Characteristics and Implication of Carbon and Oxygen Isotopes in Ga-Rich Manganese-Bearing Rock Series in Dongping, Guangxi
-
摘要: 在广西东平碳酸锰矿含锰岩系中发现Ga含量高异常,Ga含量为5.16×10-6~82.80×10-6,平均含量为33.76×10-6,达到了Ga矿资源工业品位标准要求,但目前还未见有产Ga锰矿床的报道.为了提升对此富Ga现象的认识,对其进行了碳、氧同位素特征研究.结果显示:矿石和围岩δ13CPDB值分别为-6.40‰~-2.20‰、-8.90‰~0.90‰,δ18OPDB值分别为-9.00‰~-7.90‰、-9.90‰~-3.90‰.研究表明:(1)有机质参与了碳酸锰矿形成;(2)含锰岩系为热水沉积成因,Ga来源与海底热液活动密切有关;(3)海底热液活动一方面为形成锰碳酸盐直接或间接提供了大量有机质,另一方面为形成富Ga含锰岩系带来了大量Ga,被锰的氧化物或氢氧化物、海洋生物(多为热液微生物)所吸附、富集,经复杂的成岩、成矿作用而最终赋存于含锰岩系之中形成富Ga含锰岩系.Abstract: Recently, an unusually high content of Ga was discovered in manganese carbonate deposits of the Beisi Formation in Dongping area, Guangxi. The content of Ga is between 5.16×10-6 and 82.80×10-6, and the average content is 33.76×10-6, which reaches the industrial grade of Ga. But, to date Ga is not extracted from manganese deposits. In order to deepen the understanding of this phenomenon, the results of carbon and oxygen isotopes in the Ga-rich manganese-bearing rock series are reported in this paper. The results show that δ13CPDB of ores and host rocks are -6.40‰ to -2.20‰ and -8.90‰ to 0.90‰, respectively; δ18OPDB of ores and host rocks are -9.00‰ to -7.90‰ and -9.90‰ to -3.90‰, respectively. The results of the research show that (1) organic matter participates in the formation of manganese carbonate; (2) the Ga-rich manganese-bearing rock series belong to hydrothermal sedimentary genesis, and the source of Ga is related to seafloor hydrothermal activity; (3) seafloor hydrothermal activity plays a key role in the mineralization process of this Ga-rich manganese-bearing rock series, it directly or indirectly provides a large amount of organic matter to formation of manganese carbonates, on the other hand, it brought a lot of Ga that can be adsorbed by manganese oxides or hydroxide, marine organisms (mostly hydrothermal microorganism), then Ga concentrated in manganese-bearing rock series by complex diagenesis and mineralization.
-
Key words:
- manganese deposit /
- Ga anomaly /
- carbon and oxygen isotopes /
- ore deposits
-
图 2 东平锰矿区综合地层柱状图
Fig. 2. Comprehensive stratigraphic column of Manganese-bearing rock assemblages in Dongping area
表 1 东平富Ga含锰岩系碳、氧同位素组成及古温度和Z值
Table 1. δ13CPDB, δ18OPDB, Z values and paleotemperatures of Dongping Ga-rich manganese-bearing rock series
序号 样品编号 采样深度(m) 岩石类型 δ13CPDB (‰) δ18OPDB (‰) t1 (℃) t2 (℃) t3 (℃) Z 1 TK-14 地表 硅质泥灰岩 0.90 -3.90 35.90 33.53 35.50 127.20 2 7213-H05 138 硅质泥灰岩 -2.20 -9.60 66.74 70.58 68.16 118.01 3 7213-H07 177 碳酸锰矿 -6.40 -8.20 59.16 60.68 59.54 110.11 4 7213-H08 184 硅质泥灰岩 -2.90 -9.60 66.74 70.58 68.16 116.58 5 7213-H10 190 硅质泥灰岩 -2.90 -9.30 65.11 68.41 66.28 116.73 6 7213-H11 192 碳酸锰矿 -3.50 -90 63.49 66.27 64.42 115.65 7 7213-H12 196 硅质泥灰岩 -2.70 -9.90 68.36 72.78 70.06 116.84 8 7601-H07 151 硅质泥灰岩 -2.40 -9.30 65.11 68.41 66.28 117.75 9 7601-H08 154 碳酸锰矿 -3.50 -8.90 62.95 65.56 63.80 115.70 10 7601-H11 159 碳酸锰矿 -4.80 -8.70 61.87 64.15 62.58 113.14 11 7601-H16 251 碳酸锰矿 -4.10 -8.40 60.24 62.06 60.75 114.72 12 7601-H18 260 碳酸锰矿 -3.50 -8.90 62.95 65.56 63.80 115.70 13 7601-H20 267 碳酸锰矿 -3.50 -8.60 61.33 63.45 61.96 115.85 14 7601-H22 280 硅质泥灰岩 -2.60 -9.60 66.74 70.58 68.16 117.19 15 1102-H10 128 碳酸锰矿 -2.20 -8.80 62.41 64.85 63.19 118.41 16 1102-H12 131 碳酸锰矿 -2.40 -7.90 57.54 58.63 57.74 118.45 17 KC-1 地表 碳酸锰矿 -5.40 -8.50 60.79 62.75 61.36 112.01 18 KC-2 碳酸锰矿 -5.50 -8.60 61.33 63.45 61.96 111.75 -
