.363.783.236.684.554.06
      Ta0.950.680.800.860.391.651.270.69
      Pb7.8110.2713.4003.8813.300.9412.40
      Th11.509.3712.507.887.2642.3010.648.13
      U3.272.783.531.541.973.412.432.57
      La28.925.034.618.523.431.427.219.1
      Ce54.846.665.837.442.561.855.744.8
      Pr6.365.507.404.144.806.556.474.08
      Nd23.920.727.816.618.723.825.815.9
      Sm4.613.845.213.023.374.414.542.78
      Eu1.181.091.520.861.180.581.290.83
      Gd4.683.835.233.043.414.544.392.82
      Tb0.720.570.790.480.520.730.680.44
      Dy4.173.304.542.813.024.353.992.61
      Ho0.920.731.000.610.650.960.870.59
      Er2.722.152.931.821.862.932.631.79
      Tm0.470.380.510.320.310.530.460.32
      Yb3.092.483.292.152.073.573.112.17
      Lu0.520.420.550.350.340.590.510.36
      REE137.00116.50161.1792.10106.13146.74137.6498.59
      LREE/HREE6.927.417.556.957.717.067.277.88
      δEu0.760.850.880.851.050.390.870.89
      样品NM13-23NM13-24NM13-25NM13-36NM13-37NM13-40NM13-42NM13-43
      火山岩侵入岩
      综合定名英安岩英安岩英安岩花岗岩花岗闪长岩花岗岩花岗岩花岗岩
      SiO268.5768.1374.1775.9571.3173.4477.6476.00
      TiO20.390.620.330.240.330.200.190.20
      Al2O315.6915.6514.3915.0815.5515.3513.0614.48
      Fe2O33.235.462.061.953.001.531.401.50
      MnO0.080.110.060.020.060.040.010.02
      MgO1.461.590.861.011.250.880.510.65
      CaO1.560.640.750.222.261.640.240.20
      Na2O7.170.633.322.353.262.094.724.85
      K2O0.383.092.101.160.931.930.960.85
      P2O50.1000.1330.0690.0690.0880.0320.0370.027
      LOI1.323.751.781.871.882.771.141.12
      Total99.9499.8099.8999.9199.9199.9099.9199.90
      Mg#47.2936.6345.3250.6945.2753.3141.9646.24
      里特曼指数σ2.220.550.940.370.620.530.930.98
      A/CNK1.042.821.582.731.481.801.411.56
      Li10.1914.7018.106.216.206.505.4410.27
      Be1.061.461.271.181.261.201.521.45
      P530584326331479217169173
      Sc8.8615.204.274.767.413.262.983.37
      Ti2 5283 8982 0111 5942 2601 4071 2741 322
      V39.9167.022.378.138.920.010.811.5
      Mn591.0847.0483.0258.0403.0242.049.963.6
      Co5.0314.205.3116.803.712.001.781.63
      Cu2.0324.8014.6363.1004.992.393.50
      Ga10.724.014.313.412.411.310.710.5
      Rb30.4149.0116.079.461.3128.044.148.3
      Sr34646159164320154214237
      Y17.621.915.311.813.516.114.915.4
      Zr122.0165.0165.095.7139.0124.0131.0131.0
      Nb5.9816.609.968.307.499.187.957.97
      Cs1.535.552.721.181.562.200.570.85
      Ba1411 447833755570874644833
      Hf3.445.104.532.793.973.773.893.83
      Ta0.441.480.690.520.610.800.750.67
      Pb0.541.34007.488.821.940.18
      Th7.7419.009.596.747.9212.4012.7013.20
      U2.142.272.451.671.461.781.461.35
      La25.134.326.615.520.726.625.527.2
      Ce44.173.249.929.440.547.845.149.4
      Pr4.527.705.193.114.354.984.785.25
      Nd16.929.418.811.216.817.917.519.0
      Sm3.034.983.051.892.832.932.883.19
      Eu0.921.210.930.600.830.790.780.85
      Gd3.184.662.931.912.762.932.833.04
      Tb0.500.720.440.310.420.440.440.46
      Dy2.964.152.511.862.412.552.532.60
      Ho0.640.870.550.420.520.570.550.57
      Er1.902.481.691.301.571.721.661.70
      Tm0.320.420.300.220.290.310.300.30
      Yb2.122.732.061.502.012.112.102.08
      Lu0.340.440.350.250.340.350.340.34
      REE106.53167.26115.3069.4796.33111.98107.29115.98
      LREE/HREE7.909.159.647.948.339.198.989.45
      δEu0.890.750.930.950.890.810.820.82
      下载: 导出CSV
    • [1] Bai, X.H., Xu, Z.Y., Liu, Z.H., et al., 2015.Zircon U-Pb Dating, Geochemistry and Geological Significance of the Early Silurian Plutons from the Southeastern Margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 31(1):67-79 (in Chinese with English abstract).
