Characteristics of Methane Diffusion in Coal Matrix and Its Effect on Gas Production
-
摘要: 扩散是煤层甲烷运移的关键环节之一,而目前有关煤层中甲烷扩散特征的认识并不充分.以沁水盆地南部高煤阶煤层气藏为例,应用微纳渗流力学理论分析了煤基质中气体扩散模式及定量表征参数;应用Simed软件开展了扩散性能对不同煤体结构煤层气排采规律的影响数值研究.结果表明:煤层甲烷的扩散受化学势梯度的驱动,产气过程中体相扩散、努森扩散和构型扩散模式并存且呈动态变化;甲烷扩散性能受气体温度、压力、气体种类、水分以及基质孔隙结构共同影响,基质孔隙吸附甲烷会改变微孔孔径并影响扩散路径的空间形态;煤基质中甲烷的扩散是非热力平衡过程,扩散系数是吸附量的函数.基于拟稳态扩散的数值研究表明,扩散性能强弱对于长期累计产气量几乎没有影响,而对短期产气速率具有较大的影响;扩散性能弱的,产气速率峰值较低,但峰值之后的一段时间内产气速率相对较高;与高渗煤层相比,低渗构造煤层的产气速率对吸附时间常数更敏感.Abstract: Diffusion is one of the key steps of methane transport in coal seam, yet our understanding of it is still insufficient. Taking the high rank coal bed methane (CBM) reservoir in the southern Qinshui basin, China as the study area, the patterns and quantitative characterization of methane diffusion in coal seam were analyzed based on microflows and nanoflows mechanics theory; the influence of diffusion property on gas production in coal seams of different coal textures was studied by using a numerical simulation software (Simed) in this study. Results show that the diffusion of methane in coal is driven by a chemical potential gradient and the diffusion modes include bulk diffusion, Knudsen diffusion and configurational diffusion. Various diffusion modes coexist and vary during the extraction of coalbed methane; the diffusion coefficient is influenced by temperature, gas pressure, gas type, moisture and pore structure of coal matrix, and the size of micropore varies due to the adsorption of methane and thereby the diffusion path will be transformed; the dynamic adsorption of methane on the coal matrix determines that methane diffusion in coal is a non-equillibrium process and that the diffusion coefficient is a function of adsorbed gas concentration; the results of numerical simulation based on quasi-steady diffusion show that the diffusion property has a slight influence on the long-term cumulative gas production while it exerts a significant effect on the short-term gas rate; if the diffusion coefficient is low, that is, the sorption time constant is relatively high, the peak gas rate will be relatively low while the gas rate will be relatively high in a period of time after reaching the peak gas rate; the gas production is more sensitive to sorption time constant for the low-permeability tectonically deformed coal seam than for the high-permeability one.
-
Key words:
- coal bed methane /
- high rank coal seam /
- diffusion /
- gas rate /
- coal texture
-
图 2 常温常压下孔隙大小对扩散系数的影响
Fig. 2. Influence of pore size on diffusion coefficient at normal temperature-pressure
表 1 气体在多孔介质中的运移模式
Table 1. Flow regimes of gas through porous media
努森数Kn <0.001 0.001~0.1 0.1~10 >10 运移模式 粘性连续流动 滑脱流动 过渡型流动 分子自由流动 表 2 煤层气藏数值模拟输入参数
Table 2. Parameters used in numeric simulation of coal bed methane reservoirs
参数 指标 煤层埋深(m) 500 煤层厚度(m) 5 绝对渗透率(10-15 m2) 5A、0.2B 渗透率各向异性 1:2:2 滑脱因子(kPa) 13.8 割理压缩系数(1/MPa) 0.25 基质收缩系数 0.012 兰氏体积(m3/t) 40 兰氏压力(kPa) 1 500 原地含气量(m3/t) 18 吸附时间常数(d) 10、1、0.1 裂缝半长(m) 50A、30B 裂缝导流系数(μm2·m) 2 排采范围(m×m) 300×200 注:上角标A、B代表两次模拟的参数. 表 3 模拟结果统计
Table 3. Results of numerical simulation
渗透率
(10-15 m2)吸附时间常数
(d)产气速率峰值
(m3/d)累计产气量
(m3)0.2 10 257.89 131 086.6 1 306.99 131 428.5 0.1 335.31 131 575.7 5 10 1 403.12 1 871 920.4 1 1 543.16 1 882 621.3 0.1 1 579.93 1 882 613.9 -
[1] Cai, J.C., You, L.J., Hu, X.Y., et al., 2012.Prediction of Effective Permeability in Porous Media Based on Spontaneous Imbibition Effect.International Journal of Modern Physics C, 23(7):1250054.doi: 10.1142/S0129183112500544 [2] Cai, J.C., Yu, B.M., 2012.Advances in Studies of Spontaneous Imbibition in Porous Media.Advances in Mechanics, 42(6):735-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201206006.htm [3] Drazer, G., Chertcoff, R., Bruno, L., et al., 1999.Concentration Dependence of Diffusion-Adsorption Rate in Activated Carbon.Chemical Engineering Science, 54(19):4285-4291.doi: 10.1016/s0009-2509(99)00088-3 [4] Duong, D.D., 1998.Adsorption