• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素

    张毅 郑书粲 高波 冯庆来

    张毅, 郑书粲, 高波, 冯庆来, 2017. 四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素. 地球科学, 42(6): 1008-1025. doi: 10.3799/dqkx.2017.534
    引用本文: 张毅, 郑书粲, 高波, 冯庆来, 2017. 四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素. 地球科学, 42(6): 1008-1025. doi: 10.3799/dqkx.2017.534
    Zhang Yi, Zheng Shucan, Gao Bo, Feng Qinglai, 2017. Distribution Characteristics and Enrichment Factors of Organic Matter in Upper Permian Dalong Formation of Shangsi Section, Guangyuan, Sichuan Basin. Earth Science, 42(6): 1008-1025. doi: 10.3799/dqkx.2017.534
    Citation: Zhang Yi, Zheng Shucan, Gao Bo, Feng Qinglai, 2017. Distribution Characteristics and Enrichment Factors of Organic Matter in Upper Permian Dalong Formation of Shangsi Section, Guangyuan, Sichuan Basin. Earth Science, 42(6): 1008-1025. doi: 10.3799/dqkx.2017.534

    四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素

    doi: 10.3799/dqkx.2017.534
    基金项目: 

    中国地质调查局项目 1212011220796

    详细信息
      作者简介:

      张毅(1988-),男,博士研究生,从事地层学、古生物学及页岩气地质学研究.ORCID: 0000-0002-2714-1407. E-mail: zhangyi13667257871@163.com

      通讯作者:

      冯庆来,E-mail: qinglaifeng@cug.edu.cn

    • 中图分类号: P539

    Distribution Characteristics and Enrichment Factors of Organic Matter in Upper Permian Dalong Formation of Shangsi Section, Guangyuan, Sichuan Basin

    • 摘要: 四川盆地上二叠统大隆组富有机质硅质泥岩是页岩气勘探的一套重要目的层系.利用扫描电子显微镜和元素地球化学等方法探究大隆组有机质类型、分布特征及富集因素,对该地区非常规油气勘探具有指导意义.根据扫描电镜图片,上寺剖面大隆组有机质按形态可分为形态有机质、弥散有机质和沥青.三者成因不同,形态有机质是选择性保存的结果,以离散状分布在所有岩性样品中;弥散有机质是大隆组有机碳总量(total organic carbon,TOC)的主体,主要分布在硅质泥岩样品中,硅质灰岩样品中极少,体现了粘土矿物的吸附作用;沥青是可溶有机质运移进入孔、缝系统,经高热演化后形成的块状有机质,主要分布于硅质灰岩和灰岩样品中.该剖面地球化学数据显示缺氧沉积环境有利于有机质保存,但海洋表层生产力才是控制TOC含量变化的主要因素.研究表明,晚二叠世海平面上升导致上寺剖面大隆组表层生产力增加及底层海水缺氧,该组富有机质黑色硅质泥岩段高TOC是沉积环境与矿物吸附共同作用的结果,同时也反映了原生有机质保存情况.更好的理解泥质烃源岩中有机质赋存类型有助于烃源岩评价及非常规油气勘探开发工作.

       

    • 图  1  华南长兴期古地理图及上寺剖面位置

      Feng and Algeo(2014)

      Fig.  1.  Changhsingian palaeogeography map of South China and Shangsi section location

      图  3  形态有机质扫描电镜特征

      所有照片两张为一组,显示同一区域,每组第一张为SE照片,第二张为BSE照片.a、b.丝状胞外聚合物,样品SS15-3;c、d.疑源类(Dictyotidium),样品SS21-13;e、f.形态有机质,右上角箭头指示丝状有机质,虚线椭圆内为疑源类化石,样品SS16-23 TOC=11.18;g、h.具刺疑源类化石残片,样品SS16-1

      Fig.  3.  Characteristics of morphological organic matter in scanning electron microscope

      图  4  扫描电镜下弥散有机质分布特征及能谱图

      样品279-2 TOC=10.53.所有照片两张为一组,显示同一区域,每组第一张为SE照片,第二张为BSE照片.a、b.斑状分布弥散有机质;c、d.图b白色方框区域放大图像.Spot1~Spot4显示图d中弥散有机质成分特征.OM.有机质;Cl.粘土矿物;Sp.能谱点

      Fig.  4.  Disperse organic matter distribution characteristics in SEM and the graph of energy disperse spectrum

      图  5  扫描电镜下沥青分布特征及能谱图

      照片a~d两张为一组,显示同一区域,每组第一张为SE照片,第二张为BSE照片.a、b.块状沥青,样品284-14 TOC=2.61;c、d.储存在孔洞中的沥青,样品287-32 TOC=0.39;e.孔洞中沥青,贝壳状断口,样品288-39 TOC=0.48;f.储存在裂隙中的沥青,样品SS277-5.Spot5、Spot6.展示沥青成分特征.Sp.能谱点;OM.有机质;Cl.粘土矿物;Cal.方解石;Q.石英

      Fig.  5.  Bitumen distribution characteristics in SEM and the graph of energy disperse spectrum

      图  6  大隆组TOC及古海洋沉积环境指标曲线

      Nixs、Znxs指示古海洋生产力,Uxs、Moxs、Vxs、Vxs/(Vxs+Nixs)为氧化还原指标;牙形石带据Jiang et al.(2011)

      Fig.  6.  TOC and paleo-oceanic sedimentary environment profile of the Dalong Formation

      图  2  上寺剖面野外照片

      a.大隆组整体照片,16层以下为吴家坪阶,17层开始为长兴阶;b.16层下部黑色硅质泥岩;c.17层黑色硅质泥岩,厚层灰岩为18层底部;d.18层黑色硅质泥岩照片;e.19~22层硅质灰岩

      Fig.  2.  Field photo of Shangsi section

      图  7  大隆组TOC与Moxs, Nixs含量的关系

      Moxs含量代表氧化还原程度;Nixs代表生产力水平

      Fig.  7.  Relationship between the TOC and content of Moxs, Nixs

      图  8  上寺剖面大隆组有机质赋存综合图

      牙形石带据Jiang et al.(2011); 部分放射虫和有孔虫数据聂小妹等(2012)