[1] An, C.B., Feng, Z.D., Barton, L., 2006.Dry or Humid? Mid-Holocene Humidity Changes in Arid and Semi-Arid China. Quaternary Science Reviews, 25(3-4):351-361.doi: 10.1016/j.quascirev.2005.03.013 [2] Anikeeva, L.I., Kazakova, V.E., Gavrilenko, G.M., 2008.Ferromanganese Crust Formations of the West Pacific Transition Zone. Vestnik KRAUNTs.Nauki o Zemle, 11(1):10-31(in Russian with English abstract). doi: 10.1134/S0001437012010031 [3] Baturin, G.N., Dobretsova, I.G., Dubinchuk, V.T., 2014.Hydrothermal Manganese Mineralization in the Peterbourgskoye Ore Field (North Atlantic). Oceanology, 54(2):222-230.doi: 10.1134/s0001437014020027 [4] Baturin, G.N., Dubinchuk, V.T., Rashidov, V.A., 2011.Distribution of Microelements in Ferromanganese Crusts of the Sea of Okhotsk. Doklady Earth Sciences, 440(1):1291-1297.doi: 10.1134/s1028334x11090121 [5] Baturin, G.N., Dubinchuk, V.T., Rashidov, V.A., 2012.Ferromanganese Crusts from the Sea of Okhotsk. Oceanology, 52(1):88-100.doi: 10.1134/s0001437012010031 [6] Baturin, G.N., Dubinchuk, V.T., Savels'ev, D.P., et al., 2010.Ferromanganese Crusts on the Bottom of the Bering Sea. Doklady Earth Sciences, 435(1):1478-1482.doi: 10.1134/s1028334x10110152 [7] Benézéth, P., Diakonov, I.I., Pokrovski, G.S., et al., 1997.Gallium Speciation in Aqueous Solution.Experimental Study and Modelling:Part 2.Solubility of α-GaOOH in Acidic Solutions from 150 to 250℃ and Hydrolysis Constants of Gallium (Ⅲ) to 300℃. Geochimica et Cosmochimica Acta, 61(7):1345-1357.doi: 10.1016/s0016-7037(97)00012-4 [8] Boni, M., Parente, G., Bechstädt, T., et al., 2000.Hydrothermal Dolomites in SW Sardinia (Italy):Evidence for a Widespread Late-Variscan Fluid Flow Event. Sedimentary Geology, 131(3-4):181-200.doi: 10.1016/s0037-0738(99)00131-1 [9] Chen, J., Wang, H.N., 2004.Geochemistry.Science Press, Beijing(in Chinese). [10] Coleman, M., Fleet, A., Donson, P., 1982.Preliminary Studies of Manganese-Rich Carbonate Nodules from Leg 68, Site 503, Eastern Equatorial Pacific. Initial Reports of the Deep Sea Drilling Project, 68:481-489.doi: 10.2973/dsdp.proc.68.123.1982 [11] Colwell, R.R., 1997.Microbial Diversity:The Importance of Exploration and Conservation. Journal of Industrial Microbiology and Biotechnology, 18(5):302-307.doi: 10.1038/sj.jim.2900390 [12] Dai, S.F., Ren, D.Y., Chou, C.L., et al., 2012.Geochemistry of Trace Elements in Chinese Coals:A Review of Abundances, Genetic Types, Impacts on Human Health, and Industrial Utilization. International Journal of Coal Geology, 94:3-21.doi: 10.1016/j.coal.2011.02.003 [13] Derry, L.A., 2010.On the Significance of δ13C Correlations in Ancient Sediments. Earth and Planetary Science Letters, 296(3-4):497-501.doi: 10.1016/j.epsl.2010.05.035 [14] Díaz-del-Río, V., Somoza, L., Martínez-Frias, J., et al., 2003.Vast Fields of Hydrocarbon-Derived Carbonate Chimneys Related to the Accretionary Wedge/Olistostrome of the Gulf of Cádiz. Marine Geology, 195(1-4):177-200.doi: 10.1016/s0025-3227(02)00687-4 [15] Dubinin, A.V., Uspenskaya, T.Y., 2006.Geochemistry and Specific Features of Manganese Ore Formation in Sediments of Oceanic Bioproductive Zones. Lithology and Mineral Resources, 41(1):1-14.doi: 10.1134/s0024490206010019 [16] Dubinin, A.V., Uspenskaya, T.Y., Gavrilenko, G.M., et al., 2008.Geochemistry and Genesis of Fe-Mn Mineralization in Island Arcs in the West Pacific Ocean. Geochemistry International, 46(12):1206-1227.doi: 10.1134/s0016702908120021 [17] Fio, K., Sremac, J., Vlahovi, I., et al., 2013.Permian Deposits and the Permian-Triassic Boundary in Croatia:Palaeoclimatic Implications Based on Palaeontological and Geochemical Data. Geological Society, London, Special Publications, 