A New Approach to Calculate Effective Stimulated Reservoir Volume in Shale Gas Reservoir
-
摘要: 页岩气藏矿场压裂实践表明,储层有效改造体积(effective stimulated reservoir volume,简称ESRV)是影响页岩气藏体积压裂水平井生产效果的关键因素,ESRV的准确计算对页岩气藏压裂方案评价与体积压裂水平井产量预测具有重要作用.基于页岩储层改造体积(stimulated reservoir volume,简称SRV)多尺度介质气体运移机制,建立了SRV区域正交离散裂缝耦合双重介质基质团块来表征单元体渗流模型(representation elementary volume,简称REV),并结合北美页岩储层实例研究了次生裂缝间距、宽度等缝网参数对页岩气藏气体运移规律的影响.在此基础上根据SRV区域次生裂缝分布特征,采用分形质量维数定量表征裂缝间距分布规律,结合页岩气藏次生裂缝间距对基质团块内流体动用程度的影响规律,得到了页岩气藏体积压裂ESRV计算方法.结果表明SRV区域次生裂缝间距对基质团块内吸附及自由气影响较大,次生裂缝间距小于0.20 m时可以实现SRV区域基质团块内流体向各方向裂缝的"最短距离"渗流.选取北美典型页岩储层生产井体积压裂数据进行ESRV计算,页岩气藏目标井ESRV占体积压裂SRV的37.78%.因此ESRV受改造区域次裂缝分布规律及SRV有效裂缝间距界限的影响,是储层固有性质及人工压裂因素综合作用的结果.Abstract: Hydraulic fracturing practices in shale reservoirs show that effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for the evaluation and production prediction of hydraulic fracturing wells in shale reservoirs. This paper introduces a representation elementary volume (REV) of orthogonal discrete fracture coupled dual-porosity matrixflow model to predict the volumetric flux of gas in shale reservoirs. The influence of fracture space and fracture width on gas migration was studied. Considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), fractal dimension was used to quantitatively evaluate the fracture space distribution. Combining the effective fracture space and fractal characteristic of fracture network, a new approach was proposed to evaluate the ESRV in shale reservoirs. The approach was used in Eagle Ford shale gas reservoir and the results show that the fracture space has a great influence on migration of adsorbed gas. Fracture network has a contribution to enhance absorbed and free gas recovery ratio when the fracture space is less than 0.20 m. The ESRV was evaluated in this paper and the results indicate that the ESRV accounts for 37.78% of the total SRV in shale gas reservoir. The ESRV was influenced by both secondary fracture distribution and effective fracture space, as a result of reservoir intrinsic property and hydraulic fracturing practices.
-
图 1 页岩储层SRV区域表征单元体渗流模型
Fig. 1. Representative elementary volume flow model of SRV region in shale reservoirs
表 1 Barnett页岩气藏储层参数
Table 1. Reservoir parameters of Barnett shale gas reservoir
参数 数值 次生裂缝宽度(m) 0.001 气体压缩系数(MPa-1) 0.05 干酪根孔径(nm) 50 无机基岩孔隙度 0.1 REV水平方向裂缝条数 5 REV垂直方向裂缝条数 5 气体粘度(mPa·s) 0.018 4 气体摩尔质量(kg·mol-1) 0.016 储层温度(K) 338 单位岩心体积中干酪根固体体积 0.5 无机基岩孔隙迂曲度 5 干酪根表面朗格缪尔最大吸附浓度(m3·kg-1) 3.1×10-3 REV入口压力(MPa) 15 REV压力梯度(MPa·m-1) 0.05 干酪根孔隙度 0.2 无机基岩孔径(nm) 100 次生裂缝孔隙度 0.02 次生裂缝间距(m) 0.05 干酪根表面扩散系数(10-4 m2·s-1) 5 朗格缪尔压力(MPa) 13.78 干酪根固体形状因子(m-2) 0.5 角动量调节系数 0.8 干酪根孔隙迂曲度 5 REV初始压力(MPa) 50 -
[1] Akkutlu, I.Y., Fathi, E., 2012.Multiscale Gas Transport in Shales with Local Kerogen Heterogeneities.SPE Journal, 17(4):1002-1011.doi: 10.2118/146422-PA [2] Anderson, D.M., Nobakht, M., Moghadam, S., et al., 2010.Analysis of Production Data from Fractured Shale Gas Wells.SPE Unconventional Gas Conference, Pittsburgh.doi:10.2118/131787-MS [3] Bustin, A., Bustin, R.M., Cui, X.J., 2008.Importance of Fabric on the Production of Gas Shales.SPE Unconventional Reservoirs Conference, Keystone.doi:10.2118/114167-MS [4] Cai, J.C., Yu, B.M., 2010.Prediction of Maximum Pore Size of Porous Media Based on Fractal Geometry.Fractals, 18(4):417-423.doi: 10.1142/S0218348X10005123 [5] Cai, J.C., Yu, B.M., 2011.A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media.Transport in Porous Media, 89(2):251-263.doi: 10.1007/s11242-011-9767-0 [6] Chen, X.M., Li, J.Z., Zheng, M., et al., 2012.Kerogen Solution Theory and Its Exploratory Application in Shale Gas Assessment.Natural Gas Geoscience, 