      Fig.  8.  Synthetic diagram for organic matter enrichment in Dalong Formation of Shangsi section

      图  9  海平面控制大隆组沉积模式

      a.Ⅱ段地层沉积模式,海平面高,生产力高,水体还原,以弥散有机质为主;b.Ⅰ段地层沉积模式,低海平面,水体氧化,以块状沥青为主

      Fig.  9.  Sea-level-controlled models explaining black siliceous mudstone sediments in Dalong Formation

      表  1  上寺剖面大隆组地球化学数据

      Table  1.   Geochemical data of Dalong Formation, Shangsi section

      层号 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
      样品号 292-6 292-4 291-8 291-7 291-6 291-5 291-4 291-3 291-2 291-1 290-10 290-9 290-8-1 290-7 290-6 290-5 290-4
      TOC 0.30 1.70 0.33 0.54 0.23 0.46 0.48 0.57 1.38 0.40 1.91 0.61 0.39 0.70 0.28 0.60 0.79
      TiO2 0.08 0.13 0.04 0.08 0.03 0.09 0.04 0.07 0.18 0.25 0.34 0.16 0.15 0.22 0.12 0.22 0.17
      Ni 20.28 40.98 11.08 33.95 8.17 22.75 19.07 21.81 41.30 24.77 74.20 30.66 38.30 67.97 17.47 55.55 16.52
      Zn 24.39 43.98 13.27 45.78 11.36 32.87 24.20 32.07 53.19 41.80 89.19 48.03 65.35 92.16 26.50 97.94 31.92
      V 21.81 142.37 16.56 50.88 16.19 70.25 42.99 49.72 116.94 60.70 165.49 72.70 54.28 93.01 26.61 74.67 30.59
      Mo 3.61 5.91 1.04 2.56 0.98 2.52 3.91 3.41 9.94 4.87 13.80 5.59 3.34 5.27 1.97 6.21 2.66
      U 5.18 6.70 4.91 5.23 5.75 10.95 9.78 8.86 11.72 7.44 5.19 8.87 4.58 5.49 5.26 3.02 5.14
      层号 21 21 21 20 20 20 20 20 19 19 19 19 19 19 19 19 19
      样品号 289-3 289-2 289-1-2 288-42 288-41 288-39 288-37 288-34 287-32 287-29 287-26 286-22 286-17 286-14 285-12 285-9 285-6
      TOC 0.62 0.83 3.72 0.51 0.37 0.48 0.36 0.42 0.39 0.18 4.82 3.94 2.95 1.45 1.81 2.40 0.79
      TiO2 0.07 0.30 0.05 0.02 0.02 0.02 0.15 0.08 0.14 0.05 0.22 0.12 0.04 0.07 0.04 0.15 0.02
      Ni 27.13 45.04 45.87 10.69 25.17 8.55 155.04 32.72 32.41 20.39 67.66 14.90
      Zn 32.37 77.35 28.15 8.86 45.20 15.53 124.05 26.23 30.89 17.91 85.80 14.62
      V 55.04 123.71 259.45 38.91 48.46 14.23 218.30 269.33 143.62 201.69 125.45 37.88
      Mo 2.78 6.34 2.93 3.93 1.97 14.18 23.07 9.03 11.02 15.91 4.05
      U 6.96 7.43 16.96 7.57 5.63 2.30 23.66 9.31 5.72 11.31 6.75 3.87
      层号 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
      样品号 285-2 284-14 284-7 284-2 283-9 283-6 283-1 282-15 282-11 282-8 282-3 281-13 281-10 281-7 281-3 281-1 280-13
      TOC 0.47 2.61 9.77 1.57 0.80 2.27 4.39 2.87 4.72 4.13 4.27 2.24 3.70 1.76 2.33 8.78
      TiO2 0.01 0.16 0.37 0.08 0.07 0.07 0.09 0.05 0.20 0.08 0.07 0.04 0.09 0.05 0.09 0.19
      Ni 9.72 60.18 166.10 33.76 25.74 59.49 79.98 57.34 115.34 106.47 92.20 47.24 68.34 33.89 61.86 129.36
      Zn 10.16 89.99 215.22 57.08 41.12 75.75 83.50 56.84 134.69 85.94 54.40 58.33 64.08 37.86 55.24 105.36
      V 18.75 147.17 275.14 52.85 37.59 74.55 139.03 118.56 299.25 515.80 696.35 237.80 170.11 155.08 265.84 820.57
      Mo 1.82 8.15 38.90 5.28 5.14 7.63 9.72 9.70 36.66 112.52 200.99 35.43 13.77 14.20 49.83 72.40
      U 3.52 4.39 2.54 6.08 8.56 7.45 8.88 6.19 9.78 27.69 19.82 17.45 10.68 14.62 10.35 34.02
      层号 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 16
      样品号 280-9 280-6 280-2 279-15-2 279-12 279-7 279-2 278-7 278-5 278-1 277-4 277-2 276-3 276-1 275-1 274-1 16-40
      TOC 3.24 7.54 2.71 14.00 5.44 7.50 10.53 3.60 0.34 8.41 7.31 4.78 4.04 5.48 5.47 5.29 11.32
      TiO2 0.08 0.08 0.06 0.19 0.14 0.15 0.19 0.07 0.09 .012 0.10 0.08 0.06 0.17 0.08 0.13 0.23
      Ni 57.00 106.79 41.78 152.06 113.06 144.20 177.38 57.38 24.41 88.75 116.27 94.30 61.78 108.00 80.28 130.32 140.72
      Zn 36.43 61.91 23.83 88.98 112.38 102.74 139.74 54.05 22.14 68.69 37.48 94.49 32.87 53.21 43.76 96.01 114.26
      V 373.36 775.06 293.73 1111.99 340.34 548.89 1001.71 202.51 232.78 258.93 590.56 480.24 446.09 968.28 434.82 1475.39 1139.40
      Mo 44.72 143.52 58.24 250.00 32.47 173.63 207.42 46.51 6.66 26.08 105.90 63.44 55.87 190.79 27.73 63.87 123.48
      U 20.60 49.03 33.90 46.32 18.12 17.31 32.57 19.14 1.96 13.85 7.87 65.85 11.02 13.41 37.04 20.09 14.05
      层号 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15
      样品号 16-37 16-34 16-31 16-28 16-26 16-23 16-16 16-14 16-12 16-10 16-8 16-4 16-1 15-2 15-4 15-5 15-7 15-15 PAAS
      TOC 5.50 8.27 1.37 5.17 6.14 11.18 9.54 15.74 9.18 12.03 9.08 4.78 10.63 0.51 2.27 5.54 0.33 4.00
      TiO2 0.19 014 0.03 0.20 0.57 0.24 0.24 0.26 0.14 0.26 0.22 0.12 0.19 0.39 0.12 0.37 0.04 0.19 1.00
      Ni 99.42 146.72 25.87 78.03 121.60 190.29 211.12 287.22 149.81 187.02 160.04 121.54 123.06 99.91 57.16 178.37 20.08 77.05 55.00
      Zn 80.03 96.06 20.87 77.67 111.46 125.88 153.75 210.37 101.38 145.95 124.66 111.84 151.26 153.24 57.07 152.79 17.00 109.19 85.00
      V 715.67 1133.68 191.49 681.26 949.65 1541.57 951.42 1369.05 1004.84 1428.88 879.31 174.46 197.81 63.59 82.32 174.54 16.55 130.74 150.00
      Mo 56.85 142.64 32.02 45.16 62.03 112.43 79.17 106.10 46.41 108.36 58.39 16.12 9.22 3.24 7.56 15.00 7.61 8.38 1.00
      U 11.63 12.32 14.32 8.97 17.64 11.13 37.48 39.20 55.79 47.28 11.74 11.21 8.11 5.16 7.21 10.27 5.50 7.52 3.10
        注:TOC,TiO2单位为%;Ni、Zn、V、Mo、U单位为10-6;后太古宙平均页岩数据引自Taylor and Mclennan(1985).
      下载: 导出CSV

