Geochronology and Geochemistry of Early Paleozoic Igneous Rocks in Zhurihe Area, Inner Mongolia and Their Tectonic Significance
-
摘要: 中亚造山带早古生代的构造演化一直存在不同的认识,特别是其俯冲转为碰撞的时限.内蒙古朱日和南部的额尔登陶勒盖地区出露的早古生代岩浆岩,对于限定白乃庙岛弧的延伸方向、岛弧演化和拼贴时间具有重要意义.对额尔登地区出露的火山岩和侵入岩进行了精确的锆石SHRIMP和LA-ICP-MS U-Pb定年、锆石Lu-Hf同位素和地球化学分析以确定其时代和成因.研究获得4个岩浆岩年龄,1件英安岩年龄为434.0±4.4 Ma,2件花岗岩年龄分别为432.8±2.6 Ma和428.1±1.8 Ma,此3件样品形成于早中志留世;另有1件流纹岩年龄为411.8±1.0 Ma,形成于早泥盆世.早中志留世侵入岩为低钾、过铝质钙碱性中酸性岩石,富集Rb、Th,弱富集Zr、Hf,明显亏损Nb、Ta、P、Ti.在稀土配分曲线上,侵入岩均不存在Eu的负异常.其中2件花岗岩样品的锆石基本为正εHf(t)值(-1.19~11.51,3.32~10.28),TDM2为684~1 493 Ma及759~1 202 Ma,主要来自新生地壳;早中志留世火山岩具有中-低钾、偏铝质-过铝质、钙碱性酸性岩石特征,富集Rb、Th,弱富集Zr、Hf,明显亏损Nb、Ta、P、Ti.在稀土配分曲线上,多数火山岩不存在Eu负异常.英安岩中的锆石具有正εHf(t)值(3.70~7.94),TDM2为912~1 183 Ma,主要来自新生地壳;而早泥盆世流纹岩(411 Ma)存在明显的Eu负异常,其锆石具有负εHf(t)值(-14.95~-7.07),TDM2为1.8~2.3 Ga,应为古老地壳再循环的产物,与早中志留世岩浆岩源区明显不同,可能代表构造环境的转变.综合区域地质和前人研究资料表明,早志留世英安岩和花岗岩形成于俯冲岛弧环境,白乃庙岛弧向东可延伸至本区,而早泥盆世流纹岩可能形成于后碰撞环境.Abstract: There are some existing debates about the tectonic history of the Central Asian Orogenic Belt, including the time of collision.New zircon SHRIMP and LA-ICP-MS U-Pb isotopic data, zircon Lu-Hf isotopic data and geochemical data of the volcanic rocks and plutons from the Eerdengtaolegai area are presented to study their formation ages and petrogenesis.Zircon U-Pb ages of 432.8±2.6 Ma, 428.1±1.8 Ma of Silurian granites, 434.0±4.4 Ma of Silurian dacite, 411.8±1.0 Ma of the Devonian rhyolite were obtained.The Silurian plutons are mostly intermediate-acid rocks, and are geochemically low in K contents, peraluminous, and calc-alkaline with enrichment in Rb and Th and depletion in Nb, Ta, P and Ti.They do not have negative Eu anomalies. Two granites from these plutonic rocks have positive εHf(t) values (-1.19 to 11.51 and 3.32 to 10.28) with TMD2 of 684-1 493 Ma and 759-1 202 Ma, suggesting that the granites may come from a juvenile continental crust.Geochemically, the Silurian volcanic rocks, all acid rocks, are low to moderate in K content, metaluminous-peraluminous and calc-alkaline with enrichment in Rb, Th and depletion in Nb, Ta, P and Ti.In addition, they do net have negative Eu anomalies. One Silurian dacite has positive εHf(t) value (3.70-7.94) with TMD2 of 912-1 183 Ma, suggesting that the rocks may come from the juvenile continental crust.The Devonian rhyolite have clear negative Eu anomalies, exhibiting negative εHf(t) values (-14.95 to -7.07) with Hf model ages (TMD2) of 1.8-2.3 Ga, indicating considerable contribution of reworked materials from the ancient crust of the North China Craton.Based on our new data and previous studies, the Silurian granites and dacite were likely formed in an arc environment and the Devonian rhyolite developed in a post-collisional environment.
-
Key words:
- Inner Mongolia /
- Eerdengtaolegai /
- Bainaimiao /
- geochronology /
- geochemistry /
- Hf isotope
-
图 1 中亚造山带中国北部-内蒙部分的构造格架(a)和中国北部-蒙古地区构造示意(b)
图a据Jahn(2004),Zhang et al.(2015),Chen et al.(2016a);图b据Chen et al.(2016a, 2016b).EGFZ.东戈壁断裂带;UCM.乌里雅斯太大陆边缘带;HOB.二连-贺根山蛇绿岩带;NOB.北造山带;SZ.索伦带缝合带,HB.浑善达克地块;SOB.南造山带;NCC.华北克拉通
Fig. 1. Tectonic framework of the North China-Mongolian segment of the Central Asian Orogenic Belt (a) and geologic sketch of the North China-Mongolia area (b)
图 2 额尔登及邻区地质简图(a)、额尔登详细采样点位置(b)以及额尔登地区剖面图(c)
图a据Luo et al.(2016)修改.图a中的数字“1, 2, …10, 11”为年龄数据位置.1.玄武岩474±7 Ma,英安岩453±7 Ma,英安岩436±9 Ma,SHRIMP(据Zhang et al., 2013).变质火山岩449±3 Ma,LA-ICP-MS(据柳长峰等, 2014);2.变质安山岩450±4 Ma,LA-ICP-MS(据谷丛楠等, 2012);3.石英闪长岩430±3 Ma,LA-ICP-MS(据Zhang et al., 2014);4.英云闪长岩421±2 Ma,英云闪长岩439±5 Ma,LA-ICP-MS(据Zhang et al., 2014);闪长岩419±10 Ma,SHRIMP(据Zhang et al., 2013);5.片麻状石英闪长岩454±14 Ma,片麻状石英闪长岩459±3 Ma,SHRIMP(据童英等, 2010);6.英云闪长岩439±3 Ma,英云闪长岩432±5 Ma,LA-ICP-MS(据Zhang et al., 2014);7.英云闪长岩442±2 Ma,SHRIMP(据白新会等, 2015);8.石英闪长岩432±2 Ma,SHRIMP(据白新会等, 2015);9.花岗斑岩271.8±3.3 Ma,LA-ICP-MS(据鲁颖淮等, 2009);10.花岗闪长岩445.6±2.7 Ma,LA-ICP-MS(据Hao and Hou, 2012);11.英安岩458±3 Ma,SHRIMP(据Jian et al.2008)
Fig. 2. Geological sketch of the Eerdeng and adjacent areas (a), detailed locations of the Eerdeng area (b) and geological section of the Eerdeng area (c)
图 6 额尔登陶勒盖和谷讨勒地区岩浆岩的TAS图解(a),K2O-SiO2图解(b),Na2O+K2O-CaO-SiO2图解(c)和A/NK-A/CNK图解(d)
图a据MacDonald and Katsura(1964)和Le Maitre(2002);图b据Peccerillo and Taylor(1976);图c据Frost(2001);图d据Maniar and Piccoli(1989)
Fig. 6. TAS diagram (a), K2O-SiO2 diagram (b), Na2O+K2O-CaO-SiO2 diagram (c) and A/NK-A/CNK diagram (d) of igneous rocks in the Eerdengtaolegai and Gutaole areas
图 7 额尔登陶勒盖和谷讨勒地区岩浆岩的稀土元素配分图(a)和微量元素蛛网图(b)
球粒陨石REE数据、原始地幔数据据Sun and McDougn(1989),图例同图 6
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized spidergrams (b) of igneous rocks in the Eerdengtaolegai and Gutaole areas
图 8 额尔登地区岩浆岩(La/Yb)N-δEu图解(a)和Mg#-SiO2图解(b)
图a据李兆鼐(2003);图b据马旭(2012),阴影部分数据据Rapp and Watson(1995),图例同图 6
Fig. 8. (La/Yb)N-δEu (a) and Mg#-SiO2 (b) diagrams of igneous rocks fromthe Eerdeng area
图 9 额尔登地区岩浆岩中锆石的εHf(t)-t图解
中亚造山带东部和华北克拉通数据据Yang et al.(2006)
Fig. 9. Diagram of zircon εHf(t) values vs. U-Pb ages for the Early Paleozoic igneous rocks from the Eerdeng area
图 10 额尔登地区岩浆岩Nb-Y图解(a),Rb-Y+Nb图解(b)和Rb/Zr-Nb图解(c)
图a和图b据Pearce et al.(1984),图c据Brown(1984),图例同图 6
Fig. 10. Nb-Y (a), Rb-Y+Nb (b), Rb/Zr-Nb (c) diagrams of igneous rocks from the Eerdeng area
表 1 本文采样点GPS采样点坐标
Table 1. The GPS data of the samples