      [2] Brown, G.C., Thorpe, R.S., Webb, P.C., 1984.The Geochemical Characteristics of Granitoids in Contrasting Arcs and Comments on Magma Sources. Journal of the Geological Society, 141(3):413-426.doi: 10.1144/gsjgs.141.3.0413
      [3] Chen, Y., Zhang, Z.C., Li, K., et al., 2016a.Detrital Zircon U-Pb Ages and Hf Isotopes of Permo-Carboniferous Sandstones in Central Inner Mongolia, China:Implications for Provenance and Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Tectonophysics, 671:183-201.doi: 10.1016/j.tecto.2016.01.018
      [4] Chen, Y., Zhang, Z.C., Li, K., et al., 2016b.Geochemistry and Zircon U-Pb-Hf Isotopes of Early Paleozoic Arc-Related Volcanic Rocks in Sonid Zuoqi, Inner Mongolia:Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Lithos, 264:392-404.doi: 10.1016/j.lithos.2016.09.009
      [5] Chen, Y.P., Wei, C.J., Zhang, J.R., et al., 2015.Metamorphism and Zircon U-Pb Dating of Garnet Amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19):1698-1707.doi: 10.1007/s11434-015-0890-0
      [6] Claesson, S., Vetrin, V., Bayanova, T., et al., 2000.U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kola Peninsula, Russia:A Record of Geological Evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2):95-108.doi: 10.1016/s0024-4937(99)00076-6
      [7] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992.Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 149(2):171-184.doi: 10.1144/gsjgs.149.2.0171
      [8] Deng, Z.B., 2015.Petrogenesis and Geodynamic Implications of the Guangtoushan Granitoid Rock Suite in South Qinling Tectonic Belt, Central China (Dissertation).Peking University, Beijing, 22 (in Chinese with English abstact).
      [9] Dong, Z.C., Gu, P.Y., Chen, R.M., et al., 2015.Geochronology, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai. Earth Science, 40(1):130-144 (in Chinese with English abstract).
      [10] Elliott, R., Sahakian, B.J., Herrod, J.J., et al., 1997.Abnormal Response to Negative Feedback in Unipolar Depression:Evidence for a Diagnosis Specific Impairment. Journal of Neurology, Neurosurgery & Psychiatry, 63(1):74-82.doi: 10.1136/jnnp.63.1.74
      [11] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048.doi: 10.1093/petrology/42.11.2033
      [12] Gu, C.N., 2012.Zircon Dating and Hf Isotope of Bainaimiao Area Inner Mongolia and Their Geological Implications (Dissertation).China University of Geosciences, Beijing, 22 (in Chinese with English abstact).
      [13] Hao, B.W., Hou, Z.Q., 2012.Discovery of the Early Paleozoic Boin Sum-Ordor Sum Island Arc in the Hadamiao Gold Ore District, Inner Mongolia and Its Significance to the Evolution of the Paleo-Asian Ocean. Acta Geologica Sinica(English Edition), 86(5):1251-1264.doi: 10.1111/j.1755-6724.2012.00745.x
      [14] Hart, C.J., Goldfarb, R.J., Qiu Y.M., et al., 2002.Gold Deposits of the Northern Margin of the North China Craton:Multiple Late Paleozoic-Mesozoic Mineralizing Events. Mineralium Deposita, 37(3):326-351.doi: 10.1007/s00126-001-0239-2
      [15] Jahn, B.M., 2004.The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100.doi: 10.1144/gsl.sp.2004.226.01.05
      [16] Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009.Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt:Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3-4):521-539.doi: 10.1016/j.lithos.2009.06.015
      [17] Jian, P., Kröner, A., Shi, Y.R., et al., 2016.Age and Provenance Constraints on Seismically-Determined Crustal Layers beneath the Paleozoic Southern Central Asian Orogen, Inner Mongolia, China. Journal of Asian Earth Sciences, 123:119-141.doi: 10.1016/j.jseaes.2016.04.001
      [18] Jian, P., Liu, D.Y., Kröner, A., et al., 2008.Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth. Lithos, 101(3-4):233-259.doi: 10.1016/j.lithos.2007.07.005
      [19] Jiang, X.J., Liu, Z.H., Xu, Z.Y., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of Wulanhada Middle Permian Alkali-Feldspar Granites in Xianghuang Banner, Central Inner Mongolia, and Its Geochemical Characteristics. Geological Bulletin of China, 32(11):1760-1768(in Chinese with English abstract).