      表  2  上寺剖面大隆组弥散有机质和沥青能谱元素分析结果

      Table  2.   EDS results of AOM in Dalong Formation, Shangsi section

      样品 点号 元素含量(%) 描述
      C O Al Si S K Ca Fe Na Mg Ti
      SS279-2 Spot1 38.51 31.76 5.24 19.78 1.31 2.20 1.20 弥散有机质
      SS279-2 Spot2 50.84 29.41 2.42 13.73 1.73 1.48 0.40 弥散有机质
      SS279-2 Spot3 67.76 14.45 1.56 13.19 1.99 0.61 0.44 弥散有机质
      SS279-2 Spot4 36.13 36.93 4.62 15.72 1.96 1.67 1.29 0.73 0.96 弥散有机质
      SS287-32 Spot5 75.64 12.26 2.51 9.59 块状有机质
      SS-288-39 Spot6 94.66 5.34 块状有机质
      下载: 导出CSV
    • [1] Algeo, T.J., Hinnov, L., Moser, J., et al., 2010.Changes in Productivity and Redox Conditions in the Panthalassic Ocean during the Latest Permian.Geology, 38(2):187-190.doi:10.1130/ G30483.1
      [2] Arnarson, T.S., Keil, R.G., 2007.Changes in Organic Matter-Mineral Interactions for Marine Sediments with Varying Oxygen Exposure Times.Geochimica et Cosmochimica Acta, 71(14):3545-3556.doi:10.1016/ j.gca.2007.04.027
      [3] Bastviken, D., Persson, L., Odham, G., et al., 2004.Degradation of Dissolved Organic Matter in Oxic and Anoxic Lake Water.Limnology and Oceanography, 49(1):109-116.doi:10.4319/ lo.2004.49.1.0109
      [4] Bennett, R.H., Hulbert, M.H., Curry, K.J., et al., 2012.Organic Matter Sequestered in Potential Energy Fields Predicted by 3-D Clay Microstructure Model:Direct Observations of Organo-Clay Micro-and Nanofabric.Marine Geology, 315-318:108-114.doi: 10.1016/j.margeo.2012.04.009
      [5] Bock, M.J., Mayer, L.M., 2000.Mesodensity Organo-Clay Associations in a Near-Shore Sediment.Marine Geology, 163(1-4):65-75.doi:10.1016/ S0025-3227(99)00105-X
      [6] Burdige, D.J., 2007.Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chemical Reviews, 107(2):467-485.doi:10.1021/ cr050347q
      [7] Cai, J.G., Bao, Y.J., Yang, S.Y., et al., 2007.The Forms and Enrichment Mechanism of Organic Matter in the Muddy Sediments and Mudstone.Science China:Earth Science, 37(2):244-253 (in Chinese).
      [8] Cai, J., Lu, L., Bao, Y., et al., 2012.The Significance and Variation Characteristics of Interlay Water in Smectite of Hydrocarbon Source Rocks.Science China:Earth Science, 42 (4):483-491 (in Chinese). https://www.researchgate.net/publication/257684788_The_significance_and_variation_characteristics_of_interlay_water_in_smectite_of_hydrocarbon_source_rocks
      [9] Cai, X.F., Feng, Q.L., Gu, S.Z., et al., 2011.Regressive Continental Shelf as an Important Location for the Development of Source Rocks—An Example from the Upper Permian Dalong Formation in the Northern Margin of the Upper-Middle Yangtze Region.Oil & Gas Geology, 32(1):29-37 (in Chinese with English abstract).
      [10] Cai, X.F., Zhang, Z.F., Peng, X.F., et al., 2007.Depositional Characteristics of the Dalong Formation and the Related Potential Hydrocarbon Source Rocks of Hubei, Hunan, Guizhou and Guangxi Regions.Earth Science, 32(6):774-780 (in Chinese with English abstract). https://www.researchgate.net/publication/285798625_Depositional_characteristics_of_the_Dalong_formation_and_the_related_potential_hydrocarbon_source_rocks_of_Hubei_Hunan_Guizhou_and_Guangxi_regions
      [11] Canfield, D.E., 1994.Factors Influencing Organic Carbon Preservation in Marine Sediments.Chemical Geology, 114:315-329.doi: 10.1016/0009-2541(94)90061-2
      [12] Chamlley, H., 1989.Clay Sedimentology.Springer Science & Business Media, New York.
      [13] Chen, H., Xie, X.N., Li, H.J., et al., 2010.Evaluation of the Permian Marine Hydrocarbon Source Rocks at Shangsi Section in Sichuan Province Using Multi-Proxies of Paleoproductivity and Paleoredox.Journal of Palaeogeography, 12(3):324-333 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_gdlxb201003008.aspx
      [14] Curry, K.J., Bennett, R.H., Mayer, L.M., et al., 2007.Direct Visualization of Clay Microfabric Signatures Driving Organic Matter Preservation in Fine-Grained Sediment.Geochimica et Cosmochimica Acta, 71(7):1709-1720.doi:10.1016/ j.gca.2007.01.009
      [15] Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., et al., 2012.Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging.AAPG Bulletin, 96(4):665-677.doi: 10.1306/08151110188
      [16] de Leeuw, J.W.D., Versteegh, G.J.M., van Bergen, P.F.V., 2006.Biomacromolecules of Algae and Plants and Their Fossil Analogues.Plant Ecology, 182(1-2):209-233.doi:10.1007/ s11258-005-9027-x
      [17] Ding, X.J., Liu, G.D., Huang, Z.L., et al., 2016.Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks.Earth Science, 41(5):832-842(in Chinese with English abstract). https://www.researchgate.net/publication/304879937_Controlling_function_of_organic_matter_supply_and_preservation_on_formation_of_source_rocks
      [18] Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3):288-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201003008.htm