样品号 北纬 东经 NM10-01~03 42°16′25.7″ 112°58′12.0″ NM13-18~22 42°16′24.6″ 112°58′16.9″ NM13-23~25 42°16′19.3″ 112°58′04.8″ NM13-33 42°17′33.5″ 112°59′15.9″ NM13-36 42°18′17.6″ 113°0′0.6″ NM13-37 42°18′13.6″ 113°0′5.8″ NM13-40 42°18′13.3″ 113°0′6.4″ NM13-42~43 42°17′59.2″ 113°0′15.4″ 表 2 额尔登地区岩浆岩(NM13-20、NM13-40、NM13-42) LA-ICP-MS锆石U-Pb同位素分析结果
Table 2. LA-ICP-MS U-Pb data for zircons of intrusive rocks (simple NM13-20, NM13-40, NM13-42) from the Eerdeng area
测试点号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ(Ma) 年龄(Ma) 1σ(Ma) 年龄(Ma) 1σ(Ma) NM13-20-01 374.25 875.90 0.43 0.055 1 0.001 4 0.499 9 0.012 0 0.065 9 0.000 8 415 32 412 8 411 5 NM13-20-02 223.07 362.91 0.61 0.055 1 0.001 1 0.499 9 0.009 9 0.065 9 0.000 8 415 24 412 7 411 5 NM13-20-03 330.29 610.26 0.54 0.055 0 0.001 2 0.498 2 0.010 2 0.065 7 0.000 8 413 26 410 7 410 5 NM13-20-04 151.33 297.69 0.51 0.055 0 0.003 3 0.499 2 0.028 9 0.065 8 0.001 4 413 92 411 20 411 8 NM13-20-05 295.11 530.13 0.56 0.055 0 0.001 1 0.502 4 0.009 7 0.066 3 0.000 8 413 24 413 7 414 5 NM13-20-06 187.01 378.88 0.49 0.055 8 0.003 2 0.505 4 0.028 2 0.065 7 0.001 4 444 87 415 19 410 8 NM13-20-07 436.00 718.27 0.61 0.070 7 0.003 3 0.615 6 0.027 2 0.063 1 0.000 8 949 97 487 17 395 5 NM13-20-08 248.18 406.25 0.61 0.056 3 0.001 3 0.519 0 0.011 5 0.066 8 0.000 8 466 28 425 8 417 5 NM13-20-09 96.20 230.15 0.42 0.056 0 0.004 6 0.514 3 0.041 0 0.066 6 0.001 8 454 128 421 27 416 11 NM13-20-10 299.96 459.01 0.65 0.054 8 0.001 0 0.505 1 0.008 7 0.066 8 0.000 7 406 20 415 6 417 4 NM13-20-11 131.47 333.52 0.39 0.055 3 0.003 5 0.499 2 0.030 4 0.065 5 0.001 4 423 97 411 21 409 9 NM13-20-12 344.86 520.91 0.66 0.055 0 0.000 8 0.499 1 0.007 5 0.065 8 0.000 7 412 16 411 5 411 4 NM13-20-13 167.45 551.55 0.30 0.056 3 0.001 8 0.499 0 0.015 2 0.064 3 0.000 9 464 43 411 10 402 5 NM13-20-14 252.01 663.82 0.38 0.056 2 0.002 8 0.512 0 0.024 4 0.066 1 0.001 2 461 73 420 16 412 7 NM13-20-15 431.77 771.95 0.56 0.055 2 0.001 9 0.500 7 0.016 7 0.065 8 0.001 0 421 49 412 11 411 6 NM13-20-16 173.24 319.69 0.54 0.054 9 0.001 2 0.498 0 0.010 8 0.065 8 0.000 8 409 28 410 7 411 5 NM13-20-17 184.12 365.21 0.50 0.056 2 0.002 1 0.510 8 0.018 2 0.065 9 0.000 9 461 54 419 12 411 6 NM13-20-18 149.05 259.20 0.58 0.055 1 0.001 7 0.499 4 0.015 1 0.065 8 0.000 9 415 43 411 10 411 5 NM13-20-19 323.05 414.97 0.78 0.055 0 0.001 1 0.502 2 0.010 1 0.066 3 0.000 8 411 25 413 7 414 5 NM13-20-20 271.88 450.47 0.60 0.055 0 0.001 1 0.501 1 0.009 5 0.066 2 0.000 8 411 23 412 6 413 5 NM13-20-21 562.96 880.69 0.64 0.055 1 0.001 4 0.503 0 0.012 3 0.066 2 0.000 8 416 33 414 8 413 5 NM13-20-22 103.15 256.47 0.40 0.055 1 0.002 5 0.500 6 0.022 0 0.065 9 0.001 1 415 67 412 15 412 7 NM13-20-23 389.84 779.20 0.50 0.054 7 0.001 3 0.501 3 0.011 9 0.066 4 0.000 8 402 32 413 8 415 5 NM13-20-24 272.55 400.70 0.68 0.055 7 0.001 3 0.506 3 0.011 7 0.065 9 0.000 8 441 30 416 8 411 5 NM13-20-25 234.27 408.69 0.57 0.054 9 0.002 2 0.499 1 0.019 3 0.066 0 0.001 0 408 59 411 13 412 6 NM13-20-26 175.59 320.34 0.55 0.054 9 0.001 4 0.502 6 0.012 6 0.066 4 0.000 8 407 34 413 9 415 5 NM13-20-27 368.01 465.30 0.79 0.055 6 0.001 2 0.504 6 0.010 6 0.065 9 0.000 8 436 26 415 7 411 5 NM13-20-28 241.38 485.82 0.50 0.055 0 0.001 1 0.499 1 0.009 8 0.065 8 0.000 8 413 24 411 7 411 5 NM13-20-29 100.81 132.95 0.76 0.055 7 0.004 9 0.501 4 0.042 9 0.065 3 0.001 9 439 139 413 29 408 11 NM13-20-30 254.49 351.94 0.72 0.056 0 0.002 6 0.509 1 0.022 9 0.065 9 0.001 2 453 69 418 15 412 7 NM13-40-01 104.33 236.14 2.26 0.055 3 0.001 2 0.531 9 0.010 9 0.069 8 0.000 8 424 26 433 7 435 5 NM13-40-02 485.48 550.31 1.13 0.055 1 0.002 6 0.526 9 0.023 8 0.069 5 0.001 2 414 69 430 16 433 7 NM13-40-03 246.89 319.65 1.29 0.069 0 0.009 9 0.631 7 0.088 2 0.066 4 0.002 2 898 315 497 55 415 13 NM13-40-04 56.49 87.77 1.55 0.055 5 0.002 2 0.530 8 0.020 2 0.069 4 0.001 0 431 58 432 13 433 6 NM13-40-05 127.03 208.19 1.64 0.055 2 0.003 9 0.513 9 0.035 1 0.067 5 0.001 5 421 113 421 24 421 9 NM13-40-06 476.70 540.08 1.13 0.055 4 0.000 8 0.524 8 0.007 9 0.068 8 0.000 7 428 16 428 5 429 4 NM13-40-07 476.56 533.62 1.12 0.069 0 0.004 3 0.679 7 0.040 8 0.071 4 0.001 2 899 132 527 25 445 7 NM13-40-08 292.76 372.87 1.27 0.055 4 0.001 5 0.524 9 0.014 2 0.068 8 0.000 9 426 38 428 9 429 5 NM13-40-09 93.10 200.33 2.15 0.055 5 0.001 9 0.530 6 0.018 1 0.069 4 0.001 0 431 51 432 12 433 6 NM13-40-10 116.69 228.08 1.95 0.057 9 0.002 8 0.537 3 0.025 7 0.067 3 0.001 1 527 75 437 17 420 7 NM13-40-11 202.24 312.71 1.55 0.055 5 0.001 3 0.533 9 0.012 0 0.069 8 0.000 8 433 29 434 8 435 5 NM13-40-12 212.42 371.19 1.75 0.055 7 0.002 4 0.520 3 0.021 3 0.067 8 0.001 1 441 62 425 14 423 7 NM13-40-13 102.09 208.07 2.04 0.055 5 0.001 8 0.529 5 0.016 3 0.069 2 0.001 0 432 44 431 11 432 6 NM13-40-14 91.54 147.19 1.61 0.055 2 0.001 4 0.517 3 0.013 2 0.068 0 0.000 8 422 35 423 9 424 5 NM13-40-15 334.81 372.52 1.11 0.055 7 0.001 1 0.540 6 0.010 4 0.070 4 0.000 8 441 23 439 7 439 5 NM13-40-16 202.06 338.18 1.67 0.055 8 0.003 5 0.536 5 0.032 6 0.069 8 0.001 5 443 98 436 22 435 9 NM13-40-17 169.36 344.15 2.03 0.055 6 0.001 2 0.540 2 0.011 2 0.070 5 0.000 8 438 26 439 7 439 5 NM13-40-18 177.39 290.60 1.64 0.055 8 0.001 4 0.540 8 0.013 2 0.070 4 0.000 8 444 33 439 9 438 5 NM13-40-19 357.77 490.17 1.37 0.055 8 0.001 1 0.545 0 0.010 8 0.070 8 0.000 8 446 24 442 7 441 5 NM13-40-20 89.58 206.89 2.31 0.055 6 0.001 5 0.538 4 0.014 1 0.070 2 0.000 9 438 36 437 9 437 5 NM13-40-21 163.76 309.68 1.89 0.055 8 0.001 3 0.544 6 0.012 4 0.070 8 0.000 9 444 30 441 8 441 5 NM13-40-22 144.50 251.59 1.74 0.055 8 0.001 7 