23(1):14-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201201003.htm [7] Civan, F., 2010.Effective Correlation of Apparent Gas Permeability in Tight Porous Media.Transport in Porous Media, 82(2):375-384.doi: 10.1007/s11242-009-9432-z [8] Cui, M.Y., Liu, Y.Z., Xiu, N.L., et al., 2014.Analysis of Factors Affecting the Formation of Effective Stimulated Reservoir Volume (ESRV).Oil Drilling & Production Technology, 36(2):82-87 (in Chinese with English abstract). [9] Denney, D., 2005.Optimizing Horizontal Completions in the Barnett Shale with Microseismic Fracture Mapping.Journal of Petroleum Technology, 57(3):41-43.doi: 10.2118/0305-0041-JPT [10] Du, B.J., Cheng, L.S., Cao, R.Y., et al., 2014.Development Effective of the Volumetric Fracturing Horizontal Well in Tight Oil Reservoir.Petroleum Geology & Oilfield Development in Daqing, 33(1):96-101 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK201401018.htm [11] Duan, Y.G., Cao, Y.K., Yang, X.Y., et al., 2015.Simulation of Gas Flow in Nano-Scale Pores of Gas Deposits.Journal of Southwest Petroleum University (Science & Technology Edition), 37(3):63-68 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnsy201503009&dbname=CJFD&dbcode=CJFQ [12] Duan, Y.Y., Wang, X., Wang, Y.H., et al., 2015.Numerical Simulation of Stimulation Effect by Volume Transformation of Tight Sandstone Gas Reservoir.Unconventional Oil & Gas, 2(2):48-51 (in Chinese with English abstract). [13] Fan, D., 2015.A Hybrid Transient Flow Model for Performance Evaluation of Shale Gas Reservoirs (Dissertation).Texas Tech University, Lubbock, 26-29. [14] Fan, D., Ettehadtavakkol, A., 2017.Semi-Analytical Modeling of Shale Gas Flow through Fractal Induced Fracture Networks with Microseismic Data.Fuel, 193:444-459.doi: 10.1016/j.fuel.2016.12.059 [15] Fan, J.M., Yang, Z.Q., Li, W.B., et al., 2015.Assessment of Fracturing Treatment of Horizontal Wells Using SRV Technique for Chang-7 Tight Oil Reservoir in Ordos Basin.Journal of China University of Petroleum (Edition of Natural Science), 39(4):103-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201504014.htm [16] Guo, T.K., Zhang, S.C., Qu, Z.Q., et al., 2014.Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume.Fuel, 128(14):373-380.doi: 10.1016/j.fuel.2014.03.029 [17] Islam, A., Patzek, T., 2014.Slip in Natural Gas Flow through Nanoporous Shale Reservoirs.Journal of Unconventional Oil and Gas Resources, 7:49-54.doi: 10.1016/j.juogr.2014.05.001 [18] Javadpour, F., 2009.Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone).Journal of Canadian Petroleum Technology, 48(8):16-21.doi: 10.2118/09-08-16-DA [19] Javadpour, F., Fisher, D., Unsworth, M., 2007.Nanoscale Gas Flow in Shale Gas Sediments.Journal of Canadian Petroleum Technology, 46(10):55-61.doi: 10.2118/07-10-06 [20] Kang, S.M., Fathi, E., Ambrose, R.J., et al., 2011.Carbon Dioxide Storage Capacity of Organic-Rich Shales.SPE Journal, 16(4):842-855.doi: 10.2118/134583-PA [21] Kang, Y.S., Deng, Z., Wang, H.Y., et al., 2016.Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs.Earth Science, 41(8):1376-1383 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608009.htm [22] King, G.E., 2010.Thirty Years of Gas Shale Fracturing:What Have We Learned?Journal of Petroleum Technology, 62(11):88-90.doi: 10.2118/1110-0088-JPT [23] Korvin, G., 1992.Fractal Models in the Earth Sciences.Elsevier Science Ltd., New York. http://ci.nii.ac.jp/ncid/BA18805842 [24] Liu, X.X., Wu, J.F., Liu, Y.C., et al., 2013.Application of Volume Stimulation Fracturing in Shale Gas Reservoir.Natural Gas Exploration and Development, 36(4):64-70 (in Chinese with English abstract). [25] Maxwell, S.C., Urbancic, T.I., Steinsberger, N., et al., 2002.Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale.SPE Annual Technical Conference and Exhibition, San Antonio.doi:10.2118/77440-MS [26] Mayerhofer, M.J., Lolon, E., Warpinski, N.R., et al., 2010.What is Stimulated Reservoir Volume?SPE Production & Operations, 25(1):89-98.doi: 10.2118/119890-PA [27] Meyer, B.R., Bazan, L.W., 2011.A Discrete Fracture Network Model for Hydraulically Induced Fractures-Theory, Parametric and Case Studies.SPE Hydraulic Fracturing Technology Conference, San Antonio.doi:10.2118/140514-MS [28] Miao, T.J., Yang, S.S., Long, Z.C., 2015.Fractal Analysis of Permeability of Dual-Porosity Media Embedded with Random Fractures.International Journal of Heat and Mass Transfer, 88:814-821.doi: 10.1016/j.ijheatmasstransfer.2015.05.004 [29] Olson, J.E., 2008.Multi-Fracture Propagation Modeling:Applications to Hydraulic Fracturing in Shales and Tight Gas Sands.The 42nd US Rock Mechanics Symposium (USRMS), San Francisco.doi:10.2118/ARMA-08-327 [30] Olson, J.E., Taleghani, A.D., 2009.Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction with Natural Fractures.SPE Hydraulic Fracturing Technology Conference, San Antonio.doi:10.2118/119739-MS [31] Ren, L., Su, Y.L., Zhan, S.Y., et al., 2016.Modeling and Simulation of Complex Fracture Network Propagation with SRV Fracturing in Unconventional Shale Reservoirs.Journal of Natural Gas Science & Engineering, 28:132-141.doi: 10.1016/j.jngse.2015.11.042 [32] Shabro, V., Torres-Verdin, C., Javadpour, F., 2011.Numerical Simulation of Shale-Gas Production:From Pore-Scale Modeling of Slip-Flow, Knudsen Diffusion, and Langmuir Desorption to Reservoir Modeling of Compressible Fluid.North American Unconventional Gas Conference and Exhibition, Woodlands.doi:10.2118/144355-MS [33] Sheng, G.L., Su, Y.L., Wang, W.D., et al., 2015.A Multiple Porosity Media Model for Multi-Fractured Horizontal Wells in Shale Gas Reservoirs.Journal of Natural Gas Science and Engineering, 27:1562-1573.doi: 10.1016/j.jngse.2015.10.026 [34] Stalgorova, E., Mattar, L., 2012.Practical Analytical Model to Simulate Production of Horizontal Wells with Branch Fractures.SPE Canadian Unconventional Resources Conference, Alberta.doi:10.2118/162515-MS [35] Su, Y.L., Wang, W.D., Sheng, G.L., 2014.Compound Flow Model of Volume Fractured Horizontal Well.Acta Petrolei Sinica, 35(3):504-510 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/abstract/abstract4587.shtml [36] Swami, V., Settari, A.T., Javadpour, F., 2013.A Numerical Model for Multi-Mechanism Flow in Shale Gas Reservoirs with Application to Laboratory Scale Testing.EAGE Annual Conference & Exhibition Incorporating SPE Europec, London.doi:10.2118/164840-MS [37] Wang, W.D., Shahvali, M., Su, Y.L., 2015.A Semi-Analytical Fractal Model for Production from Tight Oil Reservoirs with Hydraulically Fractured Horizontal Wells.Fuel, 158:612-618.doi: 10.1016/j.fuel.2015.06.008 [38] Wang, W.D., Su, Y.L., Mu, L.J., et al., 2013.Influencing Factors of Stimulated Reservoir Volume of Vertical Wells in Tight Oil Reservoirs.Journal of China University of Petroleum (Edition of Natural Science), 37(3):93-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201303019.htm [39] Weng, X.W., 2015.Modeling of Complex Hydraulic Fractures in Naturally Fractured Formation.Journal of Unconventional Oil and Gas Resources, 9:114-135.doi: 10.1016/j.juogr.2014.07.001 [40] Weng, X.W., Kresse, O., Cohen, C.E., et al., 2011.Modeling of Hydraulic-Fracture-Network Propagation in a Naturally Fractured Formation.SPE Production & Operations, 26(4):368-380.doi: 10.2118/140253-PA [41] Wu, Q., Xu, Y., Wang, X.Q., et al., 2012.Volume Fracturing Technology of Unconventional Reservoirs:Connotation, Optimization Design and Implementation.Petroleum