      [19] Dong, D.Z., Wang, Y.M., Li, X.J., et al., 2016.Breakthrough and Prospect of Shale Gas Exploration and Development in China.Natural Gas Industry, 36(1):19-32 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S2352854016300110
      [20] Erbacher, J., Thurow, J., Littke, R., 1996.Evolution Patterns of Radiolaria and Organic Matter Variations:A New Approach to Identify Sea-Level Changes in Mid-Cretaceous Pelagic Environments.Geology, 24(6):499.doi:10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2
      [21] Fan, F., Cai, J.G., Xu, J.L., et al., 2011.Original Preservation of Different Organic Micro-Components in Muddy Source Rock.Journal of Tongji University (Natural Science), 39 (3):434-439 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854016300110?via%3Dihub
      [22] Feng, Q.L., Algeo, T.J., 2014.Evolution of Oceanic Redox Conditions during the Permo-Triassic Transition:Evidence from Deepwater Radiolarian Facies.Earth-Science Reviews, 137:34-51.doi:10.1016/ j.earscirev.2013.12.003
      [23] Fu, X.D., Qin, J.Z., Tenger, et al., 2010.Evaluation on Dalong Formation Source Rock in the North Sichuan Basin.Petroleum Geology & Experiment, 32(6):566-571(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201006011.htm
      [24] Fu, X.D., Qin, J.Z., Tenger, et al., 2011.Mineral Components of Source Rocks and Their Petroleum Significance:A Case from Paleozoic Marine Source Rocks in the Middle-Upper Yangtze Region.Petroleum Exploration and Development, 38(6):671-684(in Chinese with English abstract). https://www.researchgate.net/publication/287701167_Mineral_components_of_source_rocks_and_their_petroleum_significance_A_case_from_Paleozoic_marine_source_rocks_in_the_Middle-Upper_Yangtze_region
      [25] Hartnett, H.E., Keil, R.G., Hedges, J.I., et al., 1998.Influence of Oxygen Exposure Time on Organic Carbon Preservation in Continental Margin Sediments.Nature, 391(6667):572-574.doi:10.1038/ 35351
      [26] Harvey, R.H., Tuttle, J.H., Bell, J.T., 1995.Kinetics of Phytoplankton Decay during Simulated Sedimentation:Changes in Biochemical Composition and Microbial Activity under Oxic and Anoxic Conditions.Geochimica et Cosmochimica Acta, 59(16):3367-3377.doi:10.1016/ 0016-7037(95)00217-N
      [27] He, Y.B., Luo, J.X., 2010.Lithofacies Palaeogeography of the Late Permian Changxing Age in Middle and Upper Yangtze Region.Journal of Palaeogeography, 12(5):497-514(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201005003.htm
      [28] Hedges, J.I., Keil, R.G., 1995.Sedimentary Organic Matter Preservation:An Assessment and Speculative Synthesis.Marine Chemistry, 49(2-3):81-115.doi:10.1016/0304-4203 (95) 00008-F
      [29] Huang, S.J., 1992.Clay Minerals in Clay Rocks near P/T Boundary from Guangyuan and Chongqing, Sichuan.Journal of Chengdu College of Geology, 19(3):66-73(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG199203010.htm
      [30] Hulthe, G., Hulth, S., Hall, P.O.J., 1998.Effect of Oxygen on Degradation Rate of Refractory and Labile Organic Matter in Continental Margin Sediments.Geochimica et Cosmochimica Acta, 62(8):1319-1328.doi:10.1016/ S0016-7037(98)00044-1
      [31] Jiang, H.S., Lai, X.L., Yan, C.B., et al., 2011.Revised Conodont Zonation and Conodont Evolution across the Permian-Triassic Boundary at the Shangsi Section, Guangyuan, Sichuan, South China.Global and Planetary Change, 77(3-4):103-115.doi:10.1016/ j.gloplacha.2011.04.003
      [32] Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129.doi:10.1016/ 0009-2541(94)90085-X
      [33] Keil, R.G., Montlucon, D.B., Prahl, F.G., et al., 1994.Sorptive Preservation of Labile Organic-Matter in Marine-Sediments.Nature, 370(6490):549-552.doi:10.1038/ 370549a0
      [34] Kennedy, M.J., 2002.Mineral Surface Control of Organic Carbon in Black Shale.Science, 295(5555):657-660.doi:10.1126/ science.1066611
      [35] Kennedy, M.J., Löhr, S.C., Fraser, S.A., et al., 2014.Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale.from Deposition to Diagenesis.Earth and Planetary Science Letters, 388:59-70.doi:10.1016/ j.epsl.2013.11.044
      [36] Lai, X.L., Yang, F.Q., Hallam, A., et al., 1996, The Shangsi Section, Candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary.In:Yin, H.F.ed., The Palaeozoic-Mesozoic Boundary Candidates of Global Stratotype Section and Point of the Permian-Triassic Boundary.China University of Geosciences Press, Wuhan, 113-124.
      [37] Lei, Y., Feng, Q.L., Gui, B.W., 2010.Geobiological Model for Organic Enrichment in the Upper Permian Dalong Formation of Pingdingshan Section at Chaohu, Anhui.Journal of Palaeogeography, 12(2):202-211(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201002012.htm
      [38] Lei, Y., Thomas, S., Feng, Q.L., et al., 2012.The Spatial (Nearshore-Offshore) Distribution of Latest Permian Phytoplankton from the Yangtze Block, South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 363-364:151-162.doi:10.1016/ j.palaeo.2012.09.010
