Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on Ono-Kondo Lattice Model
-
摘要: 页岩气吸附机理的研究对于页岩气成藏和储量评价具有重要意义.甲烷在地层温度和压力条件下处于超临界状态,页岩气的吸附实际上为超临界吸附,但其机理目前尚不明确.在建立Ono-Kondo格子模型的基础上,结合低温氮气吸附和高压甲烷等温吸附实验,对龙马溪组页岩的微观孔隙结构和超临界吸附曲线进行了分析.结果表明,页岩中发育的孔隙尺度较小,比表面积较大,吸附气主要赋存于微孔和中孔中;页岩的等温吸附曲线在压力较大时,必然存在下降的趋势,这并非异常现象,而是超临界甲烷过剩吸附量的本质特征.Ono-Kondo格子模型对页岩高压等温吸附曲线的拟合效果很好,相关系数均在0.99以上,说明该模型可以表征页岩纳米孔隙中超临界甲烷的吸附特征.基于拟合得到的吸附相密度可将过剩吸附量转换为绝对吸附量,并直接计算地层温度和压力下甲烷的吸附分子层数,计算层数均小于1,表明甲烷分子并没有铺满整个孔隙壁面.因此受流体性质、吸附剂吸附能力和孔隙结构3个方面的影响,页岩气的吸附机理为单层吸附,不可能为双层甚至多层吸附.Abstract: Studies on the adsorption mechanism of shale gas are of great significance to shale gas accumulation and reserves evaluation. Methane is in supercritical state at conditions under formation temperature and pressure, so the adsorption of shale gas is supercritical adsorption, however, its mechanismis still controversial. Based on Ono-Kondo lattice model, micropore structure and supercritical adsorption curves of Longmaxi shales were analyzed, combining with low temperature N2 adsorption and high pressure CH4 adsorption experiments. The results show that its pore size is small but specific surface area is large, and adsorbed gas may mainly exist in the micro-mesopores. The excess adsorption capacity will reach a maximum value when the pressure reaches about 10 MPa, and then the excess adsorption capacity decreases with the increase of pressure. The decreasing phenomenon is not abnormal, but the essential characteristics of excess adsorption capacity of supercritical methane. The fitting effect of the high pressure isothermal adsorption curves by Ono-Kondo lattice model is very good with its correlation coefficient above 0.99, indicating that the model can characterize the process of supercritical methane adsorption. Based on the fitted absorbed phase density of methane, the excess adsorption was converted into absolute adsorption. Then the number of adsorbed molecular layers under formation temperature and pressure was calculated and they are all less than 1, showing that the methane molecules are not entirely covered on the whole pore wall. Considering the influence of supercritical fluid properties, adsorption capacity and pore structure of shale, the adsorption mechanism of shale gas should be monolayer adsorption instead of two-layer or multilayer adsorption.
-
Key words:
- shale gas /
- Ono-Kondo model /
- supercritical /
- adsorption mechanism /
- excess adsorption /
- monolayer adsorption
-
表 1 样品比表面和孔体积分析结果
Table 1. Analysis results of specific surface area and pore volume of shale samples
样品编号 TOC(%) Stotal(m2/g) Smicro(m2/g) Smeso(m2/g) Vtotal(cm3/g) Vmicro(cm3/g) Vmeso(cm3/g) X3-1 3.1 9.83 2.22 7.64 0.023 05 0.001 15 0.021 84 X3-2 4.3 11.81 3.22 8.91 0.023 14 0.001 68 0.021 72 X3-3 3.7 12.17 3.64 8.81 0.022 84 0.001 91 0.021 25 X3-4 3.5 11.90 3.45 8.78 0.024 18 0.001 80 0.022 66 注:Stotal为BET方程计算的样品总比表面积,m2/g;Smicro为t-plot方法计算的微孔比表面积,m2/g;Smeso为BJH方程计算的中孔比表面积,m2/g;Vtotal为BET方程计算的样品总孔体积,cm3/g;Vmicro为t-plot方法计算的微孔体积,cm3/g;Vmeso为BJH方程计算的中孔体积,cm3/g. 表 2 Ono-Kondo格子模型参数拟合结果
Table 2. Results of parameter fitting by Ono-Kondo lattice model
样品编号 am
(mmol/g)εs/
kTρmc
(g/cm3)nabs-f
(mmol/g)相关系数
R2X3-1 0.038 2 -3.234 0.263 7 0.069 52 0.996 X3-2 0.045 5 -3.496 0.305 1 0.084 65 0.993 X3-3 0.043 8 -3.369 0.284 5 0.079 64 0.994 X3-4 0.039 1 -3.536 0.318 7 0.074 16 0.997 注:nabs-f为地层压力条件下的页岩绝对吸附量. -