Exploration and Development, 39(3):352-358 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600548 [42] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm [43] Xu, P., Li, C.H., Qiu, S.X., et al., 2016.A Fractal Network Model for Fractured Porous Media.Fractals, 24(2):1650018.doi: 10.1142/S0218348X16500183 [44] Xu, P., Yu, B.M., Qiu, S.X., et al., 2008.An Analysis of the Radial Flow in the Heterogeneous Porous Media Based on Fractal and Constructal Tree Networks.Physica A Statistical Mechanics & Its Applications, 387(26):6471-6483.doi: 10.1016/j.physa.2008.08.021 [45] Xu, W., Calvez, J.H.L., Thiercelin, M.J., 2009.Characterization of Hydraulically-Induced Fracture Network Using Treatment and Microseismic Data in a Tight-Gas Sand Formation:A Geomechanical Approach.SPE Tight Gas Completions Conference, San Antonio.doi:10.2118/125237-MS [46] Xu, W.Y., Thiercelin, M.J., Ganguly, U., et al., 2010.Wiremesh:A Novel Shale Fracturing Simulator.International Oil and Gas Conference and Exhibition, Beijing.doi:10.2118/132218-MS [47] Yan, B., Wang, Y., Killough, J.E., 2016.Beyond Dual-Porosity Modeling for the Simulation of Complex Flow Mechanisms in Shale Reservoirs.Computational Geosciences, 20(1):69-91.doi: 10.1007/s10596-015-9548-x [48] Yang, F., Ning, Z.F., Liu, H.Q., 2014.Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China.Fuel, 115(1):378-384.doi: 10.1016/j.fuel.2013.07.040 [49] Yuan, B., Su, Y.L., Moghanloo, R.G., et al., 2015.A New Analytical Multi-Linear Solution for Gas Flow toward Fractured Horizontal Wells with Different Fracture Intensity.Journal of Natural Gas Science and Engineering, 23:227-238.doi: 10.1016/j.jngse.2015.01.045 [50] Yuan, B., Wood, D.A., 2015.Production Analysis and Performance Forecasting for Natural Gas Reservoirs:Theory and Practice (2011-2015).Journal of Natural Gas Science and Engineering, 26:1433-1438.doi: 10.1016/j.jngse.2015.08.024 [51] Zhou, Z.W., Su, Y.L., Wang, W.D., et al., 2016.Integration of Microseismic and Well Production Data for Fracture Network Calibration with an L-System and Rate Transient Analysis.Journal of Unconventional Oil and Gas Resources, 15:113-121.doi: 10.1016/j.juogr.2016.07.001 [52] 陈晓明, 李建忠, 郑民, 等, 2012.干酪根溶解理论及其在页岩气评价中的应用探索.天然气地球科学, 23(1): 14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201201003.htm [53] 崔明月, 刘玉章, 修乃领, 等, 2014.形成复杂缝网体积(ESRV)的影响因素分析.石油钻采工艺, 36(2): 82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201402026.htm [54] 杜保健, 程林松, 曹仁义, 等, 2014.致密油藏体积压裂水平井开发效果.大庆石油地质与开发, 33(1): 96-101. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201401018.htm [55] 段永刚, 曹廷宽, 杨小莹, 等, 2015.页岩储层纳米孔隙流动模拟研究.西南石油大学学报(自然科学版), 37(3): 63-68. doi: 10.11885/j.issn.1674-5086.2015.03.16.03 [56] 段瑶瑶, 王欣, 王永辉, 等, 2015.致密砂岩气藏体积改造增产效果数值模拟.非常规油气, 2(2): 48-51. http://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201502011.htm [57] 樊建明, 杨子清, 李卫兵, 等, 2015.鄂尔多斯盆地长7致密油水平井体积压裂开发效果评价及认识.中国石油大学学报(自然科学版), 39(4): 103-110. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504014.htm [58] 康永尚, 邓泽, 王红岩, 等, 2016.流-固耦合物理模拟实验及其对页岩压裂改造的启示.地球科学, 41(8): 1376-1383. http://earth-science.net/WebPage/Article.aspx?id=3344 [59] 刘晓旭, 吴建发, 刘义成, 等, 2013.页岩气"体积压裂"技术与应用.天然气勘探与开发, 36(4):64-70. http://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201302033.htm [60] 苏玉亮, 王文东, 盛广龙, 2014.体积压裂水平井复合流动模型.石油学报, 35(3): 504-510. doi: 10.7623/syxb201403012 [61] 王文东, 苏玉亮, 慕立俊, 等, 2013.致密油藏直井体积压裂储层改造体积的影响因素.中国石油大学学报(自然科学版), 37(3): 93-97. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201303019.htm [62] 吴奇, 胥云, 王晓泉, 等, 2012.非常规油气藏体积改造技术——内涵、优化设计与实现.石油勘探与开发, 39(3): 352-358. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203013.htm [63] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188