      [39] Lei, Y., Thomas, S., Feng, Q.L., et al., 2013.Latest Permian Acritarchs from South China and the Micrhystridium/Veryhachium Complex Revisited.Palynology, 2(37):325-344.doi:10.1080/ 01916122.2013.793625
      [40] Li, H.J., Xie, X.N., Lin, Z.L., et al., 2009.Organic Matter Enrichment of Dalong Formation in Guangyuan Area of the Sichuan Basin.Geological Science and Technology Information, 28(2):98-103(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200902017.htm
      [41] Li, H.J., Xie, X.N., Huang, J.H., et al., 2012.Main Factors Controlling the Formation of Excellent Marine Source Rocks in Permian Maokou Formation of Northwest Sichuan, China.Earth Science, 37(1):171-180(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201201021.htm
      [42] Li, H.M., Wang, J.D., Heller, F., et al., 1988.Palaeomagnetic Study of Permian Triassic Boundary Section of Shangsi, Guangyuan, Sichuan.Chinese Science Bulletin, (8):612-615(in Chinese). http://adsabs.harvard.edu/abs/1988E%26PSL..88..348H
      [43] Li, J.G., Batten, D.J., 2005.Palynofacies:Principles and Methods.Acta Palaeontologica Sinica, 44(1):138-156(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX20050100F.htm
      [44] Li, N., Hu, N.Y., Ma, Z.W., et al., 2011.Main Control Factors of High Quality Hydrocarbon Source Rocks of the Upper Permian Dalong Formation at Shangsi Section of Guangyuan, Sichuan Province.Journal of Palaeogeography, 13(3):347-354(in Chinese with English abstract). https://www.researchgate.net/publication/281388303_Main_control_factors_of_high_quality_hydrocarbon_source_rocks_of_the_Upper_Permian_Dalong_Formation_at_Shangsi_section_of_Guangyuan_Sichuan_Province
      [45] Li, X.Q., Zhong, N.N., Xiong, B., et al., 1996.The Comparative Study between Whole Rock Analysis and Kerogen Analysis.Journal of Southwestern Petroleum Institute, 18(1):29-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY601.003.htm
      [46] Li, Y.J., Chen, Y.C., Xu, Z.M., et al., 2000.The Study on Indigenous Characteristics of Organic Matter in Marine Carbonate Hydrocarbon Source Rock with Low Abundance and High Evolution.Acta Sedimentologica Sinica, 18(1):146-150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200001023.htm
      [47] Li, Z.S., Zhan, L.P., Zhu, X.F., 1986.Mass Extinction and Geological Events between Palaeozoic and Mesozoic Era.Acta Geologica Sinica, (1):1-17(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198601000.htm
      [48] Liang, X.Q., Zhou, Y., Jiang, Y., et al., 2013.Difference of Sedimentary Response to Dongwu Movement:Study on LA-ICPMS U-Pb Ages of Detrital Zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia Blocks.Acta Petrologica Sinica, 29(10):3592-3606(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98201310022.aspx
      [49] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247:133-153.doi:10.1016/ j.chemgeo.2007.10.016
      [50] Löhr, S.C., Kennedy, M.J., 2014.Organomineral Nanocomposite Carbon Burial during Oceanic Anoxic Event 2.Biogeosciences, 11(18):4971-4983.doi:10.5194/ bg-11-4971-2014
      [51] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi:10.1306/ 08171111061
      [52] Lu, L.F., Cai, J.G., Liu, W.H., 2011.Water Bridges Mechanism of Organo-Smectite Interaction in Argillaceous Hydrocarbon Source Rocks:Evidences from In Situ DRIFT Spectroscopic Study.Oil & Gas Geology, 32(1):47-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201101008.htm
      [53] Lu, L.F., Cai, J.G., Liu, W.H., et al., 2012.Infra-Red Emission Spectroscopy Study of Thermal Evolution of Organic Matter Bound by Clay Minerals in Muddy Hydrocarbon Source Rocks.Petroleum Geology & Experiment, 34(2):215-222(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201202022.htm
      [54] Lu, L.F., Cai, J.G., Liu, W.H., 2013.Occurrence and Thermostability of Absorbed Organic Matter on Clay Minerals in Mudstones and Muddy Sediments.Oil & Gas Geology, 34 (1):16-26(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-SYYT201301005.htm
      [55] Luo, Z.L., 1981.Influence of Taphrogenesis on Oil and Other Mineral Formation since Late Palaeozoic in Southwest China.Acta Geologica Sichuan, 2(1):1-22(in Chinese).
      [56] Ma, Z.W., Hu, C.Y., Yan, J.X., et al., 2008.Biogeochemical Records at Shangsi Section, Northeast Sichuan in China:The Permian Paleoproductivity Proxies.Journal of China University of Geosciences, 19(5):461-470.doi:10.1016/ S1002-0705(08)60051-5
      [57] Makeen, Y.M., Hakimi, M.H., Abdullah, W.H., 2015.The Origin, Type and Preservation of Organic Matter of the Barremian-Aptian Organic-Rich Shales in the Muglad Basin, Southern Sudan, and Their Relation to Paleoenvironmental and Paleoclimate Conditions.Marine and Petroleum Geology, 65:187-197.doi:10.1016/ j.marpetgeo.2015.03.003
