Developmental Stage and Formation Mechanism of Nanoparticles in Xiaomei Ductile Shear Zone on Hainan Island
-
摘要: 为了探讨韧性剪切带中纳米颗粒的发育过程和形成机制,进而厘定纳米颗粒对韧性剪切带形成过程和应力机制的指示作用,选取了在小妹韧性剪切带里发育的3种岩石样品(花岗岩、花岗质片麻岩和石英片岩),在扫描电镜下观察其中的纳米颗粒结构及纳米颗粒的聚集形态.观察结果表明:存在2种基本形态——球形的粒状和长条形的柱状,粒状纳米粒子(纳米粒)在3种岩石中都广泛发育,而柱状纳米颗粒(纳米棒)则在花岗质片麻岩中最发育.对纳米颗粒聚集形态研究,可将发育阶段分为:粒化阶段-异化阶段-成层堆积阶段.再次活动时,首先是经过活化阶段,形成复体颗粒,然后再重复上述阶段.结合纳米颗粒形态变化过程,其形成机制可能为脆-韧性变形.Abstract: In order to investigate the development process and formation mechanism of nanoparticles in ductile shear zone, three types of rocks were sampled from the Xiaomei ductile shear zone on Hainan island, including granite, granitic gneiss and quartz schist. And the morphology of the nanoparticles was observed by scanning electron microscope (SEM). The results show that there are two kinds of basic forms of nanoparticles:spherical and columnar, and the nanoparticles (nanograins) are widely developed in all three kinds of rocks. The nanoparticles (nanorods) in granite gneiss are most developed. The aggregated morphology of nanoparticles indicates that the development can be divided into three stages including granulation, alienation and stratification accumulation. The second phase of activity starts with the activation stage which forms complex-nanoparticles, and then repeats the above stage. Combined with the morphological changes of nanoparticles, it is concluded that the formation mechanism is probably brittle-ductile deformation.
-
Key words:
- Xiaomei ductile shear zone /
- nanograin /
- nanorod /
- complex-nanoparticle /
- scanning electron microscope /
- tectonics
-
图 1 陵水县小妹研究区区域地质图
图中五角星为研究区位置,位于小妹水库堤坝下游河床中.①九所-陵水断裂带的可能实际露头(蓝色线);②地球物理场资料给出的九所-陵水断裂带位置(绿色线).1.中二叠二长花岗岩;2.晚二叠二长花岗岩;3.中三叠二长花岗岩;4.早白垩二长花岗岩;5.晚白垩二长花岗岩;6.中二叠花岗岩;7.中三叠花岗岩;8.晚白垩花岗岩;9.晚二叠闪长花岗岩;10.晚白垩闪长花岗岩;11.中三叠石英二长岩;12.中侏罗石英二长岩;13.早白垩石英二长岩;14.早白垩石英正长岩;15.中三叠石英正长岩;16.中三叠钾长花岗岩;17.早白垩细晶斑岩;18.晚白垩花岗斑岩;19.长城系;20.第四系北海组; 21.第四系烟墩组;22.第四系全新统;23.断层;24.等高线;25.糜棱岩带
Fig. 1. Regional geological map and spatial location of Xiaomei research area, Lingshui County
图 5 异化粒扫描电镜照片
据沈宝云等(2016).a.异化作用发生早期阶段,颗粒粒径变化不大,但是颗粒形态变化较显著,并且颗粒开始出现聚集现象,形成复体颗粒;b.异化作用后期,单体颗粒粒径显著减小,平均粒径为32 nm,颗粒的圆度和球度相对较好,且颗粒间呈线性紧密排列;a, b均为花岗岩中照片
Fig. 5. SEM photos of alienation nanoparticles
图 9 纳米棒聚集扫描电镜图片
a.少量纳米棒刚形成时杂乱分布,其中还夹杂有纳米粒;b.大量纳米棒定向堆积,其中无纳米粒存在(据沈宝云等,2016);a,b均为花岗质片麻岩照片
Fig. 9. SEM photos of aggregation of nanorod
图 10 裂缝中的纳米颗粒扫描电镜图片
a.花岗质片麻岩(沈宝云等,2016);b.石英片岩
Fig. 10. The SEM photo of nanoparticle in the fissure
-
[1] Collettini, C., Niemeijer, A., Viti, C., et al., 2009.Fault Zone Fabric and Fault Weakness.Nature, 462(7275):907-910.doi: 10.1038/nature08585 [2] Han, R., Hirose, T., Shimamoto, T., 2010.Strong Velocity Weakening and Powder Lubrication of Simulated Carbonate Faults at Seismic Slip Rates.Journal of Geophsical Reaseach, 115(B3):181-192.doi: 10.1029/2008jb006136 [3] Han, R., Shimamoto, T., Hirose, T., et al., 2007.Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition.Science, 316(5826):878-881.doi: 10.1126/science.1139763 [4] Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolutionin the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605.doi: 10.1016/S0012-821X(02)00818-X [5] Hochella, M.F., 2006.The Case for Nanogeoscience.Annals of the New York Academy of Sciences, 1093(1):108-122.doi: 10.1196/annals.1382.008 [6] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract).doi: 10.3969/j.issn.1007-2802.2016.01.001 [7] Li, J., Liu, C.L., Zheng, Y., et al., 2017.Rupture Process of the Ms 7.0 Lushan Earthquake Determined by Joint Inversion of Local Static GPS Records, Strong Motion Data, and Teleseismograms.Journal of Earth Science, 28(2):404-410. http://www.cqvip.com/QK/86256X/199905/1004426919.html [8] Liu, H.L., Yan, P., Liu, Y.C., et al., 2006.The Existence and Significance of the Suture Zone in the North Margin of the South China Sea.Chinese Science Bulletin, 51(Suppl.