0.546 5 0.016 2 0.071 1 0.000 9 444 43 443 11 443 5 NM13-40-23 176.65 273.63 1.55 0.057 1 0.001 8 0.538 5 0.017 1 0.068 5 0.000 9 494 47 437 11 427 5 NM13-40-24 48.70 590.46 12.12 0.071 8 0.001 3 1.407 6 0.021 8 0.142 2 0.001 5 980 39 892 9 857 8 NM13-40-25 222.67 364.94 1.64 0.055 3 0.001 2 0.516 8 0.011 0 0.067 8 0.0008 424 27 423 7 423 5 NM13-40-26 204.20 367.67 1.80 0.055 7 0.001 8 0.525 0 0.016 3 0.068 4 0.001 0 440 44 428 11 427 6 NM13-40-27 193.49 242.02 1.25 0.055 6 0.001 5 0.537 3 0.014 3 0.070 1 0.000 9 438 37 437 9 437 5 NM13-40-28 700.63 688.99 0.98 0.067 4 0.010 4 0.611 9 0.092 0 0.065 9 0.002 1 849 341 485 58 411 13 NM13-40-29 163.09 289.63 1.78 0.055 4 0.001 2 0.525 7 0.011 3 0.068 8 0.000 8 430 27 429 8 429 5 NM13-40-30 223.09 355.68 1.59 0.057 8 0.006 5 0.547 8 0.059 4 0.068 7 0.002 5 523 175 444 39 429 15 NM13-42-01 183.83 314.63 1.71 0.055 5 0.001 1 0.523 5 0.010 4 0.068 5 0.000 8 431 24 427 7 427 5 NM13-42-02 394.82 508.09 1.29 0.058 1 0.001 9 0.558 4 0.017 3 0.069 7 0.001 0 534 43 450 11 435 6 NM13-42-03 415.81 604.26 1.45 0.055 4 0.000 8 0.524 7 0.007 5 0.068 7 0.000 7 428 15 428 5 428 4 NM13-42-04 186.49 331.71 1.78 0.055 6 0.001 0 0.523 6 0.008 8 0.068 4 0.000 8 435 19 428 6 426 5 NM13-42-05 221.63 398.58 1.80 0.055 7 0.000 9 0.539 1 0.008 5 0.070 2 0.000 8 440 17 438 6 438 5 NM13-42-06 205.17 463.21 2.26 0.055 5 0.002 1 0.531 8 0.020 0 0.069 6 0.001 1 431 57 433 13 434 6 NM13-42-07 444.58 540.31 1.22 0.055 4 0.001 2 0.522 0 0.010 9 0.068 3 0.000 8 430 26 426 7 426 5 NM13-42-08 332.65 705.00 2.12 0.059 8 0.002 7 0.559 1 0.024 0 0.067 9 0.001 2 596 63 451 16 423 7 NM13-42-09 383.59 559.31 1.46 0.055 6 0.001 6 0.522 3 0.015 0 0.068 2 0.000 9 435 40 427 10 425 6 NM13-42-10 288.06 541.6 1.88 0.055 5 0.001 1 0.529 4 0.010 0 0.069 2 0.000 8 433 23 431 7 431 5 NM13-42-11 257.85 373.56 1.45 0.064 7 0.004 7 0.627 4 0.043 6 0.070 4 0.001 9 763 102 494 27 439 11 NM13-42-12 326.16 480.13 1.47 0.055 5 0.001 7 0.527 3 0.015 5 0.069 0 0.000 9 430 41 430 10 430 6 NM13-42-13 104.28 227.66 2.18 0.055 6 0.001 2 0.535 9 0.010 9 0.069 9 0.000 8 438 25 436 7 436 5 NM13-42-14 200.01 322.69 1.61 0.055 4 0.003 1 0.526 1 0.028 4 0.069 0 0.001 3 427 86 429 19 430 8 NM13-42-15 401.75 744.01 1.85 0.054 6 0.000 8 0.513 9 0.007 7 0.068 3 0.000 7 395 16 421 5 426 4 NM13-42-16 442.36 597.69 1.35 0.055 2 0.000 8 0.514 1 0.007 4 0.067 6 0.000 7 420 15 421 5 422 4 NM13-42-17 158.08 344.65 2.18 0.055 3 0.001 1 0.515 9 0.010 1 0.067 7 0.000 8 424 24 422 7 422 5 NM13-42-18 249.40 402.20 1.61 0.055 5 0.001 0 0.531 9 0.009 0 0.069 5 0.000 8 434 19 433 6 433 5 NM13-42-19 242.38 434.88 1.79 0.055 3 0.001 0 0.517 5 0.009 3 0.067 9 0.000 8 423 21 423 6 424 5 NM13-42-20 551.54 667.74 1.21 0.055 0 0.002 1 0.509 5 0.019 1 0.067 2 0.001 0 414 56 418 13 419 6 NM13-42-21 174.08 342.34 1.97 0.055 9 0.001 1 0.523 9 0.010 0 0.068 0 0.000 8 447 23 428 7 424 5 NM13-42-22 491.13 725.89 1.48 0.055 1 0.000 8 0.529 3 0.007 9 0.069 8 0.000 8 414 16 431 5 435 5 NM13-42-23 546.01 603.17 1.10 0.055 4 0.000 9 0.516 4 0.008 3 0.067 7 0.000 7 428 18 423 6 422 4 NM13-42-24 137.42 294.14 2.14 0.055 5 0.001 6 0.520 9 0.014 4 0.068 1 0.000 9 434 38 426 10 424 5 NM13-42-25 325.36 484.36 1.49 0.055 5 0.001 0 0.536 6 0.009 3 0.070 1 0.000 8 434 20 436 6 437 5 NM13-42-26 309.96 496.88 1.60 0.055 4 0.000 9 0.526 2 0.008 0 0.069 0 0.000 7 427 16 429 5 430 4 NM13-42-27 298.97 469.82 1.57 0.055 1 0.001 1 0.521 5 0.010 0 0.068 7 0.000 8 416 23 426 7 428 5 NM13-42-28 227.26 313.07 1.38 0.055 5 0.001 0 0.522 4 0.009 3 0.068 4 0.000 8 430 21 427 6 426 5 NM13-42-29 348.11 572.45 1.64 0.055 4 0.000 8 0.521 2 0.007 8 0.068 3 0.000 7 427 16 426 5 426 4 NM13-42-30 185.23 339.65 1.83 0.055 6 0.001 0 0.538 1 0.009 7 0.070 2 0.000 8 437 21 437 6 437 5 表 3 额尔登地区英安岩(NM10-01) SHRIMP锆石U-Pb同位素分析结果
Table 3. SHRIMP U-Pb data for zircons of the dacite (simple NM10-01) from the Eerdeng area
分析点号 206Pbc
(%)U
(10-6)Th
(10-6)232Th/
238U206Pb*
(10-6)207Pb/
206Pb误差
(±%)206Pb/
238U误差
(±%)207Pb/
235U误差
(±%)206Pb/
238U(Ma)误差
(1σ)207Pb/
206Pb(Ma)误差
(1σ)NM10-01-1.1 0.40 391 244 0.64 23.8 0.052 5 3.7 0.070 5 1.4 0.51 4.0 439.3 5.9 309 84 NM10-01-2.1 0.07 537 343 0.66 31.9 0.054 8 2.7 0.069 2 1.4 0.52 3.1 431.1 5.7 403 61 NM10-01-3.1 0.19 572 347 0.63 34.8 0.055 4 2.9 0.070 8 1.3 0.54 3.1 440.7 5.7 429 64 NM10-01-4.1 0.21 477 400 0.87 28.8 0.056 1 2.8 0.070 2 1.4 0.54 3.1 437.6 5.7 456 62 NM10-01-5.1 0.49 374 155 0.43 23.0 0.054 1 4.0 0.071 2 1.4 0.53 4.2 443.5 6.0 373 90 NM10-01-6.1 0.09 643 445 0.71 38.6 0.054 4 2.0 0.069 8 1.4 0.52 2.5 435.1 6.1 388 46 NM10-01-7.1 0.13 662 582 0.91 39.1 0.056 3 2.1 0.068 7 1.3 0.53 2.5 428.1 5.4 463 47 NM10-01-8.1 0.19 752 518 0.71 44.8 0.055 3 2.2 0.069 2 1.3 0.53 2.6 431.6 5.5 425 49 NM10-01-9.1 0.13 620 517 0.86 35.9 0.055 0 2.3 0.067 2 1.5 0.51 2.7 419.4 6.0 414 50 NM10-01-10.1 0.29 666 522 0.81 40.0 0.055 8 3.4 0.069 8 1.5 0.54 3.8 434.7 6.2 446 77 NM10-01-11.1 0.21 623 536 0.89 37.3 0.054 4 2.4 0.069 6 1.3 0.52 2.7 433.7 5.5 387 53 注:误差为1σ;Pbc和Pb*分别代表普通铅和放射成因铅;假设206Pb/238U-208Pb/232Th年龄结合校正普通铅. 表 4 额尔登地区岩浆岩锆石LA-MC-ICP-MS Lu-Hf同位素分析结果
Table 4. Hf isotope analyses of zircons of the intrusive rocks from the Eerdeng area