      [58] Mayer, L.M., 1994a.Relationships between Mineral Surfaces and Organic Carbon Concentrations in Soils and Sediments.Chemical Geology, 114 (3):347-363.doi: 10.1016/0009-2541(94)90063-9
      [59] Mayer, L.M., 1994b.Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments.Geochimica et Cosmochimica Acta, 58(4):1271-1284.doi:10.1016/ 0016-7037(94)90381-6
      [60] Murray, R.W., Leinen, M., 1996.Scavenged Excess Aluminum and Its Relationship to Bulk Titanium in Biogenic Sediment from the Central Equatorial Pacific Ocean.Geochimica et Cosmochimica Acta, 60(20):3869-3878.doi:10.1016/ 0016-7037(96)00236-0
      [61] Nie, X.M., Lei, Y., Feng, Q.L., et al., 2012.Evolution and Its Control Factors of the Changsingian Radiolarian Fauna at the Shangsi Section in Jiange County, Guangyuan City, Sichuan Provience.Geological Review, 58(5):809-815(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201205003.htm
      [62] Pedersen, T.F., Calvert, S.E., 1990.Anoxia vs.Productivity:What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks? AAPG Bulletin, 74(4):454-466 http://aapgbull.geoscienceworld.org/content/75/3/499
      [63] Piper, D.Z., Perkins, R.B., 2004.A Modern vs.Permian Black Shale—The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition.Chemical Geology, 206(3-4):177-197.doi:10.1016/ j.chemgeo.2003.12.006
      [64] Qin, J.Z., Tenger, Fu, X.D., 2009.Study of Forming Condition on Marine Excellent Source Rocks and Its Evaluation.Petroluem Geology & Experiment, 31(4):366-372(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200904012.htm
      [65] Qin, J.Z., Tenger, Shen, B.J., et al., 2015.Ultramicroscopic Organic Petrology Characteristics and Component Classification of Excellent Marine Source Rocks.Petroleum Geology & Experiment, 37(6):671-680(in Chinese with English abstract). http://www.en.cnki.com.cn/CJFD_en_New/Detail.ashx?t=e&url=/Article_en/CJFDTOTAL-SYSD201506003.htm
      [66] Salmon, V., Derenne, S., Lallier-Vergès, E., et al., 2000.Protection of Organic Matter by Mineral Matrix in a Cenomanian Black Shale.Organic Geochemistry, 31(5):463-474.doi:10.1016/ S0146-6380 (00)00013-9
      [67] Schoepfer, S., D., Shen, J., Wei, H.Y., 2015.Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity.Earth-Science Reviews, 149:23-52.doi:10.1016/ j.earscirev.2014.08.017
      [68] Sephton, M.A., Looy, C.V., Brinkhuis, H., et al., 2005.Catastrophic Soil Erosion during the End-Permian Biotic Crisis.Geology, 33(12):941.doi:10.1130/ G21784.1
      [69] Shen, J., Feng, Q.L., 2010.Paleoproductivity Evolution across the Permian-Triassic Boundary of Dongpan Section at Fusui in Guangxi.Journal of Palaeogeography, 12(3):291-300(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201003007.htm
      [70] Shen, J., Lei, Y., Algeo, T.J., et al., 2013.Volcanic Effects on Microplankton during the Permian-Triassic Transition (Shangsi and Xinmin, South China).Palaios, 28(8):552-567.doi:10.2110/ palo.2013.p13-014r
      [71] Shen, J., Shi, Z.Y., Feng, Q.L., 2011.Review on Geochemical Proxies in Paleo-Productivity Studies.Geological Science and Technology Information, 30(2):69-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201102013.htm
      [72] Shen, J., Zhou, L., Feng, Q.L., et al., 2014.Paleo-Productivity Evolution across the Permian-Triassic Boundary and Quantitative Calculation of Primary Productivity of Black Rock Series from the Dalong Formation, South China.Science China:Earth Sciences, 57(7):1583-1594.doi: 10.1007/s11430-013-4780-5
      [73] Silva, R.L., Duarte, L.V., 2015.Organic Matter Production and Preservation in the Lusitanian Basin (Portugal) and Pliensbachian Climatic Hot Snaps.Global and Planetary Change, 131:24-34.doi:10.1016/ j.gloplacha.2015.05.002
      [74] Simon, A., Poulicek, M., Velimirov, B., et al., 1994.Comparison of Anaerobic and Aerobic Biodegradation of Mineralized Skeletal Structures in Marine and Estuarine Conditions.Biogeochemistry, 25(3):167-195.doi:10.1007/ BF00024391
      [75] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi:10.1306/ 03301110145
      [76] Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606001.htm
      [77] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Pub., Palo Alto, CA, U.S.A..
      [78] Tenger, Qin, J.Z., Fu, X.D., et al., 2008.Basic Conditions of Marine Hydrocarbon Accumulation in Northwest Sichuan Basin—High Quality Source Rocks.Petroleum Geology & Experiment, 30(5):478-483(in Chinese with English abstract). https://www.researchgate.net/publication/284634342_Basic_conditions_of_marine_hydrocarbon_accumulation_in_northwest_Sichuan_Basin-high_quality_source_rocks
      [79] Tessin, A., Hendy, I., Sheldon, N., et al., 2015.Redox-Controlled Preservation of Organic Matter during "OAE 3" within the Western Interior Seaway.Paleoceanography, 30(6):702-717.doi:10.1002/ 2014PA002729
      [80] Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32.doi:10.1016/ j.chemgeo.2006.02.012