[1] Ambrose, R.J., Hartman, R.C., Campos, M.D., et al., 2010.New Pore-Scale Considerations for Shale Gas in Place Calculations.SPE Unconventional Gas Conference, Pittsburgh.doi: 10.2118/131772-ms [2] Ambrose, R.J., Hartman, R.C., Diaz-Campos, M., et al., 2012.Shale Gas-in-Place Calculations Part Ⅰ:New Pore-Scale Considerations.SPE Journal, 17(1):219-229.doi: 10.2118/131772-pa [3] Bénard, P., Chahine, R., 1997.Modeling of High-Pressure Adsorption Isotherms above the Critical Temperature on Microporous Adsorbents:Application to Methane.Langmuir, 13(4):808-813.doi: 10.1021/la960843x [4] Bi, H., Jiang, Z.X., Li, J.Z., et al., 2016.The Ono-Kondo Model and an Experimental Study on Supercritical Adsorption of Shale Gas:A Case Study on Longmaxi Shale in Southeastern Chongqing, China.Journal of Natural Gas Science and Engineering, 35:114-121.doi: 10.1016/j.jngse.2016.08.047 [5] Charoensuppanimit, P., Mohammad, S.A., Robinson, R.L., et al., 2015.Modeling the Temperature Dependence of Supercritical Gas Adsorption on Activated Carbons, Coals and Shales.International Journal of Coal Geology, 138:113-126.doi: 10.1016/j.coal.2014.12.008 [6] Clarkson, C.R., Haghshenas, B., 2013.Modeling of Supercritical Fluid Adsorption on Organic-Rich Shales and Coal.SPE Unconventional Resources Conference, Woodlands.doi: 10.2118/164532-ms [7] Donohue, M.D., Aranovich, G.L., 1998.Classification of Gibbs Adsorption Isotherms.Advances in Colloid and Interface Science, 76-77:137-152. doi: 10.1016/S0001-8686(98)00044-X [8] Donohue, M.D., Aranovich, G.L., 1999.A New Classification of Isotherms for Gibbs Adsorption of Gases on Solids.Fluid Phase Equilibria, 158-160:557-563.doi: 10.1016/s0378-3812(99)00074-6 [9] Hill, R.J., Zhang, E., Katz, B.J., et al., 2007.Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas.AAPG Bulletin, 91(4):501-521.doi: 10.1306/12060606063 [10] Ji, W.M., Song, Y., Jiang, Z.X., et al., 2015.Estimation of Marine Shale Methane Adsorption Capacity Based on Experimental Investigations of Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, South China.Marine and Petroleum Geology, 68:94-106. doi: 10.1016/j.marpetgeo.2015.08.012 [11] Li, Y.X., Qiao, D.W., Jiang, W.L., et al., 2011.Gas Content of Gas-Bearing Shale and Its Geological Evaluation Summary.Geological Bulletin of China, 30(2/3):308-317 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2011Z1017.htm [12] Liang, F., Bai, W.H., Zou, C.N., et al., 2016.Shale Gas Enrichment Pattern and Exploration Significance of Well Wuxi-2 in Northeast Chongqing, NE Sichuan Basin.Petroleum Exploration and Development, 43(3):386-394.doi: 10.1016/s1876-3804(16)30045-3 [13] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092 [14] Luo, X., Wang, S., Wang, Z., et al., 2015.Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale from the Qaidam Basin in China.International Journal of Coal Geology, 150-151:210-223. doi: 10.1016/j.coal.2015.09.004 [15] Mikhail, R.S., Brunauer, S., Bodor, E.E., 1968.Investigations of a Complete Pore Structure Analysis-Ⅰ.Analysis of Micropores.Journal of Colloid and Interface Science, 26(1):45-53.doi: 10.1016/0021-9797(68)90270-1 [16] Mosher, K., He, J.J., Liu, Y.Y., et al., 2013.Molecular Simulation of Methane Adsorption in Micro-and Mesoporous Carbons with Applications to Coal and Gas Shale Systems.International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001 [17] Ono, S., Kondo, S., 1960.Molecular Theory of Surface Tension in Liquids.Springer, Berlin. [18] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048 [19] Sakurovs, R., Day, S., Weir, S., et al., 2007.Application of a Modified Dubinin-Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions.Energy & Fuels, 21(2):992-997.doi: 10.1021/ef0600614 [20] Sun, Y., Zhou, L., Su, W., et al., 2007.Impact of Monolayer Adsorption Mechanism on Hydrogen Storage Materials.Chinese Science Bulletin, 52(3):361-365 (in Chinese). [21] Tian, H., Li, T.F., Zhang, T.W., et al., 2016.Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications.International Journal of Coal Geology, 156:36-49.doi: 10.1016/j.coal.2016.01.013 [22] Wang, Y., Zhu, Y.M., Liu, S.M., et al., 2016a.Methane Adsorption Measurements and Modeling for Organic-Rich Marine Shale Samples.Fuel, 172:301-309.doi: 10.1016/j.fuel.2015.12.074 [23] Wang, Z.H., Li, Y., Guo, P., et al., 2016b.Analyzing the Adaption of Different Adsorption Models for Describing the Shale Gas Adsorption Law.Chemical Engineering & Technology, 39(10):1921-1932.doi: 10.1002/ceat.201500617 [24] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm [25] Yu, W., Sepehrnoori, K., Patzek, T.W., 2016.Modeling Gas Adsorption in Marcellus Shale with Langmuir and BET Isotherms.SPE Journal, 21(2):589-600.doi: 10.2118/170801-pa [26] Yue, G.Y., 1998.Tectonic Characteristics and Tectonic Evolution of DabashanOrogenic Belt and Its Foreland Basin.Journal of Mineralogy and Petrology, 18(Suppl.):8-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS8S1.001.htm [27] Zhang, D.F., Cui, Y.J., Liu, B., et al., 2011.Supercritical Pure Methane and CO2 Adsorption on Various Rank Coals of China:Experiments and Modeling.Energy & Fuels, 25(4):1891-1899.doi: 10.1021/ef101149d [28] Zhang, L.Y., Li, J.Y., Li, Z., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833 (in Chinese with English abstract). [29] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47:120-131.doi: 10.1016/j.orggeochem.2012.03.012 [30] Zhou, L., Bai, S.P., Su, W., et al., 2003.Comparative Study of the Excess Versus Absolute Adsorption of CO2 on Superactivated Carbon for the near-Critical Region.Langmuir, 19(7):2683-2690.doi: 10.1021/la020682z [31] Zhou, L., Lü, C.Z., Wang, Y.L., et al., 1999.Physisorption of Gases on Porous Solids at above-Critical Temperatures.Progress in Chemistry, 11(3):221-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXJZ903.000.htm [32] Zhou, L., Zhou, Y.P., Li, M., et al., 2000.Experimental and Modeling Study of the Adsorption of Supercritical Methane on a High Surface Activated Carbon.Langmuir, 16(14):5955-5959. doi: 10.1021/la991159w [33] Zhou, S.W., Wang, H.Y., Xue, H.Q., et al., 2016.Difference between Excess and Absolute Adsorption Capacity of Shale and a New Shale Gas Reserve Calculation Method.Natural Gas Industry, 36(11):12-20 (in Chinese with English abstract). [34] Zhou, S.W., Yan, G., Xue, H.Q., et al., 2016.2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB-SEM.Marine and Petroleum Geology, 73:174-180.doi: 10.1016/j.marpetgeo.2016.02.033 [35] 李玉喜, 乔德武, 姜文利, 等, 2011.页岩气含气量和页岩气地质评价综述.地质通报, 30(2/3): 308-317. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1017.htm [36] 孙艳, 周理, 苏伟, 等, 2007.单分子层吸附机理对储氢材料研究的冲击.科学通报, 52(3): 361-365. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200703018.htm [37] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188 [38] 乐光禹, 1998.大巴山造山带及其前陆盆地的构造特征和构造演化.矿物岩石, 18(增刊): 8-15. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS8S1.001.htm [39] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://earth-science.net/WebPage/Article.aspx?id=3189 [40] 周理, 吕昌忠, 王怡林, 等, 1999.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 11(3): 221-226. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ903.000.htm [41] 周尚文, 王红岩, 薛华庆, 等, 2016.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法.天然气工业, 36(11): 12-20. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611004.htm