      [20] Kelemen, P.B., Shimizu, N., Dunn, T., 1993.Relative Depletion of Niobium in Some Arc Magmas and the Continental Crust:Partitioning of K, Nb, La and Ce during Melt/Rock Reaction in the Upper Mantle. Earth and Planetary Science Letters, 120(3-4):111-134.doi: 10.1016/0012-821x(93)90234-z
      [21] Kröner, A., Windley, B.F., Badarch, G., et al., 2007.Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200:181-209.doi: 10.1130/2007.1200(11)
      [22] Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., 2002.Igneous Rocks.A Classification and Glossary of Terms.Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks.Cambridge University Press, Cambridge, 33. http://adsabs.harvard.edu/abs/2005ircg.book.....L
      [23] Li, C.D., Ran, H., Zhao, L.G., et al., 2012.LA-MC-ICPMS U-Pb Geochronology of Zircons from the Wenduermiao Group and Its Tectonic Significance. Acta Petrologica Sinica, 28(11):3705-3714(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211022.htm
      [24] Li, J.F., Zhang, Z.C., Han, B.F., 2010.Ar-Ar and Zircon SHRIMP Geochronology of Hornblendite and Diorite in Northern Darhan Muminggan Joint Banner, Inner Mongolia, and its Geological Significance. Acta Petrologica et Mineralogica, 29(6):732-740(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201006010.htm
      [25] Li, K., Zhang, Z.C., Feng, Z.S., et al., 2014.Zircon Shrimp U-Pb Dating and Its Geological Significance of the Late-Carboniferous to Early-Permian Volcanic Rocks in Bayanwula Area, the Central of Inner Mongolia. Acta Petrologica Sinica, 30(7):2041-2054(in Chinese with English abstract).
      [26] Li, W.B., Chen, Y.J., Lai, Y., et al., 2008.Metallogenic Time and Tectonic Setting of the Bainaimiao Cu-Au Deposit, Inner Mongolia. Acta Petrologica Sinica, 24(4):890-898(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804028.htm
      [27] Li, W.B., Hu, C.S., Zhong, R.C., et al., 2015.U-Pb, 39Ar/40Ar Geochronology of the Metamorphosed Volcanic Rocks of the Bainaimiao Group in Central Inner Mongolia and Its Implications for Ore Genesis and Geodynamic Setting. Journal of Asian Earth Sciences, 97:251-259.doi: 10.1016/j.jseaes.2014.06.007
      [28] Li, W.B., Lai, Y., Sun, X.W., et al., 2007.Fluid Inclusion Study of the Bainaimiao Cu-Au Deposit in Inner Mongolia, China. Acta Petrologica Sinica, 23(9):2165-2176(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200709015.htm
      [29] Li, Z.N., 2003.Meso-Cenozoic Volcanic Rocks and Their Deep Process in Eastern China.Geological Publishing House, Beijing, 53 (in Chinese with English abstract).
      [30] Liu, C.F., Liu, W.C., Wang, H.P., et al., 2014.Geochronology and Geochemistry of the Bainaimiao Metavolcanic Rocks in the Northern Margin of North China Craton. Acta Geologica Sinica, 88(7):1273-1287(in Chinese with English abstract). doi: 10.1007/s12040-017-0841-z
      [31] Liu, D.Y., Jian, P., Zhang, Q., et al., 2003.SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77(3):317-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200303004.htm
      [32] Liu, J.L., Sun, F.Y., Wang, Y.D., et al., 2016.Tectonic Setting of Hadahushu Mafic Intrusion in Urad Zhongqi Area, Inner Mongolia:Implications for Early Subduction History of Paleo-Asian Ocean Plate. Earth Science, 41(12):2019-2030 (in Chinese with English abstract).