      [81] van Helmond, N.A.G.M., Hennekam, R., Donders, T.H., et al., 2015.Marine Productivity Leads Organic Matter Preservation in Sapropel S1:Palynological Evidence from a Core East of the Nile River Outflow.Quaternary Science Reviews, 108:130-138.doi:10.1016/ j.quascirev.2014.11.014
      [82] Williams, L.B., Canfield, B., Voglesonger, K.M., et al., 2005.Organic Molecules Formed in a "Primordial Womb".Geology, 33(11):913.doi:10.1130/ G21751.1
      [83] Xie, S.C., Pancost, R.D., Huang, J.H., et al., 2007.Changes in the Global Carbon Cycle Occurred as Two Episodes During the Permian-Triassic Crisis.Geology, 35(12):1083-1086.doi: 10.1130/G24224A.1
      [84] Yan, D.T., Wang, H., Fu, Q.L., et al., 2015.Organic Matter Accumulation of Late Ordovician Sediments in North Guizhou Province, China:Sulfur Isotope and Trace Element Evidences.Marine and Petroleum Geology, 59:348-358.doi:10.1016/ j.marpetgeo.2014.09.017
      [85] Yan, J.X., Ma, Z.Y., Xie, X.N., et al., 2008.Subdivision of Permian Fossil Communities and Habitat Types in Northeast Sichuan, South China.Journal of China University of Geosciences, 19(5):441-450.doi:10.1016/ S1002-0705(08)60049-7
      [86] Yin, H.F., Jiang, H.S., Xia, W.C., et al., 2014.The End-Permian Regression in South China and Its Implication on Mass Extinction.Earth-Science Reviews, 137:19-33.doi:10.1016/ j.earscirev.2013.06.003
      [87] Zhang, K., Zhang, Q., Yao, H.J., et al., 1983.Meso-Cenozoic Tectonics and Evolution of Riftogenic Petroliferous Basins along China's Sea Area and Its Vicinity.Oil & Gas Geology, 4(4):353-364(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT198304002.htm
      [88] Zhang, S.C., Tong, Z.Y., 1992.The Composition and Hydrocarbon-Generation Evolution of Organic Matter Associated with Carbonate Minerals.Acta Sedimentologica Sinica, 10(1):76-82(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199201009.htm
      [89] Zhang, S.X., Zhang, Y., He, D.T., 2014.Study on Particle Phase Analysis Method of Energy Disperse Spectroscopy:A Case Study of Cenozoic Basalts from Datong, Shanxi Province.Earth Science, 39(9):1301-1308(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201409005.htm
      [90] Zhao, M.J., Zhang, S.C., Zhao, L., et al., 2007.The Geochemical Characteristics and Genesis of Ancient Oil Reservoir Bitumen and Natural Gas in the Nanpanjiang Basin.Science China:Earth Science, 37(2):167-177(in Chinese).
      [91] Zhou, W.F., Algeo, T.J., Ruan, X.Y., et al., 2016.Expansion of Photic-Zone Euxinia during the Permian-Triassic Biotic Crisis and Its Causes:Microbial Biomarker Records.Palaeogeography, Palaeoclimatology, Palaeoecology, 10.1016/ j.palaeo.2016.06.027 http://www.sciencedirect.com/science/article/pii/S003101821630219X
      [92] Zhu, T.X., Huang, Z.Y., Hui, L., 1999.Geology of Organic Reef Facies in Late Permian of Upper Yangtze Platform.Geological Publishing House, Beijing (in Chinese).
      [93] Zhu, X.J., Cai, J.G., Song, G.Q., et al., 2015.Factors Influencing the Specific Surface Areas of Argillaceous Source Rocks.Applied Clay Science, 109-110:83-94.doi:10.1016/ j.clay.2015.02.0 16
      [94] Zhu, X.J., Cai, J.G., Wang, X.J., et al., 2014.Effects of Organic Components on the Relationships between Specific Surface Areas and Organic Matter in Mudrocks.International Journal of Coal Geology, 133:24-34.doi:10.1016/ j.coal.2014.08.009
      [95] Zhu, Y.M., Li, Y., Hao, F., et al., 2012.Compositional Characteristics and Origin of Marine and Terrestrial Solid Reservoir Bitumen in the Northeast Sichuan Basin.Acta Petrologica Sinica, 28(3):870-878(in Chinese with English abstract). https://www.researchgate.net/publication/308629429_Compositional_characteristics_and_origin_of_marine_and_terrestrial_solid_reservoir_bitumen_in_the_northeast_Sichuan_Basin
      [96] Zonneveld, K.A.F., Versteegh, G.J.M., Kasten, S., et al., 2010.Selective Preservation of Organic Matter in Marine Environments; Processes and Impact on the Sedimentary Record.Biogeosciences, 7(2):483-511.doi:10.5194/ bg-7-483-2010
      [97] Zou, N.N., Dong, D.Z., Wang, S.J., et al., 2010.Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China.Petroleum Exploration and Development, 37(6):641-653(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      [98] 蔡进功, 包于进, 杨守业, 等, 2007.泥质沉积物和泥岩中有机质的赋存形式与富集机制.中国科学:地球科学, 37 (2):244-253. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200702010.htm
      [99] 蔡进功, 卢龙飞, 包于进, 等, 2012.烃源岩中蒙皂石结合有机质后层间水的变化特征及其意义.中国科学:地球科学, 42 (4):483-491. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201204001.htm
      [100] 蔡雄飞, 冯庆来, 顾松竹, 等, 2011.海退型陆棚相:烃源岩形成的重要部位——以中、上扬子地区北缘上二叠统大隆组为例.石油与天然气地质, 32(1):29-37. doi: 10.11743/ogg20110104
      [101] 蔡雄飞, 张志峰, 彭兴芳, 等, 2007.鄂湘黔桂地区大隆组的沉积特征及与烃源岩的关系.地球科学, 32 (6):774-780. http://www.earth-science.net/WebPage/Article.aspx?id=3502
      [102] 陈慧, 解习农, 李红敬, 等, 2010.利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩.古地理学报, 12(3):324-333. doi: 10.7605/gdlxb.2010.03.008