测试点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ 年龄(Ma) εHf(t) ±2σ TDM1(Ma) fLu/Hf TDM2(Ma) ±2σ(Ma) NM13-20-1 0.046 120 0.001 198 0.282 179 0.000 024 412 -12.25 0.86 1 520 -0.96 2 174 34 NM13-20-2 0.045 219 0.001 150 0.282 281 0.000 021 412 -8.62 0.76 1 375 -0.97 1 946 30 NM13-20-3 0.040 348 0.001 127 0.282 323 0.000 022 412 -7.11 0.78 1 315 -0.97 1 851 31 NM13-20-4 0.051 570 0.001 247 0.282 278 0.000 023 412 -8.74 0.80 1 383 -0.96 1 953 32 NM13-20-5 0.034 622 0.000 985 0.282 297 0.000 024 412 -8.01 0.86 1 347 -0.97 1 907 34 NM13-20-6 0.049 243 0.001 193 0.282 298 0.000 024 412 -8.03 0.86 1 353 -0.96 1 908 34 NM13-20-8 0.051 458 0.001 286 0.282 273 0.000 025 412 -8.95 0.89 1 392 -0.96 1 967 36 NM13-20-9 0.044 562 0.001 126 0.282 311 0.000 021 412 -7.57 0.73 1 333 -0.97 1 879 29 NM13-20-10 0.051 653 0.001 254 0.282 325 0.000 024 412 -7.07 0.84 1 317 -0.96 1 848 33 NM13-20-12 0.039 556 0.000 976 0.282 242 0.000 027 412 -9.94 0.97 1 423 -0.97 2 029 38 NM13-20-15 0.074 272 0.001 634 0.282 106 0.000 028 412 -14.95 1.01 1 641 -0.95 2 344 40 NM13-40-1 0.048 354 0.001 504 0.282 739 0.000 026 433 7.95 0.91 736 -0.95 911 37 NM13-40-2 0.104 064 0.003 081 0.282 613 0.000 030 433 3.01 1.06 958 -0.91 1 225 44 NM13-40-5 0.036 095 0.001 098 0.282 478 0.000 038 433 -1.19 1.33 1 098 -0.97 1 493 53 NM13-40-6 0.147 171 0.003 712 0.282 858 0.000 027 433 11.51 0.97 602 -0.89 684 42 NM13-40-8 0.117 037 0.003 180 0.282 720 0.000 029 433 6.79 1.02 800 -0.90 985 43 NM13-40-9 0.078 945 0.002 255 0.282 623 0.000 030 433 3.61 1.06 921 -0.93 1 187 44 NM13-40-11 0.048 703 0.001 378 0.282 500 0.000 018 433 -0.48 0.65 1 074 -0.96 1 447 26 NM13-40-12 0.062 187 0.002 188 0.282 600 0.000 027 433 2.81 0.97 953 -0.93 1 238 40 NM13-40-14 0.033 628 0.000 907 0.282 515 0.000 022 433 0.17 0.77 1 040 -0.97 1 406 30 NM13-40-16 0.078 007 0.002 146 0.282 766 0.000 033 433 8.71 1.16 710 -0.94 863 48 NM13-40-20 0.052 305 0.001 478 0.282 552 0.000 024 433 1.31 0.86 1 004 -0.96 1 334 35 NM13-42-1 0.114 623 0.003 021 0.282 703 0.000 030 428 6.14 1.06 821 -0.91 1 022 44 NM13-42-3 0.099 984 0.002 647 0.282 621 0.000 029 428 3.32 1.02 935 -0.92 1 202 43 NM13-42-4 0.125 737 0.003 285 0.282 822 0.000 028 428 10.28 1.00 648 -0.90 759 43 NM13-42-5 0.076 673 0.002 088 0.282 650 0.000 024 428 4.50 0.86 879 -0.94 1 127 35 NM13-42-6 0.070 829 0.002 195 0.244 579 0.000 453 428 -1 343.15 16.03 38 920 -0.93 59 984 325 NM13-42-7 0.039 025 0.001 352 0.204 745 0.000 445 428 -2 752.92 15.76 60 928 -0.96 96 214 207 NM13-42-8 0.058 263 0.001 858 0.217 355 0.000 901 428 -2 306.69 31.90 55 211 -0.94 85 978 473 NM13-42-10 0.086 614 0.002 639 0.231 306 0.000 738 428 -1 813.09 26.11 48 052 -0.92 73 208 452 NM13-42-12 0.038 016 0.001 237 0.195 317 0.000 454 428 -3 086.60 16.07 65 012 -0.96 102 997 195 NM13-42-13 0.049 136 0.001 789 0.193 685 0.002 265 428 -3 144.55 80.18 66 273 -0.95 103 449 970 NM10-01-1 0.065 956 0.002 549 0.282 686 0.000 024 434 5.78 0.85 836 -0.92 1 050 35 NM10-01-2 0.064 652 0.002 613 0.282 628 0.000 025 434 3.70 0.88 924 -0.92 1 183 37 NM10-01-3 0.058 649 0.002 250 0.282 667 0.000 023 434 5.18 0.80 857 -0.93 1 088 33 NM10-01-4 0.064 350 0.002 496 0.282 667 0.000 025 434 5.14 0.87 862 -0.92 1 091 36 NM10-01-5 0.035 775 0.001 408 0.282 677 0.000 023 434 5.79 0.82 823 -0.96 1 050 33 NM10-01-6 0.036 703 0.001 584 0.282 720 0.000 021 434 7.25 0.74 766 -0.95 957 30 NM10-01-7 0.075 430 0.002 922 0.282 705 0.000 019 434 6.36 0.67 816 -0.91 1 013 28 NM10-01-8 0.074 038 0.002 932 0.282 658 0.000 024 434 4.68 0.84 887 -0.91 1 120 35 NM10-01-9 0.055 554 0.002 163 0.282 707 0.000 022 434 6.63 0.78 797 -0.93 996 32 NM10-01-10 0.069 626 0.002 706 0.282 748 0.000 022 434 7.94 0.79 748 -0.92 912 33 NM10-01-11 0.080 379 0.003 161 0.282 713 0.000 023 434 6.55 0.82 810 -0.90 1 001 35 表 5 岩石主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果
Table 5. Major (%), trace and rare elements (10-6) for the volcanic rocks and intrusive rocks
样品 NM10-01 NM10-02 NM10-03 NM13-18 NM13-19 NM13-20 NM13-21 NM13-22 火山岩 综合定名 英安岩 粗面岩 英安岩 英安岩 英安岩 流纹岩 英安岩 英安岩 SiO2 63.46 67.10 63.37 68.64 69.92 75.14 64.22 72.15 TiO2 0.38 0.31 0.41 0.41 0.39 0.12 0.46 0.35 Al2O3 19.75 16.39 20.26 15.05 13.43 16.38 17.38 14.44 Fe2O3 2.53 2.33 2.50 4.56 3.56 1.53 4.27 2.74 MnO 0.05 0.06 0.06 0.11 0.10 0.02 0.10 0.08 MgO 2.33 1.41 1.97 1.52 1.18 0.81 1.83 1.39 CaO 0.71 1.54 1.67 0.91 2.45 0.04 1.77 1.50 Na2O 3.31 6.88 1.60 5.48 4.43 1.94 3.08 5.30 K2O 5.09 2.42 5.40 1.10 1.58 2.07 3.16 0.70 P2O5 0.13 0.11 0.13 0.11 0.12 0.02 0.12 0.10 LOI 2.16 1.38 2.48 2.01 2.69 1.85 3.48 1.16 Total 99.90 99.92 99.86 99.91 99.85 99.92 99.86 99.93 Mg# 64.64 54.57 61.00 39.82 39.68 51.24 45.9 50.17 里特曼指数σ 3.44 3.58 2.40 1.68 1.34 0.50 1.83 1.23 A/CNK 1.61 0.97 1.75 1.26 0.99 2.97 1.48 1.18 Li 26.30 9.85 20.90 11.10 11.80 5.06 33.30 15.50 Be 1.26 1.05 1.24 1.19 1.25 2.01 1.45 1.13 P 508 407 521 553 531 166 570 450 Sc 9.10 7.47 9.63 9.67 9.35 1.92 9.76 5.58 Ti 2 607 2 112 2 786 2 649 2 470 817 2 922 2 296 V 38.2 23.8 35.1 49.4 50.9 14.0 35.6 27.5 Mn 550 576 618 849 834 134 724 637 Co 3.43 5.67 3.26 5.05 4.46 1.32 3.35 2.30 Cu 1.67 6.88 2.15 0 80.21 4.31 0 0 Ga 17.9 12.2 17.3 12.2 12.1 16.3 16.7 11.2 Rb 161.0 70.7 173.0 78.8 101.0 156.0 213.0 55.8 Sr 153.0 318.0 233.0 198.0 254.0 93.1 191.0 385.0 Y 24.5 18.8 26.4 15.8 17.7 27.8 24.6 16.5 Zr 173 130 182 127 115 172 159 142 Nb 10.28 7.69 10.12 8.39 5.43 11.50 9.94 7.81 Cs 5.43 4.47 4.73 5.48 11.04 3.21 13.40 4.38 Ba 908 640 956 492 874 549 988 374 Hf 5.04 3.83 5.36 3.78 3.23 6.68 4.55 4.06 Ta 0.95 0.68 0.80 0.86 0.39 1.65 1.27 0.69 Pb 7.81 10.27 13.40 0 3.88 13.30 0.94 12.40 Th 11.50 9.37 12.50 7.88 7.26 42.30 10.64 8.13 U 3.27 2.78 3.53 1.54 1.97 3.41 2.43 