      [33] Lu, Y.H., Li, W.B., Lai, Y., 2009.Time and Tectonic Setting of Hosting Porphyry of the Hadamiao Gold Deposit in Xianghuangqi, Inner Mongolia. Acta Petrologica Sinica, 25(10):2615-2620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200910025.htm
      [34] Luo, Z.W., Zhang, Z.C., Li, K., et al., 2016.Petrography, Geochemistry, and U-Pb Detrital Zircon Dating of Early Permian Sedimentary Rocks from the North Flank of the North China Craton:Implications for the Late Palaeozoic Tectonic Evolution of the Eastern Central Asian Orogenic Belt. International Geology Review, 58(7):787-806.doi: 10.1080/00206814.2015.1118646
      [35] Ma, X., Chen, B., Chen, J.F., et al., 2012.Zircon SHRIMP U-Pb Age, Geochemical, Sr-Nd Isotopic, and In-situ Hf Isotopic Data of the Late Carboniferous-Early Permian Plutons in the Northern Margin of the North China Craton. Science China Earth Sciences, 42(12):1830-1850(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG201301014.htm
      [36] Macdonald, G.A., Katsura, T., 1964.Chemical Composition of Hawaiian Lavas1. Journal of Petrology, 5(1):82-133.doi: 10.1093/petrology/5.1.82
      [37] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<635:tdog>2.3.co;2
      [38] Nie, F.J., Pei, R.F., Wu, L.S., 1995.Nd-and Sr-Isotope Study on Greenschist and Granodiorite of the Bainaimiao District, Inner Mongolia, China. Diqiu Xuebao (Acta Geoscientica Sinica), 1:36-44 (in Chinese with English abstract). http://www.oalib.com/paper/1557768
      [39] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      [40] Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285.doi: 10.1146/annurev.ea.23.050195.001343
      [41] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745
      [42] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891
      [43] Rojas-Agramonte, Y., Kröner, A., Demoux, A., et al., 2011.Detrital and Xenocrystic Zircon Ages from Neoproterozoic to Palaeozoic Arc Terranes of Mongolia:Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3):751-763.doi: 10.1016/j.gr.2010.10.004
      [44] Shang, H.S., Tao, J.X., Baoyin, W.L.J., et al., 2003.The Arc-Basin System and Tectonic Significance of Early Paleozoic in Baiyun'ebo Area Inner Mongolia. Geological Survey and Research, 26(3):160-168(in Chinese with English abstract).
      [45] Shi, Y.R., Liu, D.Y., Miao, L.C., et al., 2010.Devonian A-Type Granitic Magmatism on the Northern Margin of the North China Craton:SHRIMP U-Pb Zircon Dating and Hf-Isotopes of the Hongshan Granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4):632-641.doi: 10.1016/j.gr.2009.11.011
      [46] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [47] Tong, Y., Hong, D.W., Wang, T., et al., 2010.Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientia Sinica, 31(3):395-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003016.htm
      [48] Wang, S.Q., Xin, H.T., Hu, X.J., et al., 2016.Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia. Earth Science, 41(4):555-569 (in Chinese with English abstract).
      [49] Wang, X.A., 2014.Tectonic Evolution in the Central Segment of the Northern Margin of the North China Plate from Early Paleozoic to Devonian (Dissertation).Jilin University, Jilin, 56 (in Chinese with English abstact).
      [50] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200702002.htm
      [51] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):1069.doi: 10.1029/2002tc001484
      [52] Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009.End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6):1189-1217.doi: 10.1007/s00531-008-0407-z
      [53] Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4):1342-1364.doi: 10.1016/j.gr.2012.05.015
      [54] Yang, J.F., Zhang, Z.C., Chen, Y., et al., 2017.Ages and Origin of Felsic Rocks from the Eastern Erenhot Ophiolitic Complex, Southeastern Central Asian Orogenic Belt, Inner Mongolia China. Journal of Asian Earth Sciences (in Press).doi: 10.1016/j.jseaes.2016.12.049
      [55] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3-4):336-352.doi: 10.1016/j.epsl.2006.04.029
      [56] Yang, Y.N., Li, Q.L., Liu, Y., et al., 2014.Zircon U-Pb Dating by Secondary Ion Mass Spectrometry. Earth Science Frontiers, 21(2):81-92(in Chinese with English abstract).
