• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于Ono-Kondo格子模型的页岩气超临界吸附机理探讨

    周尚文 王红岩 薛华庆 郭伟 李晓波

    周尚文, 王红岩, 薛华庆, 郭伟, 李晓波, 2017. 基于Ono-Kondo格子模型的页岩气超临界吸附机理探讨. 地球科学, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543
    引用本文: 周尚文, 王红岩, 薛华庆, 郭伟, 李晓波, 2017. 基于Ono-Kondo格子模型的页岩气超临界吸附机理探讨. 地球科学, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543
    Zhou Shangwen, Wang Hongyan, Xue Huaqing, Guo Wei, Li Xiaobo, 2017. Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on Ono-Kondo Lattice Model. Earth Science, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543
    Citation: Zhou Shangwen, Wang Hongyan, Xue Huaqing, Guo Wei, Li Xiaobo, 2017. Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on Ono-Kondo Lattice Model. Earth Science, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543

    基于Ono-Kondo格子模型的页岩气超临界吸附机理探讨

    doi: 10.3799/dqkx.2017.543
    基金项目: 

    国家重点基础研究发展计划(973计划)项目 2013CB2281

    详细信息
      作者简介:

      周尚文(1987-), 男, 工程师, 主要从事页岩气实验方法和技术研究

    • 中图分类号: P624.7

    Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on Ono-Kondo Lattice Model

    • 摘要: 页岩气吸附机理的研究对于页岩气成藏和储量评价具有重要意义.甲烷在地层温度和压力条件下处于超临界状态,页岩气的吸附实际上为超临界吸附,但其机理目前尚不明确.在建立Ono-Kondo格子模型的基础上,结合低温氮气吸附和高压甲烷等温吸附实验,对龙马溪组页岩的微观孔隙结构和超临界吸附曲线进行了分析.结果表明,页岩中发育的孔隙尺度较小,比表面积较大,吸附气主要赋存于微孔和中孔中;页岩的等温吸附曲线在压力较大时,必然存在下降的趋势,这并非异常现象,而是超临界甲烷过剩吸附量的本质特征.Ono-Kondo格子模型对页岩高压等温吸附曲线的拟合效果很好,相关系数均在0.99以上,说明该模型可以表征页岩纳米孔隙中超临界甲烷的吸附特征.基于拟合得到的吸附相密度可将过剩吸附量转换为绝对吸附量,并直接计算地层温度和压力下甲烷的吸附分子层数,计算层数均小于1,表明甲烷分子并没有铺满整个孔隙壁面.因此受流体性质、吸附剂吸附能力和孔隙结构3个方面的影响,页岩气的吸附机理为单层吸附,不可能为双层甚至多层吸附.

       

    • 图  1  甲烷在狭缝孔隙中吸附的格子模型

      Fig.  1.  The sketch of lattice model for methane adsorption in slit pores

      图  2  低温氮气吸附实验结果分析

      Fig.  2.  Analysis of experimental results of nitrogen adsorption at low temperature

      图  3  高压等温吸附曲线实验测试结果

      Fig.  3.  Experimental results of high pressure isothermal adsorption curve

      图  4  Ono-Kondo格子模型曲线拟合结果

      Fig.  4.  High pressure isothermal adsorption curve fitting results by Ono-Kondo lattice model

      图  5  吸附相体积、吸附分子层数和吸附气比例计算结果

      Fig.  5.  Calculation results of the adsorbed phase volume, the number of adsorbed layers and the proportion of adsorbed gas

      表  1  样品比表面和孔体积分析结果

      Table  1.   Analysis results of specific surface area and pore volume of shale samples

      样品编号 TOC(%) Stotal(m2/g) Smicro(m2/g) Smeso(m2/g) Vtotal(cm3/g) Vmicro(cm3/g) Vmeso(cm3/g)
      X3-1 3.1 9.83 2.22 7.64 0.023 05 0.001 15 0.021 84
      X3-2 4.3 11.81 3.22 8.91 0.023 14 0.001 68 0.021 72
      X3-3 3.7 12.17 3.64 8.81 0.022 84 0.001 91 0.021 25
      X3-4 3.5 11.90 3.45 8.78 0.024 18 0.001 80 0.022 66
      注:Stotal为BET方程计算的样品总比表面积,m2/g;Smicro为t-plot方法计算的微孔比表面积,m2/g;Smeso为BJH方程计算的中孔比表面积,m2/g;Vtotal为BET方程计算的样品总孔体积,cm3/g;Vmicro为t-plot方法计算的微孔体积,cm3/g;Vmeso为BJH方程计算的中孔体积,cm3/g.
      下载: 导出CSV