      [103] 丁修建, 柳广弟, 黄志龙, 等, 2016.有机质供给和保存在烃源岩形成中的控制作用.地球科学, 41(5):832-842. http://www.earth-science.net/WebPage/Article.aspx?id=3291
      [104] 董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31 (3):288-299. doi: 10.11743/ogg20100304
      [105] 董大忠, 王玉满, 李新景, 等, 2016.中国页岩气勘探开发新突破及发展前景思考.天然气工业, 36(1):19-32. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601005.htm
      [106] 樊馥, 蔡进功, 徐金鲤, 等, 2011.泥质烃源岩不同有机显微组分的原始赋存态.同济大学学报(自然科学版), 39 (3):434-439. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201103025.htm
      [107] 付小东, 秦建中, 腾格尔, 等, 2010.四川盆地北缘上二叠统大隆组烃源岩评价.石油实验地质, 32(6):566-571. doi: 10.11781/sysydz201006566
      [108] 付小东, 秦建中, 滕格尔, 等, 2011.烃源岩矿物组成特征及油气地质意义——以中上扬子古生界海相优质烃源岩为例.石油勘探与开发, 38(6):671-684. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106005.htm
      [109] 何幼斌, 罗进雄, 2010.中上扬子地区晚二叠世长兴期岩相古地理.古地理学报, 12(5):497-514. doi: 10.7605/gdlxb.2010.05.001
      [110] 黄思静.1992, 重庆中梁山和广元上寺P-T界线粘土层中粘土矿物的类型及成因.成都地质学院学报, 19(3):66-73. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199203010.htm
      [111] 雷勇, 冯庆来, 桂碧雯, 2010.安徽巢湖平顶山剖面上二叠统大隆组有机质富集的地球生物学模式.古地理学报, 12(2):202-211. doi: 10.7605/gdlxb.2010.02.008
      [112] 李红敬, 解习农, 黄俊华, 等, 2012.川西北二叠系茅口组海相优质烃源岩发育控制因素.地球科学, 37(1):171-180. http://www.earth-science.net/WebPage/Article.aspx?id=2211
      [113] 李红敬, 解习农, 林正良, 等, 2009.四川盆地广元地区大隆组有机质富集规律.地质科技情报, 28(2):98-103. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902017.htm
      [114] 李华梅, 王俊达, Heller, F., 等, 1988.四川广元上寺二叠-三叠系界限剖面的古地磁研究.科学通报, (8):612-615. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198808014.htm
      [115] 李建国, Batten, D.J., 2005.孢粉相:原理及方法.古生物学报, 44(1):138-156. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX20050100F.htm
      [116] 李牛, 胡超涌, 马仲武, 等, 2011.四川广元上寺剖面上二叠统大隆组优质烃源岩发育主控因素初探.古地理学报, 13(3):347-354. doi: 10.7605/gdlxb.2011.03.011
      [117] 李贤庆, 钟宁宁, 熊波, 等, 1996.全岩分析与干酪根分析的对比研究.西南石油学院学报, 18(1):29-36. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY601.003.htm
      [118] 李延钧, 陈义才, 徐志明, 等, 2000.低丰度高演化海相碳酸盐烃源岩有机质原生性研究.沉积学报, 18(1):146-150. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200001023.htm
      [119] 李子舜, 詹立培, 朱秀芳, 等, 1986.古生代-中生代之交的生物绝灭和地质事件——四川广元上寺二叠系-三叠系界线和事件的初步研究.地质学报, (1):1-17. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198601000.htm
      [120] 梁新权, 周云, 蒋英, 等, 2013.二叠纪东吴运动的沉积响应差异:来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMS U-Pb年龄研究.岩石学报, 29(10):3592-3606. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310022.htm
      [121] 卢龙飞, 蔡进功, 刘文汇, 等, 2011.泥质烃源岩中蒙皂石与有机质的水桥结合作用——来自原位漫反射红外光谱的证据.石油与天然气地质, 32(1):47-55. doi: 10.11743/ogg20110106
      [122] 卢龙飞, 蔡进功, 刘文汇, 等, 2012.泥质烃源岩中粘土矿物结合有机质热演化的红外发射光谱研究.石油实验地质, 34(2):215-222. doi: 10.11781/sysydz201202215
      [123] 卢龙飞, 蔡进功, 刘文汇, 等, 2013.泥岩与沉积物中粘土矿物吸附有机质的三种赋存状态及其热稳定性.石油与天然气地质, 34(1):16-26. doi: 10.11743/ogg20130103
      [124] 罗志立, 1981.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响.四川地质学报, 2(1):1-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SCDB198100000.htm
      [125] 聂小妹, 雷勇, 冯庆来, 等, 2012.四川广元上寺剖面长兴阶放射虫动物群演变及控制因素.地质论评, 58(5):809-815. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201205003.htm
      [126] 秦建中, 腾格尔, 付小东, 2009.海相优质烃源层评价与形成条件研究.石油实验地质, 31(4):366-372. doi: 10.11781/sysydz200904366
      [127] 秦建中, 腾格尔, 申宝剑, 等, 2015.海相优质烃源岩的超显微有机岩石学特征与岩石学组分分类.石油实验地质, 37(6):671-680. doi: 10.11781/sysydz201506671
      [128] 沈俊, 冯庆来, 2010.广西扶绥东攀剖面二叠纪-三叠纪之交古生产力演化.古地理学报, 12(3):291-300. doi: 10.7605/gdlxb.2010.03.004
      [129] 沈俊, 施张燕, 冯庆来, 2011.古海洋生产力地球化学指标的研究.地质科技情报, 30(2):69-77. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102013.htm
      [130] 宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6):901-918. http://www.earth-science.net/WebPage/Article.aspx?id=3307
      [131] 腾格尔, 秦建中, 付小东, 等, 2008.川西北地区海相油气成藏物质基础——优质烃源岩.石油实验地质, 30(5):478-483. doi: 10.11781/sysydz200805478
      [132] 张恺, 张清, 姚慧君, 等, 1983.中国海域及邻区中-新生代大地构造演化特征与裂谷型含油气盆地演化系列.石油与天然气地质, 4(4):353-364. doi: 10.11743/ogg19830402
      [133] 张水昌, 童箴言, 1992.海相碳酸盐岩中矿物结合有机质的组成及成烃演化.沉积学报, 10(1):76-82. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199201009.htm
      [134] 张素新, 张毅, 何德涛, 2014.能谱仪PPA分析方法的实验研究:以山西大同新生代玄武岩样品为例.地球科学, 39(9):1301-1308. http://www.earth-science.net/WebPage/Article.aspx?id=2940
      [135] 赵孟军, 张水昌, 赵陵, 等, 2007.南盘江盆地古油藏沥青、天然气的地球化学特征及成因.中国科学:地球科学, 37(2):167-177. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606011.htm
      [136] 朱同兴, 黄志英, 惠兰, 1999.上扬子台地晚二叠世生物礁相地质.北京:地质出版社.
      [137] 朱扬明, 李颖, 郝芳, 等, 2012.四川盆地东北部海、陆相储层沥青组成特征及来源.岩石学报, 28(3):870-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203016.htm
      [138] 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6):641-653. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  4227
    • HTML全文浏览量:  1855
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-30
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回