Analysis:Equilibria and Kinetics.Imperial College Press, London. [5] Gu, S., Cai, J.H., Chang, D.W., et al., 2015.Reducing Formation Damage to Low-Porosity and Low-Permeability CBM Reservoirs Using Calcium Carbonate Nanoparticles.Earth Science, 40(6):1093-1100 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201506014.htm [6] Guo, H., Cheng, Y., Ren, T., et al., 2016.Pulverization Characteristics of Coal from a Strong Outburst-Prone Coal Seam and Their Impact on Gas Desorption and Diffusion Properties.Journal of Natural Gas Science and Engineering, 33:867-878.doi: 10.1016/j.jngse.2016.06.033 [7] Hu, H., Du, L., Xing, Y., Li, X., et al., 2017.Detailed Study on Self-and Multicomponent Diffusion of CO2-CH4, Gas Mixture in Coal by Molecular Simulation.Fuel, 187:220-228.doi: 10.1016/j.fuel.2016.09.056 [8] Jian, X., Guan, P., Zhang, W., 2012.Carbon Dioxide Sorption and Diffusion in Coals:Experimental Investigation and Modeling.Science in China (Series D), 42(4):492-504 (in Chinese). doi: 10.1007/s11430-011-4272-4?view=classic [9] Karniadakis, G.E., Beskok, A., Aluru, N., 2005.Microflows:Fundamentals and Simulation.Springer, Berlin. [10] Klinkenberg, J.L., 1941.The Permeability of Porous Media to Liquids and Gases.Socar Proceedings, 2(2):200-213. https://www.researchgate.net/publication/235908669_The_Permeability_of_Porous_Media_To_Liquids_And_Gases [11] Lai, F.P., Li, Z.P., Liu, X.Y., et al., 2014.Dynamic Model of Coal-Bed Methane Well under Pseudo-Steady Diffusion and Its Application.Journal of China Coal Society, 9(9):1820-1825 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201409007.htm [12] Letham, E.A., Bustin, R.M., 2015.Klinkenberg Gas Slippage Measurements as a Means for Shale Pore Structure Characterization.Geofluids, 16(2):264-278.doi: 10.1111/gfl.12147 [13] Li, G.Q., Meng, Z.P., Wang, B.Y., 2014.Diffusion and Seepage Mechanisms of High Rank Coal-Bed Methane Reservoir and Its Numerical Simulation at Early Drainage Rate.Journal of China Coal Society, 39(9):1919-1926 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2014/00000039/00000009/art00023 [14] Li, G.Q., Saghafi, A., 2014.Comparing Potentials for Gas Outburst in a Chinese Anthracite and an Australian Bituminous Coal Mine.International Journal of Mining Science and Technology, 24(3):391-396.doi: 10.1016/j.ijmst.2014.03.018 [15] Li, Z.Q., Liu, Y., Xu, Y.P., et al., 2016.Gas Diffusion Mechanism in Multi-Scale Pores of Coal Particles and New Diffusion Model of Dynamic Diffusion Coefficient.Journal of China Coal Society, 41(3):633-643 (in Chinese with English abstract). http://www.mtxb.com.cn/EN/Y2016/V41/I03/633 [16] Liu, H.H., Mou, J.H., Cheng, Y.P., 2015.Impact of Pore Structure on Gas Adsorption and Diffusion Dynamics for Long-Flame Coal.Journal of Natural Gas Science and Engineering, 22:203-213.doi: 10.1016/j.jngse.2014.11.030 [17] Luo, L., Tang, D.Z., Tao, S., et al., 2016.Pore Structure and Its Influence on Gas Mass Transfer of Low Rank Coal in Eastern Junggar Basin, Xinjiang.Journal of China Coal Society, 41(4):941-947 (in Chinese with English abstract). http://www.mtxb.com.cn/EN/Y2016/V41/I04/941 [18] Luo, Z.J., Fu, Y.L., Wang, Z.H., 1999.Determination of Coalbed Methane Desorption Time.Coal Geology & Exploration, 27(4):28-29 (in Chinese with English abstract). [19] Meng, Z.P., Li, G.Q., 2013.Experimental Research on the Permeability of High-Rank Coal under a Varying Stress and Its Influencing Factors.Engineering Geology, 162(14):108-117.doi: 10.1016/j.enggeo.2013.04.013 [20] Meng, Z.P., Liu, J.R., Li, G.Q., 2015.Experimental Analysis of Methane Adsorption-Diffusion Property in High-Maturity Organic-Rich Shale and High-Rank Coal.Natural Gas Geoscience, 26(8):1499-1506 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201508009.htm [21] Meng, Z.P., Zhang, J.X., Liu, H., et al., 2014.Productivity Model of CBM Wells Considering the Stress Sensitivity and Its Application Analysis.Journal of China Coal