      表  2  Ono-Kondo格子模型参数拟合结果

      Table  2.   Results of parameter fitting by Ono-Kondo lattice model

      样品编号 am
      (mmol/g)
      εs/
      kT
      ρmc
      (g/cm3)
      nabs-f
      (mmol/g)
      相关系数
      R2
      X3-1 0.038 2 -3.234 0.263 7 0.069 52 0.996
      X3-2 0.045 5 -3.496 0.305 1 0.084 65 0.993
      X3-3 0.043 8 -3.369 0.284 5 0.079 64 0.994
      X3-4 0.039 1 -3.536 0.318 7 0.074 16 0.997
      注:nabs-f为地层压力条件下的页岩绝对吸附量.
      下载: 导出CSV
    • [1] Ambrose, R.J., Hartman, R.C., Campos, M.D., et al., 2010.New Pore-Scale Considerations for Shale Gas in Place Calculations.SPE Unconventional Gas Conference, Pittsburgh.doi: 10.2118/131772-ms
      [2] Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2012.Shale Gas-in-Place Calculations Part Ⅰ:New Pore-Scale Considerations.SPE Journal, 17(1):219-229.doi: 10.2118/131772-pa
      [3] Bénard, P., Chahine, R., 1997.Modeling of High-Pressure Adsorption Isotherms above the Critical Temperature on Microporous Adsorbents:Application to Methane.Langmuir, 13(4):808-813.doi: 10.1021/la960843x
      [4] Bi, H., Jiang, Z.X., Li, J.Z., et al., 2016.The Ono-Kondo Model and an Experimental Study on Supercritical Adsorption of Shale Gas:A Case Study on Longmaxi Shale in Southeastern Chongqing, China.Journal of Natural Gas Science and Engineering, 35:114-121.doi: 10.1016/j.jngse.2016.08.047
      [5] Charoensuppanimit, P., Mohammad, S.A., Robinson, R.L., et al., 2015.Modeling the Temperature Dependence of Supercritical Gas Adsorption on Activated Carbons, Coals and Shales.International Journal of Coal Geology, 138:113-126.doi: 10.1016/j.coal.2014.12.008
      [6] Clarkson, C.R., Haghshenas, B., 2013.Modeling of Supercritical Fluid Adsorption on Organic-Rich Shales and Coal.SPE Unconventional Resources Conference, Woodlands.doi: 10.2118/164532-ms
      [7] Donohue, M.D., Aranovich, G.L., 1998.Classification of Gibbs Adsorption Isotherms.Advances in Colloid and Interface Science, 76-77:137-152. doi: 10.1016/S0001-8686(98)00044-X
      [8] Donohue, M.D., Aranovich, G.L., 1999.A New Classification of Isotherms for Gibbs Adsorption of Gases on Solids.Fluid Phase Equilibria, 158-160:557-563.doi: 10.1016/s0378-3812(99)00074-6
      [9] Hill, R.J., Zhang, E., Katz, B.J., et al., 2007.Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):501-521.doi: 10.1306/12060606063
      [10] Ji, W.M., Song, Y., Jiang, Z.X., et al., 2015.Estimation of Marine Shale Methane Adsorption Capacity Based on Experimental Investigations of Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, South China.Marine and Petroleum Geology, 68:94-106. doi: 10.1016/j.marpetgeo.2015.08.012
      [11] Li, Y.X., Qiao, D.W., Jiang, W.L., et al., 2011.Gas Content of Gas-Bearing Shale and Its Geological Evaluation Summary.Geological Bulletin of China, 30(2/3):308-317 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2011Z1017.htm
      [12] Liang, F., Bai, W.H., Zou, C.N., et al., 2016.Shale Gas Enrichment Pattern and Exploration Significance of Well Wuxi-2 in Northeast Chongqing, NE Sichuan Basin.Petroleum Exploration and Development, 43(3):386-394.doi: 10.1016/s1876-3804(16)30045-3
      [13] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092
      [14] Luo, X., Wang, S., Wang, Z., et al., 2015.Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale from the Qaidam Basin in China.International Journal of Coal Geology, 150-151:210-223. doi: 10.1016/j.coal.2015.09.004
      [15] Mikhail, R.S., Brunauer, S., Bodor, E.E., 1968.Investigations of a Complete Pore Structure Analysis-Ⅰ.Analysis of Micropores.Journal of Colloid and Interface Science, 26(1):45-53.doi: 10.1016/0021-9797(68)90270-1
      [16] Mosher, K., He, J.J., Liu, Y.Y., et al., 2013.Molecular Simulation of Methane Adsorption in Micro-and Mesoporous Carbons with Applications to Coal and Gas Shale Systems.International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001
      [17] Ono, S., Kondo, S., 1960.Molecular Theory of Surface Tension in Liquids.Springer, Berlin.
      [18] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048