2.57 La 28.9 25.0 34.6 18.5 23.4 31.4 27.2 19.1 Ce 54.8 46.6 65.8 37.4 42.5 61.8 55.7 44.8 Pr 6.36 5.50 7.40 4.14 4.80 6.55 6.47 4.08 Nd 23.9 20.7 27.8 16.6 18.7 23.8 25.8 15.9 Sm 4.61 3.84 5.21 3.02 3.37 4.41 4.54 2.78 Eu 1.18 1.09 1.52 0.86 1.18 0.58 1.29 0.83 Gd 4.68 3.83 5.23 3.04 3.41 4.54 4.39 2.82 Tb 0.72 0.57 0.79 0.48 0.52 0.73 0.68 0.44 Dy 4.17 3.30 4.54 2.81 3.02 4.35 3.99 2.61 Ho 0.92 0.73 1.00 0.61 0.65 0.96 0.87 0.59 Er 2.72 2.15 2.93 1.82 1.86 2.93 2.63 1.79 Tm 0.47 0.38 0.51 0.32 0.31 0.53 0.46 0.32 Yb 3.09 2.48 3.29 2.15 2.07 3.57 3.11 2.17 Lu 0.52 0.42 0.55 0.35 0.34 0.59 0.51 0.36 REE 137.00 116.50 161.17 92.10 106.13 146.74 137.64 98.59 LREE/HREE 6.92 7.41 7.55 6.95 7.71 7.06 7.27 7.88 δEu 0.76 0.85 0.88 0.85 1.05 0.39 0.87 0.89 样品 NM13-23 NM13-24 NM13-25 NM13-36 NM13-37 NM13-40 NM13-42 NM13-43 火山岩 侵入岩 综合定名 英安岩 英安岩 英安岩 花岗岩 花岗闪长岩 花岗岩 花岗岩 花岗岩 SiO2 68.57 68.13 74.17 75.95 71.31 73.44 77.64 76.00 TiO2 0.39 0.62 0.33 0.24 0.33 0.20 0.19 0.20 Al2O3 15.69 15.65 14.39 15.08 15.55 15.35 13.06 14.48 Fe2O3 3.23 5.46 2.06 1.95 3.00 1.53 1.40 1.50 MnO 0.08 0.11 0.06 0.02 0.06 0.04 0.01 0.02 MgO 1.46 1.59 0.86 1.01 1.25 0.88 0.51 0.65 CaO 1.56 0.64 0.75 0.22 2.26 1.64 0.24 0.20 Na2O 7.17 0.63 3.32 2.35 3.26 2.09 4.72 4.85 K2O 0.38 3.09 2.10 1.16 0.93 1.93 0.96 0.85 P2O5 0.100 0.133 0.069 0.069 0.088 0.032 0.037 0.027 LOI 1.32 3.75 1.78 1.87 1.88 2.77 1.14 1.12 Total 99.94 99.80 99.89 99.91 99.91 99.90 99.91 99.90 Mg# 47.29 36.63 45.32 50.69 45.27 53.31 41.96 46.24 里特曼指数σ 2.22 0.55 0.94 0.37 0.62 0.53 0.93 0.98 A/CNK 1.04 2.82 1.58 2.73 1.48 1.80 1.41 1.56 Li 10.19 14.70 18.10 6.21 6.20 6.50 5.44 10.27 Be 1.06 1.46 1.27 1.18 1.26 1.20 1.52 1.45 P 530 584 326 331 479 217 169 173 Sc 8.86 15.20 4.27 4.76 7.41 3.26 2.98 3.37 Ti 2 528 3 898 2 011 1 594 2 260 1 407 1 274 1 322 V 39.9 167.0 22.3 78.1 38.9 20.0 10.8 11.5 Mn 591.0 847.0 483.0 258.0 403.0 242.0 49.9 63.6 Co 5.03 14.20 5.31 16.80 3.71 2.00 1.78 1.63 Cu 2.03 24.80 14.63 63.10 0 4.99 2.39 3.50 Ga 10.7 24.0 14.3 13.4 12.4 11.3 10.7 10.5 Rb 30.4 149.0 116.0 79.4 61.3 128.0 44.1 48.3 Sr 346 46 159 164 320 154 214 237 Y 17.6 21.9 15.3 11.8 13.5 16.1 14.9 15.4 Zr 122.0 165.0 165.0 95.7 139.0 124.0 131.0 131.0 Nb 5.98 16.60 9.96 8.30 7.49 9.18 7.95 7.97 Cs 1.53 5.55 2.72 1.18 1.56 2.20 0.57 0.85 Ba 141 1 447 833 755 570 874 644 833 Hf 3.44 5.10 4.53 2.79 3.97 3.77 3.89 3.83 Ta 0.44 1.48 0.69 0.52 0.61 0.80 0.75 0.67 Pb 0.54 1.34 0 0 7.48 8.82 1.94 0.18 Th 7.74 19.00 9.59 6.74 7.92 12.40 12.70 13.20 U 2.14 2.27 2.45 1.67 1.46 1.78 1.46 1.35 La 25.1 34.3 26.6 15.5 20.7 26.6 25.5 27.2 Ce 44.1 73.2 49.9 29.4 40.5 47.8 45.1 49.4 Pr 4.52 7.70 5.19 3.11 4.35 4.98 4.78 5.25 Nd 16.9 29.4 18.8 11.2 16.8 17.9 17.5 19.0 Sm 3.03 4.98 3.05 1.89 2.83 2.93 2.88 3.19 Eu 0.92 1.21 0.93 0.60 0.83 0.79 0.78 0.85 Gd 3.18 4.66 2.93 1.91 2.76 2.93 2.83 3.04 Tb 0.50 0.72 0.44 0.31 0.42 0.44 0.44 0.46 Dy 2.96 4.15 2.51 1.86 2.41 2.55 2.53 2.60 Ho 0.64 0.87 0.55 0.42 0.52 0.57 0.55 0.57 Er 1.90 2.48 1.69 1.30 1.57 1.72 1.66 1.70 Tm 0.32 0.42 0.30 0.22 0.29 0.31 0.30 0.30 Yb 2.12 2.73 2.06 1.50 2.01 2.11 2.10 2.08 Lu 0.34 0.44 0.35 0.25 0.34 0.35 0.34 0.34 REE 106.53 167.26 115.30 69.47 96.33 111.98 107.29 115.98 LREE/HREE 7.90 9.15 9.64 7.94 8.33 9.19 8.98 9.45 δEu 0.89 0.75 0.93 0.95 0.89 0.81 0.82 0.82 -
[1] Bai, X.H., Xu, Z.Y., Liu, Z.H., et al., 2015.Zircon U-Pb Dating, Geochemistry and Geological Significance of the Early Silurian Plutons from the Southeastern Margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 31(1):67-79 (in Chinese with English abstract). [2] Brown, G.C., Thorpe, R.S., Webb, P.C., 1984.The Geochemical Characteristics of Granitoids in Contrasting Arcs and Comments on Magma Sources. Journal of the Geological Society, 141(3):413-426.doi: 10.1144/gsjgs.141.3.0413 [3] Chen, Y., Zhang, Z.C., Li, K., et al., 2016a.Detrital Zircon U-Pb Ages and Hf Isotopes of Permo-Carboniferous Sandstones in Central Inner Mongolia, China:Implications for Provenance and Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Tectonophysics, 671:183-201.doi: 10.1016/j.tecto.2016.01.018 [4] Chen, Y., Zhang, Z.C., Li, K., et al., 2016b.Geochemistry and Zircon U-Pb-Hf Isotopes of Early Paleozoic Arc-Related Volcanic Rocks in Sonid Zuoqi, Inner Mongolia:Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Lithos, 264:392-404.doi: 10.1016/j.lithos.2016.09.009 [5] Chen, Y.P., Wei, C.J., Zhang, J.R., et al., 2015.Metamorphism and Zircon U-Pb Dating of Garnet Amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19):1698-1707.doi: 10.1007/s11434-015-0890-0 [6] Claesson, S., Vetrin, V., Bayanova, T., et al., 2000.U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kola Peninsula, Russia:A Record of Geological Evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2):95-108.doi: 10.1016/s0024-4937(99)00076-6 [7] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992.Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 149(2):171-184.doi: 10.1144/gsjgs.149.2.0171 [8] Deng, Z.B., 2015.Petrogenesis and Geodynamic Implications of the Guangtoushan Granitoid Rock Suite in South Qinling Tectonic Belt, Central China (Dissertation).Peking University, Beijing, 22 (in Chinese with English abstact). [9] Dong, Z.C., Gu, P.Y., Chen, R.M., et al., 2015.Geochronology, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai. Earth Science, 40(1):130-144 (in Chinese with English abstract). [10] Elliott, R., Sahakian, B.J., Herrod, J.J., et al., 1997.Abnormal Response to Negative Feedback in Unipolar Depression:Evidence for a Diagnosis Specific Impairment. Journal of Neurology, Neurosurgery & Psychiatry, 63(1):74-82.doi: 10.1136/jnnp.63.1.74 [11] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001.A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048.doi: 10.1093/petrology/42.11.2033 [12] Gu, C.N., 2012.Zircon Dating and Hf Isotope of Bainaimiao Area Inner Mongolia and Their Geological Implications (Dissertation).China University of Geosciences, Beijing, 22 (in Chinese with English abstact). [13] Hao, B.W., Hou, Z.Q., 2012.Discovery of the Early Paleozoic Boin Sum-Ordor Sum Island Arc in the Hadamiao Gold Ore District, Inner Mongolia and Its Significance to the Evolution of the Paleo-Asian Ocean. Acta Geologica Sinica(English Edition), 86(5):1251-1264.doi: 10.1111/j.1755-6724.2012.00745.x [14] Hart, C.J., Goldfarb, R.J., Qiu Y.M., et al., 2002.Gold Deposits of the Northern Margin of the North China Craton:Multiple Late Paleozoic-Mesozoic Mineralizing Events. Mineralium Deposita, 37(3):326-351.doi: 10.1007/s00126-001-0239-2 [15] Jahn, B.M., 2004.The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100.doi: 10.1144/gsl.sp.2004.226.01.05 [16] Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009.Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt:Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3-4):521-539.doi: 10.1016/j.lithos.2009.06.015 [17] Jian, P., Kröner, A., Shi, Y.R., et al., 2016.Age and Provenance Constraints on Seismically-Determined Crustal Layers beneath the Paleozoic Southern Central Asian Orogen, Inner Mongolia, China. Journal of Asian Earth Sciences, 123:119-141.doi: 10.1016/j.jseaes.2016.04.001 [18] Jian, P., Liu, D.Y., Kröner, A., et al., 2008.Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth. Lithos, 101(3-4):233-259.doi: 10.1016/j.lithos.2007.07.005 [19] Jiang, X.J., Liu, Z.H., Xu, Z.Y., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of Wulanhada Middle Permian Alkali-Feldspar Granites in Xianghuang Banner, Central Inner Mongolia, and Its Geochemical Characteristics. Geological Bulletin of China, 32(11):1760-1768(in Chinese with English abstract). [20] Kelemen, P.B., Shimizu, N., Dunn, T., 1993.Relative Depletion of Niobium in Some Arc Magmas and the Continental Crust:Partitioning of K, Nb, La and Ce during Melt/Rock Reaction in the Upper Mantle. Earth and Planetary Science Letters, 120(3-4):111-134.doi: 10.1016/0012-821x(93)90234-z [21] Kröner, A., Windley, B.F., Badarch, G., et al., 2007.Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200:181-209.doi: 10.1130/2007.1200(11) [22] Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., 2002.Igneous Rocks.A Classification and Glossary of Terms.Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks.Cambridge University Press, Cambridge, 33. http://adsabs.harvard.edu/abs/2005ircg.book.....L [23] Li, C.D., Ran, H., Zhao, L.G., et al., 2012.LA-MC-ICPMS U-Pb Geochronology of Zircons from the Wenduermiao Group and Its Tectonic Significance. Acta Petrologica Sinica, 28(11):3705-3714(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211022.htm [24] Li, J.F., Zhang, Z.C., Han, B.F., 2010.Ar-Ar and Zircon SHRIMP Geochronology of Hornblendite and Diorite in Northern Darhan Muminggan Joint Banner, Inner Mongolia, and its Geological Significance. Acta Petrologica et Mineralogica, 29(6):732-740(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201006010.htm [25] Li, K., Zhang, Z.C., Feng, Z.S., et al., 2014.Zircon Shrimp U-Pb Dating and Its Geological Significance of the Late-Carboniferous to Early-Permian Volcanic Rocks in Bayanwula Area, the Central of Inner Mongolia. Acta Petrologica Sinica, 30(7):2041-2054(in Chinese with English abstract). [26] Li, W.B., Chen, Y.J., Lai, Y., et al., 2008.Metallogenic Time and Tectonic Setting of the Bainaimiao Cu-Au Deposit, Inner Mongolia. Acta Petrologica Sinica, 24(4):890-898(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804028.htm [27] Li, W.B., Hu, C.S., Zhong, R.C., et al., 2015.U-Pb, 39Ar/40Ar Geochronology of the Metamorphosed Volcanic Rocks of the Bainaimiao Group in Central Inner Mongolia and Its Implications for Ore Genesis and Geodynamic Setting. Journal of Asian Earth Sciences, 97:251-259.doi: 10.1016/j.jseaes.2014.06.007 [28] Li, W.B., Lai, Y., Sun, X.W., et al., 2007.Fluid Inclusion Study of the Bainaimiao Cu-Au Deposit in Inner Mongolia, China. Acta Petrologica Sinica, 23(9):2165-2176(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200709015.htm [29] Li, Z.N., 2003.Meso-Cenozoic Volcanic Rocks and Their Deep Process in Eastern China.Geological Publishing House, Beijing, 53 (in Chinese with English abstract). [30] Liu, C.F., Liu, W.C., Wang, H.P., et al., 2014.Geochronology and Geochemistry of the Bainaimiao Metavolcanic Rocks in the Northern Margin of North China Craton. Acta Geologica Sinica, 88(7):1273-1287(in Chinese with English abstract). doi: 10.1007/s12040-017-0841-z [31] Liu, D.Y., Jian, P., Zhang, Q., et al., 2003.SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77(3):317-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200303004.htm [32] Liu, J.L., Sun, F.Y., Wang, Y.D., et al., 2016.Tectonic Setting of Hadahushu Mafic Intrusion in Urad Zhongqi Area, Inner Mongolia:Implications for Early Subduction History of Paleo-Asian Ocean Plate. Earth Science, 41(12):2019-2030 (in Chinese with English abstract). [33] Lu, Y.H., Li, W.B., Lai, Y., 2009.Time and Tectonic Setting of Hosting Porphyry of the Hadamiao Gold Deposit in Xianghuangqi, Inner Mongolia. Acta Petrologica Sinica, 25(10):2615-2620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200910025.htm [34] Luo, Z.W., Zhang, Z.C., Li, K., et al., 2016.Petrography, Geochemistry, and U-Pb Detrital Zircon Dating of Early Permian Sedimentary Rocks from the North Flank of the North China Craton:Implications for the Late Palaeozoic Tectonic Evolution of the Eastern Central Asian Orogenic Belt. International Geology Review, 58(7):787-806.doi: 10.1080/00206814.2015.1118646 [35] Ma, X., Chen, B., Chen, J.F., et al., 2012.Zircon SHRIMP U-Pb Age, Geochemical, Sr-Nd Isotopic, and In-situ Hf Isotopic Data of the Late Carboniferous-Early Permian Plutons in the Northern Margin of the North China Craton. Science China Earth Sciences, 42(12):1830-1850(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG201301014.htm [36] Macdonald, G.A., Katsura, T., 1964.Chemical Composition of Hawaiian Lavas1. Journal of Petrology, 5(1):82-133.doi: 10.1093/petrology/5.1.82 [37] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<635:tdog>2.3.co;2 [38] Nie, F.J., Pei, R.F., Wu, L.S., 1995.Nd-and Sr-Isotope Study on Greenschist and Granodiorite of the Bainaimiao District, Inner Mongolia, China. Diqiu Xuebao (Acta Geoscientica Sinica), 1:36-44 (in Chinese with English abstract). http://www.oalib.com/paper/1557768 [39] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956 [40] Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285.doi: 10.1146/annurev.ea.23.050195.001343 [41] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81.doi: 10.1007/bf00384745 [42] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931.doi: 10.1093/petrology/36.4.891 [43] Rojas-Agramonte, Y., Kröner, A., Demoux, A., et al., 2011.Detrital and Xenocrystic Zircon Ages from Neoproterozoic to Palaeozoic Arc Terranes of Mongolia:Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3):751-763.doi: 10.1016/j.gr.2010.10.004 [44] Shang, H.S., Tao, J.X., Baoyin, W.L.J., et al., 2003.The Arc-Basin System and Tectonic Significance of Early Paleozoic in Baiyun'ebo Area Inner Mongolia. Geological Survey and Research, 26(3):160-168(in Chinese with English abstract). [45] Shi, Y.R., Liu, D.Y., Miao, L.C., et al., 2010.Devonian A-Type Granitic Magmatism on the Northern Margin of the North China Craton:SHRIMP U-Pb Zircon Dating and Hf-Isotopes of the Hongshan Granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4):632-641.doi: 10.1016/j.gr.2009.11.011 [46] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [47] Tong, Y., Hong, D.W., Wang, T., et al., 2010.Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientia Sinica, 31(3):395-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003016.htm [48] Wang, S.Q., Xin, H.T., Hu, X.J., et al., 2016.Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia. Earth Science, 41(4):555-569 (in Chinese with English abstract). [49] Wang, X.A., 2014.Tectonic Evolution in the Central Segment of the Northern Margin of the North China Plate from Early Paleozoic to Devonian (Dissertation).Jilin University, Jilin, 56 (in Chinese with English abstact). [50] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200702002.htm [51] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):1069.doi: 10.1029/2002tc001484 [52] Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009.End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6):1189-1217.doi: 10.1007/s00531-008-0407-z [53] Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4):1342-1364.doi: 10.1016/j.gr.2012.05.015 [54] Yang, J.F., Zhang, Z.C., Chen, Y., et al., 2017.Ages and Origin of Felsic Rocks from the Eastern Erenhot Ophiolitic Complex, Southeastern Central Asian Orogenic Belt, Inner Mongolia China. Journal of Asian Earth Sciences (in Press).doi: 10.1016/j.jseaes.2016.12.049 [55] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3-4):336-352.doi: 10.1016/j.epsl.2006.04.029 [56] Yang, Y.N., Li, Q.L., Liu, Y., et al., 2014.Zircon U-Pb Dating by Secondary Ion Mass Spectrometry. Earth Science Frontiers, 21(2):81-92(in Chinese with English abstract). [57] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003.LA-ICP-MS Zircon U-Pb Age and REE of Cenozoic Pluton in NE China. Chinese Science Bulletin, 48(14):1511-1520(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1002070507600156 [58] Zhang, H.F., Zhou, Z.G., Liu, W.C., et al., 2009.Grenvill Tectono-Thermal Event Record in the Bainaimiao Area, Inner Mongolia, China:Evldence from Zircon LA-ICP-MS U-Pb Dating of Quart Monzodiorite Dike. Acta Petrologica Sinica, 25(6):1512-1518(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090622 [59] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008.Criteria for the Recognition of Pre-, Syn-and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1):1-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm [60] Zhang, S.H., Zhao, Y., Ye, H., et al., 2014.Origin and Evolution of the Bainaimiao Arc Belt:Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9-10):1275-1300.doi: 10.1130/b31042.1 [61] Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2010.Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block:A Preliminary Review. Acta Petrologica et Mineralogica, 29(6):824-842(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006017.htm [62] Zhang, W., Jian, P., 2008.SHRIMP Dating of Early Paleozoic Granites from North Damaoqi, Inner Mongolia. Acta Geologica Sinica, 82(6):778-787(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806008.htm [63] Zhang, W., Jian, P., Kröner, A., et al., 2013.Magmatic and Metamorphic Development of an Early to Mid-Paleozoic Continental Margin Arc in the Southernmost Central Asian Orogenic Belt, Inner Mongolia, China. Journal of Asian Earth Sciences, 72:63-74.doi: 10.1016/j.jseaes.2012.05.025 [64] Zhang, X., Zhang, H.F., Jiang, N., et al., 2010.Early Devonian Alkaline Intrusive Complex from the Northern North China Craton:A Petrological Monitor of Post-Collisional Tectonics. Journal of the Geological Society, 167(4):717-730.doi: 10.1144/0016-76492009-110 [65] Zhang, Y.P., Su, Y.Z., Li, J.C., 2010.Regional Tectonics Significance of the Late Silurian Xibiehe Formation in Central Inner Mongolia, China. Geological Bulletin of China, 29(11):1599-1605(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201011002.htm [66] Zhang, Z.C., Chen, Y., Li, K., et al., 2017.Geochronology and Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, China:Implications for the Late Palaeozoic Tectonic Evolution of the South-Eastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 135:370-389.doi: 10.1016/j.jseaes.2017.01.012 [67] Zhang, Z.C., Li, K., Li, J.F., et al., 2015.Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex:Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97:279-293.doi: 10.1016/j.jseaes.2014.06.008 [68] Zhou, T.H., Goldfarb, R.J., Phillips, N.G., 2002.Tectonics and Distribution of Gold Deposits in China-An Overview. Mineralium Deposita, 37(3):249-282.doi: 10.1007/s00126-001-0237-4 [69] 白新会, 徐仲元, 刘正宏, 等, 2015.中亚造山带东段南缘早志留世岩体锆石U-Pb定年、地球化学特征及其地质意义.岩石学报, 31(1):67-79. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501005.htm [70] 邓正宾, 2015. 南秦岭光头山花岗质岩体群的岩石成因及动力学意义(硕士学位论文). 北京: 北京大学, 22. [71] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, (1):130-144. http://www.earth-science.net/WebPage/Article.aspx?id=3013 [72] 谷丛楠, 2012. 内蒙古白乃庙地区锆石年龄和Hf同位素特征及其构造意义(硕士学位论文). 北京: 中国地质大学, 22. [73] 蒋孝君, 刘正宏, 徐仲元, 等, 2013.内蒙古镶黄旗乌兰哈达中二叠世碱长花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报, 32(11):1760-1768. doi: 10.3969/j.issn.1671-2552.2013.11.008 [74] 李承东, 冉皞, 赵利刚, 等, 2012.温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义.岩石学报, 28(11):3705-3714. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211022.htm [75] 李建锋, 张志诚, 韩宝福, 2010.内蒙古达茂旗北部闪长岩锆石SHRIMP U-Pb、角闪石40Ar/39Ar年代学及其地质意义.岩石矿物学杂志, 29(6):732-740. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006010.htm [76] 李可, 张志诚, 冯志硕, 等, 2014.内蒙古中部巴彦乌拉地区晚石炭世-早二叠世火山岩锆石SHRIMPU-Pb定年及其地质意义.岩石学报, 30(7):2041-2054. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407017.htm [77] 李文博, 陈衍景, 赖勇, 等, 2008.内蒙古白乃庙铜金矿床的成矿时代和成矿构造背景.岩石学报, 24(4):890-898. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804028.htm [78] 李文博, 赖勇, 孙希文, 等, 2007.内蒙古白乃庙铜金矿床流体包裹体研究.岩石学报, 23(9):2165-2176. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200709015.htm [79] 李兆鼐, 2003.中国东部中、新生代火成岩及其深部过程.北京:地质出版社, 53. [80] 柳长峰, 刘文灿, 王慧平, 等, 2014.华北克拉通北缘白乃庙组变质火山岩锆石定年与岩石地球化学特征.地质学报, 88(7):1273-1287. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407005.htm [81] 刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3):317-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303004.htm [82] 刘金龙, 孙丰月, 王英德, 等, 2016.内蒙古乌拉特中旗哈达呼舒基性岩体形成的构造背景与古亚洲洋的早期俯冲历史.地球科学, 41(12):2019-2030. http://www.earth-science.net/WebPage/Article.aspx?id=3398 [83] 鲁颖淮, 李文博, 赖勇, 2009.内蒙古镶黄旗哈达庙金矿床含矿斑岩体形成时代和成矿构造背景.岩石学报, 25(10):2615-2620. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910025.htm [84] 马旭, 陈斌, 陈家富, 等, 2012.华北克拉通北缘晚古生代岩体的成因和意义:岩石学、锆石U-Pb年龄、Nd-Sr同位素及锆石原位Hf同位素证据.中国科学:地球科学, 42(12), 1830-1850. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201212006.htm [85] 聂凤军, 裴荣富, 吴良士, 1995.内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究.地球学报, 16(1):36-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.004.htm [86] 尚恒胜, 陶继雄, 宝音乌力吉, 等, 2003.内蒙古白云鄂博地区早古生代弧-盆体系及其构造意义.地质调查与研究, 26(3):160-168. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200303005.htm [87] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3):395-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm [88] 王树庆, 辛后田, 胡晓佳, 等, 2016.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 41(4):555-569. http://www.earth-science.net/WebPage/Article.aspx?id=3274 [89] 王兴安, 2014. 华北板块北缘中段早古生代-泥盆纪构造演化(博士学位论文). 长春: 吉林大学, 56. [90] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [91] 杨亚楠, 李秋立, 刘宇, 等, 2014.离子探针锆石U-Pb定年.地学前缘, 21(2):81-92. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402008.htm [92] 袁洪林, 吴福元, 高山, 等, 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [93] 张华锋, 周志广, 刘文灿, 等, 2009.内蒙中部白乃庙地区格林威尔岩浆事件记录:石英二长闪长岩脉锆石LA-ICP-MS U-Pb年龄证据.岩石学报, 25(6):1512-1518. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906022.htm [94] 张旗, 王元龙, 金惟俊, 等, 2008.造山前, 造山和造山后花岗岩的识别.地质通报, 27(1):1-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200801002.htm [95] 张拴宏, 赵越, 刘建民, 等, 2010.华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志, 29(6):824-842. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006017.htm [96] 张维, 简平, 2008.内蒙古达茂旗北部早古生代花岗岩类SHRIMP U-Pb年代学.地质学报, 82(6):778-787. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806008.htm [97] 张允平, 苏养正, 李景春, 2010.内蒙古中部地区晚志留世西别河组的区域构造学意义.地质通报, 29(11):1599-1605. doi: 10.3969/j.issn.1671-2552.2010.11.001