Society, 39(4):593-599 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201404001.htm [22] Nie, B.S., Duan, S.M., 1998.The Adsorption Essence of Gas on Coal Surface.Journal of Taiyuan University of Technology, 29(4):417-421 (in Chinese with English abstract). [23] Nie, B.S., Li, X.C., Cui, Y.J., et al., 2014.Theory and Application of Gas Migration in Coal Seam.Science Press, Beijing (in Chinese). [24] Pillalamarry, M., Harpalani, S., Liu, S.M., 2011.Gas Diffusion Behavior of Coal and Its Impact on Production from Coalbed Methane Reservoirs.International Journal of Coal Geology, 86(4):342-348.doi: 10.1016/j.coal.2011.03.007 [25] Saghafi, A., Faiz, M., Roberts, D., 2007.CO2 Storage and Gas Diffusivity Properties of Coals from Sydney Basin, Australia.International Journal of Coal Geology, 70(1-3):240-254.doi: 10.1016/j.coal.2006.03.006 [26] Schuring, D., 2002.Diffusion in Zeolites:Towards A Microscopic Understanding (Dissertation).Eindhoven University of Technology, Eindhoven, 14-18. [27] Shi, J.T., Li, X.F., Xu, B.X., et al., 2013.Review on Desorption-Diffusion-Flow Model of Coal-Bed Methane.Science in China (Series G), 43(12):1548-1557 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013SSPMA..43.1548S [28] Smith, M.D., Williams, L.F., 1984.Diffusion Effects in the Recovery of Methane from Coalbeds.SPE, 24(24):529-535.doi: 10.2118/10821-PA [29] Zhang, D.F., Cui, Y.J., Li, S.G., et al., 2011.Adsorption and Diffusion Behaviors of Methane and Carbon Dioxide on Various Rank Coals.Journal of China Coal Society, 36(10):1693-1698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201110016.htm [30] Zhang, S.Y., Sang, S.X., 2009.Adsorption-Diffusion Coefficient Analysis of Coal-Bed Methane in Different Rank Coals.Coal Geology of China, 21(3):24-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT200903008.htm [31] Zhang, W.M., Meng, G., Wei, X.Y., 2012.A Review on Slip Models for Gas Microflows.Microfluidics and Nanofluidics, 13(6):845-882.doi: 10.1007/s10404-012-1012-9 [32] 蔡建超, 郁伯铭, 2012.多孔介质自发渗吸研究进展.力学进展, 42(6): 735-754. doi: 10.6052/1000-0992-11-096 [33] 谷穗, 蔡记华, 常德武, 等, 2015.使用纳米碳酸钙降低低孔低渗煤层气储层伤害.地球科学, 40(6): 1093-1100. http://www.earth-science.net/WebPage/Article.aspx?id=3095 [34] 简星, 关平, 张巍, 2012.煤中CO2的吸附和扩散:实验与建模.中国科学(D辑), 42(4): 492-504. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201204002&dbname=CJFD&dbcode=CJFQ [35] 赖枫鹏, 李治平, 刘晓燕, 等, 2014.拟稳态扩散的煤层气井动态模型及应用.煤炭学报, 9(9): 1820-1825. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409007.htm [36] 李国庆, 孟召平, 王宝玉, 2014.高煤阶煤层气扩散-渗流机理及初期排采强度数值模拟.煤炭学报, 39(9): 1919-1926. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409023.htm [37] 李志强, 刘勇, 许彦鹏, 等, 2016.煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型.煤炭学报, 41(3): 633-643. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603016.htm [38] 罗磊, 汤达祯, 陶树, 等, 2016.准东低阶煤孔隙特征及对气体传质方式的影响.煤炭学报, 41(4): 941-947. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201604020.htm [39] 骆祖江, 付延玲, 王增辉, 1999.煤层气解吸时间的确定.煤田地质与勘探, 27(4): 28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-MDKT904.008.htm [40] 孟召平, 刘金融, 李国庆, 2015.高演化富有机质页岩和高煤阶煤中甲烷吸附-扩散性能的实验分析.天然气地球科学, 26(8): 1499-1506. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508009.htm [41] 孟召平, 张纪星, 刘贺, 等, 2014.考虑应力敏感性的煤层气井产能模型及应用分析.煤炭学报, 39(4): 593-599. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201404001.htm [42] 聂百胜, 段三明, 1998.煤吸附瓦斯的本质.太原理工大学学报, 29(4): 417-421. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGY804.026.htm [43] 聂百胜, 李祥春, 崔永君, 等, 2014.煤体瓦斯运移理论及应用.北京:科学出版社. [44] 石军太, 李相方, 徐兵祥, 等, 2013.煤层气解吸扩散渗流模型研究进展.中国科学(G辑), 43(12): 1548-1557. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201312003.htm [45] 张登峰, 崔永君, 李松庚, 等, 2011.甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为.煤炭学报, 36(10): 1693-1698. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201110016.htm [46] 张时音, 桑树勋, 2009.不同煤级煤层气吸附扩散系数分析.中国煤炭地质, 21(3): 24-27. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200903008.htm