Ⅱ):92-101. http://en.cnki.com.cn/Article_en/CJFDTotal-JXTW2006S2015.htm [9] Liu, H.L., Yao, Y.J., Shen, B.Y., et al., 2015.On Linkage of Western Boundary Faults of the South China Sea.Earth Science, 40(4):615-632 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.049 [10] Liu, H.L., Zheng, H.B., Wang, Y.L., et al., 2011.Basement of the South China Sea Area:Tracing the Tethyan Realm.Acta Geologica Sinica (English Edition), 85(3):637-655.doi: 10.1111/j.1755-6724.2011.00457.x [11] Liu, Z.H., Pan, B.W., Li, P.C., et al., 2017.Ductile Shear Zone in High-Grade Metamorphic Rocks and Its Rheomorphic Mechanism in the Daqing Mountain Area, Inner Mongolia.Earth Science, 42(12):2105-2116 (in Chinese with English abstract).doi: 10.3799/dqkx.2017.135 [12] Paola, N.D., Holdsworth, R.E., Viti, C., et al., 2015.Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation? Earth and Planetary Science Letters, 431:48-58.doi: 10.1016/j.epsl.2015.09.002 [13] Reich, M.S., Utsunomiya, S.E., Kesler, L., et al., 2006.Thermal Behavior of Metal Nanoparticles in Geologic Materials.Geology, 34(12):1033.doi: 10.1130/g22829a.1 [14] Sammis, C.G., Ben-Zion, Y., 2008.Mechanics of Grain-Size Reduction in Fault Zones.Journal of Geophsical Reaseach, 113(B3):115-124.doi: 10.1029/2006jb004892 [15] Schleicher, A.M., van der Pluijm, B.A., Warr, L.N., 2010.Nanocoatings of Clay and Creep of the San Andreas Fault at Parkfield, California.Geology, 38(7):667-670.doi: 10.1130/g31091.1 [16] Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.54 [17] Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013.Nanograins Form Carbonate Fault Mirrors.Geology, 41(6):703-706.doi: 10.1130/g34087.1 [18] South China Fe-Rich Scientific Research Team, Chinese Academy of Sciences, 1986.Geology in Hainan and Geochemistry of Iron Ore in Shilu.Science Press, Beijing (in Chinese). [19] Sun, Y., Ge, H.P., Lu, X.C., et al., 2003.Discovery and Analysis of the Ultra-Micro Nano Texture in the Ductile-Brittle Shear Zone.Science China Earth Sciences, 33(7):619-625 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200610013.htm [20] Sun, Y., Shu, L.S., Lu, X.C., et al., 2008.Recent Progress in Studies on the Nano-Sized Particle Layer in Rock Shear Planes.Progress in Natural Science, 18(4):367-373.doi: 10.1016/j.pnsc.2007.12.001 [21] Tisato, N., Toro, G.D., Rossi, N.D., et al., 2012.Experimental Investigation of Flash Weakening in Limestone.Journal of Structural Geology, 38(4):183-199.doi: 10.1016/j.jsg.2011.11.017 [22] Yuan, R.M., Zhang, B.L., Xu, X.W., et al., 2014.Features and Genesis of Micro-Nanometer-Sized Grains on Shear Slip Surface of the 2008 Wenchuan Earthquake.Science China Earth Sciences, 57:1961-1971.doi:10.1007/s11 430-014-4859-7 [23] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [24] 刘海龄, 姚永坚, 沈宝云, 等, 2015.南海西缘结合带的贯通性.地球科学, 40(4):615-632. http://www.earth-science.net/WebPage/Article.aspx?id=3107 [25] 刘正宏, 潘博文, 李鹏川, 等, 2017.内蒙古大青山高级变质岩韧性剪切带及其流变机制.地球科学, 42(12):2105-2116. http://www.earth-science.net/WebPage/Article.aspx?id=3710 [26] 沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354 [27] 中国科学院华南富铁科学研究队, 1986.海南岛地质与石碌铁矿地球化学.北京:科学出版社. [28] 孙岩, 葛和平, 陆现彩, 等, 2003.韧脆性剪切带滑移叶片中超微磨粒结构的发现和分析.中国科学:地球科学, 33 (7):619-625. http://earth.scichina.com:8080/sciD/CN/Y2003/V33/I7/619