      [57] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.LA-ICP-MS Zircon U-Pb Age and REE of Cenozoic Pluton in NE China. Chinese Science Bulletin, 48(14):1511-1520(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1002070507600156
      [58] Zhang, H.F., Zhou, Z.G., Liu, W.C., et al., 2009.Grenvill Tectono-Thermal Event Record in the Bainaimiao Area, Inner Mongolia, China:Evldence from Zircon LA-ICP-MS U-Pb Dating of Quart Monzodiorite Dike. Acta Petrologica Sinica, 25(6):1512-1518(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090622
      [59] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008.Criteria for the Recognition of Pre-, Syn-and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1):1-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm
      [60] Zhang, S.H., Zhao, Y., Ye, H., et al., 2014.Origin and Evolution of the Bainaimiao Arc Belt:Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9-10):1275-1300.doi: 10.1130/b31042.1
      [61] Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2010.Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block:A Preliminary Review. Acta Petrologica et Mineralogica, 29(6):824-842(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006017.htm
      [62] Zhang, W., Jian, P., 2008.SHRIMP Dating of Early Paleozoic Granites from North Damaoqi, Inner Mongolia. Acta Geologica Sinica, 82(6):778-787(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806008.htm
      [63] Zhang, W., Jian, P., Kröner, A., et al., 2013.Magmatic and Metamorphic Development of an Early to Mid-Paleozoic Continental Margin Arc in the Southernmost Central Asian Orogenic Belt, Inner Mongolia, China. Journal of Asian Earth Sciences, 72:63-74.doi: 10.1016/j.jseaes.2012.05.025
      [64] Zhang, X., Zhang, H.F., Jiang, N., et al., 2010.Early Devonian Alkaline Intrusive Complex from the Northern North China Craton:A Petrological Monitor of Post-Collisional Tectonics. Journal of the Geological Society, 167(4):717-730.doi: 10.1144/0016-76492009-110
      [65] Zhang, Y.P., Su, Y.Z., Li, J.C., 2010.Regional Tectonics Significance of the Late Silurian Xibiehe Formation in Central Inner Mongolia, China. Geological Bulletin of China, 29(11):1599-1605(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201011002.htm
      [66] Zhang, Z.C., Chen, Y., Li, K., et al., 2017.Geochronology and Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, China:Implications for the Late Palaeozoic Tectonic Evolution of the South-Eastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 135:370-389.doi: 10.1016/j.jseaes.2017.01.012
      [67] Zhang, Z.C., Li, K., Li, J.F., et al., 2015.Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex:Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97:279-293.doi: 10.1016/j.jseaes.2014.06.008
      [68] Zhou, T.H., Goldfarb, R.J., Phillips, N.G., 2002.Tectonics and Distribution of Gold Deposits in China-An Overview. Mineralium Deposita, 37(3):249-282.doi: 10.1007/s00126-001-0237-4
      [69] 白新会, 徐仲元, 刘正宏, 等, 2015.中亚造山带东段南缘早志留世岩体锆石U-Pb定年、地球化学特征及其地质意义.岩石学报, 31(1):67-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501005.htm
      [70] 邓正宾, 2015. 南秦岭光头山花岗质岩体群的岩石成因及动力学意义(硕士学位论文). 北京: 北京大学, 22.
      [71] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, (1):130-144. http://www.earth-science.net/WebPage/Article.aspx?id=3013
      [72] 谷丛楠, 2012. 内蒙古白乃庙地区锆石年龄和Hf同位素特征及其构造意义(硕士学位论文). 北京: 中国地质大学, 22.