      [19] Sakurovs, R., Day, S., Weir, S., et al., 2007.Application of a Modified Dubinin-Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions.Energy & Fuels, 21(2):992-997.doi: 10.1021/ef0600614
      [20] Sun, Y., Zhou, L., Su, W., et al., 2007.Impact of Monolayer Adsorption Mechanism on Hydrogen Storage Materials.Chinese Science Bulletin, 52(3):361-365 (in Chinese).
      [21] Tian, H., Li, T.F., Zhang, T.W., et al., 2016.Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications.International Journal of Coal Geology, 156:36-49.doi: 10.1016/j.coal.2016.01.013
      [22] Wang, Y., Zhu, Y.M., Liu, S.M., et al., 2016a.Methane Adsorption Measurements and Modeling for Organic-Rich Marine Shale Samples.Fuel, 172:301-309.doi: 10.1016/j.fuel.2015.12.074
      [23] Wang, Z.H., Li, Y., Guo, P., et al., 2016b.Analyzing the Adaption of Different Adsorption Models for Describing the Shale Gas Adsorption Law.Chemical Engineering & Technology, 39(10):1921-1932.doi: 10.1002/ceat.201500617
      [24] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      [25] Yu, W., Sepehrnoori, K., Patzek, T.W., 2016.Modeling Gas Adsorption in Marcellus Shale with Langmuir and BET Isotherms.SPE Journal, 21(2):589-600.doi: 10.2118/170801-pa
      [26] Yue, G.Y., 1998.Tectonic Characteristics and Tectonic Evolution of DabashanOrogenic Belt and Its Foreland Basin.Journal of Mineralogy and Petrology, 18(Suppl.):8-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS8S1.001.htm
      [27] Zhang, D.F., Cui, Y.J., Liu, B., et al., 2011.Supercritical Pure Methane and CO2 Adsorption on Various Rank Coals of China:Experiments and Modeling.Energy & Fuels, 25(4):1891-1899.doi: 10.1021/ef101149d
      [28] Zhang, L.Y., Li, J.Y., Li, Z., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract).
      [29] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47:120-131.doi: 10.1016/j.orggeochem.2012.03.012
      [30] Zhou, L., Bai, S.P., Su, W., et al., 2003.Comparative Study of the Excess Versus Absolute Adsorption of CO2 on Superactivated Carbon for the near-Critical Region.Langmuir, 19(7):2683-2690.doi: 10.1021/la020682z
      [31] Zhou, L., Lü, C.Z., Wang, Y.L., et al., 1999.Physisorption of Gases on Porous Solids at above-Critical Temperatures.Progress in Chemistry, 11(3):221-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXJZ903.000.htm
      [32] Zhou, L., Zhou, Y.P., Li, M., et al., 2000.Experimental and Modeling Study of the Adsorption of Supercritical Methane on a High Surface Activated Carbon.Langmuir, 16(14):5955-5959. doi: 10.1021/la991159w
      [33] Zhou, S.W., Wang, H.Y., Xue, H.Q., et al., 2016.Difference between Excess and Absolute Adsorption Capacity of Shale and a New Shale Gas Reserve Calculation Method.Natural Gas Industry, 36(11):12-20 (in Chinese with English abstract).
      [34] Zhou, S.W., Yan, G., Xue, H.Q., et al., 2016.2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB-SEM.Marine and Petroleum Geology, 73:174-180.doi: 10.1016/j.marpetgeo.2016.02.033
      [35] 李玉喜, 乔德武, 姜文利, 等, 2011.页岩气含气量和页岩气地质评价综述.地质通报, 30(2/3): 308-317. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1017.htm
      [36] 孙艳, 周理, 苏伟, 等, 2007.单分子层吸附机理对储氢材料研究的冲击.科学通报, 52(3): 361-365. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200703018.htm
      [37] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
      [38] 乐光禹, 1998.大巴山造山带及其前陆盆地的构造特征和构造演化.矿物岩石, 18(增刊): 8-15. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS8S1.001.htm
      [39] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://earth-science.net/WebPage/Article.aspx?id=3189
      [40] 周理, 吕昌忠, 王怡林, 等, 1999.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 11(3): 221-226. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ903.000.htm
      [41] 周尚文, 王红岩, 薛华庆, 等, 2016.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法.天然气工业, 36(11): 12-20. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611004.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  4187
    • HTML全文浏览量:  1793
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-22
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回