      [73] 蒋孝君, 刘正宏, 徐仲元, 等, 2013.内蒙古镶黄旗乌兰哈达中二叠世碱长花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报, 32(11):1760-1768. doi: 10.3969/j.issn.1671-2552.2013.11.008
      [74] 李承东, 冉皞, 赵利刚, 等, 2012.温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义.岩石学报, 28(11):3705-3714. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211022.htm
      [75] 李建锋, 张志诚, 韩宝福, 2010.内蒙古达茂旗北部闪长岩锆石SHRIMP U-Pb、角闪石40Ar/39Ar年代学及其地质意义.岩石矿物学杂志, 29(6):732-740. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006010.htm
      [76] 李可, 张志诚, 冯志硕, 等, 2014.内蒙古中部巴彦乌拉地区晚石炭世-早二叠世火山岩锆石SHRIMPU-Pb定年及其地质意义.岩石学报, 30(7):2041-2054. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407017.htm
      [77] 李文博, 陈衍景, 赖勇, 等, 2008.内蒙古白乃庙铜金矿床的成矿时代和成矿构造背景.岩石学报, 24(4):890-898. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804028.htm
      [78] 李文博, 赖勇, 孙希文, 等, 2007.内蒙古白乃庙铜金矿床流体包裹体研究.岩石学报, 23(9):2165-2176. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200709015.htm
      [79] 李兆鼐, 2003.中国东部中、新生代火成岩及其深部过程.北京:地质出版社, 53.
      [80] 柳长峰, 刘文灿, 王慧平, 等, 2014.华北克拉通北缘白乃庙组变质火山岩锆石定年与岩石地球化学特征.地质学报, 88(7):1273-1287. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407005.htm
      [81] 刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3):317-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303004.htm
      [82] 刘金龙, 孙丰月, 王英德, 等, 2016.内蒙古乌拉特中旗哈达呼舒基性岩体形成的构造背景与古亚洲洋的早期俯冲历史.地球科学, 41(12):2019-2030. http://www.earth-science.net/WebPage/Article.aspx?id=3398
      [83] 鲁颖淮, 李文博, 赖勇, 2009.内蒙古镶黄旗哈达庙金矿床含矿斑岩体形成时代和成矿构造背景.岩石学报, 25(10):2615-2620. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910025.htm
      [84] 马旭, 陈斌, 陈家富, 等, 2012.华北克拉通北缘晚古生代岩体的成因和意义:岩石学、锆石U-Pb年龄、Nd-Sr同位素及锆石原位Hf同位素证据.中国科学:地球科学, 42(12), 1830-1850. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201212006.htm
      [85] 聂凤军, 裴荣富, 吴良士, 1995.内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究.地球学报, 16(1):36-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.004.htm
      [86] 尚恒胜, 陶继雄, 宝音乌力吉, 等, 2003.内蒙古白云鄂博地区早古生代弧-盆体系及其构造意义.地质调查与研究, 26(3):160-168. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200303005.htm
      [87] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3):395-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm
      [88] 王树庆, 辛后田, 胡晓佳, 等, 2016.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 41(4):555-569. http://www.earth-science.net/WebPage/Article.aspx?id=3274
      [89] 王兴安, 2014. 华北板块北缘中段早古生代-泥盆纪构造演化(博士学位论文). 长春: 吉林大学, 56.
      [90] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [91] 杨亚楠, 李秋立, 刘宇, 等, 2014.离子探针锆石U-Pb定年.地学前缘, 21(2):81-92. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402008.htm
      [92] 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
      [93] 张华锋, 周志广, 刘文灿, 等, 2009.内蒙中部白乃庙地区格林威尔岩浆事件记录:石英二长闪长岩脉锆石LA-ICP-MS U-Pb年龄证据.岩石学报, 25(6):1512-1518. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906022.htm
      [94] 张旗, 王元龙, 金惟俊, 等, 2008.造山前, 造山和造山后花岗岩的识别.地质通报, 27(1):1-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200801002.htm
      [95] 张拴宏, 赵越, 刘建民, 等, 2010.华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志, 29(6):824-842. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006017.htm
      [96] 张维, 简平, 2008.内蒙古达茂旗北部早古生代花岗岩类SHRIMP U-Pb年代学.地质学报, 82(6):778-787. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806008.htm
      [97] 张允平, 苏养正, 李景春, 2010.内蒙古中部地区晚志留世西别河组的区域构造学意义.地质通报, 29(11):1599-1605. doi: 10.3969/j.issn.1671-2552.2010.11.001
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  5784
    • HTML全文浏览量:  1683
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-28
    • 刊出日期:  2017-09-15

    目录

      /

      返回文章
      返回