376(1):539-548.doi: 10.1144/sp376.8 [18] Gao, J.B., Yang, R.D., Tao, P., et al., 2013.Geochemical Characteristics and Genesis of Large Devonian Barite Deposits in Zhenning County, Guizhou Province. Geoscience, 27(1):46-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201301005.htm [19] Ghosh, P., Adkins, J., Affek, H., et al., 2006.13C-18O Bonds in Carbonate Minerals:A New Kind of Paleothermometer. Geochimica et Cosmochimica Acta, 70(6):1439-1456.doi: 10.1016/j.gca.2005.11.014 [20] Glasby, G.P., Stüben, D., Jeschke, G., et al., 1997.A Model for the Formation of Hydrothermal Manganese Crusts from the Pitcairn Island Hotspot. Geochimica et Cosmochimica Acta, 61(21):4583-4597.doi: 10.1016/s0016-7037(97)00262-7 [21] Han, X.T., Bao, Z.Y., Xie, S.Y., 2016.Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1):167-176(in Chinese with English abstract). doi: 10.1007/s12182-014-0317-6 [22] He, Z.W., Yang, R.D., Gao, J.B., et al., 2013.Geological and Geochemical Characteristics of Manganese-Bearing Rock Series of Yangjiawan Manganese Deposit, Songtao County, Guizhou Province. Geoscience, 27(3):593-602 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201303010.htm [23] Hudson, J.D., 1977.Stable Isotopes and Limestone Lithoification. Journal of the Geological Society, 133(6):637-660.doi: 10.1144/gsjgs.133.6.0637 [24] Iizasa, K., Fiske, R.S., Ishizuka, O., et al., 1999.A Kuroko-Type Polymetallic Sulfide Deposit in a Submarine Silicic Caldera. Science, 283(5404):975-977.doi: 10.1126/science.283.5404.975 [25] Jia, Y.Y., Xing, X.J., Sun, G.Q., et al., 2015.The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin. Earth Science, 40(12):1955-1967(in Chinese with English abstract). [26] Kazachenko, V.T., Miroshnichenko, N.V., Perevoznikova, E.V., et al., 2006.Gallium, Gold, and Platinum Group Metals in Manganese Rocks of Southern Sikhote Alin. Doklady Earth Sciences, 407(2):429-433.doi: 10.1134/s1028334x06030184 [27] Keith, M.L., Weber, J.N., 1964.Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11):1787-1816.doi: 10.1016/0016-7037(64)90022-5 [28] Koschinsky, A., Hein, J.R., 2003.Uptake of Elements from Seawater by Ferromanganese Crusts:Solid-Phase Associations and Seawater Speciation. Marine Geology, 198(3-4):331-351.doi: 10.1016/s0025-3227(03)00122-1 [29] Kuleshov, V.N., 2011.Manganese Deposits:Communication 1.Genetic Models of Manganese Ore Formation. Lithology and Mineral Resources, 46(5):473-493.doi: 10.1134/s0024490211050038 [30] Kuleshov, V.N., Brusnitsyn, A.I., 2005.Isotopic Composition (δ13C, δ18O) and the Origin of Carbonates from Manganese Deposits of the Southern Urals. Lithology and Mineral Resources, 40(4):364-375.doi: 10.1007/s10987-005-0034-8 [31] Li, D., Ling, H.F., Jiang, S.Y., et al., 2009.New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China:Implications for Global Correlation. Geological Magazine, 146(4):465.doi: 10.1017/s0016756809006268 [32] Li, S.F., Wang, Z.H., Li, L.T., et al., 2009.Analysis of Metallogenic Mechanism of High-Grade Manganese Ore in Southwest Guangxi. Resources Environment & Engineering, 23(4):363-370(in Chinese with English abstract). [33] Li, X.Z., Liu, W.G., Xu, L.M., 2012.Carbon Isotopes in Surface-Sediment Carbonates of Modern Lake Qinghai (Qinghai-Tibet Plateau):Implications for Lake Evolution in Arid Areas. Chemical Geology, 300-301:88-96.doi: 10.1016/j.chemgeo.2012.01.010 [34] Liu, T.F., 1996.Study on Geological Feature and Metallogenic Conditions of Dongping Supergene Enriched Mn Ore Deposit. Contributions to Geology and Mineral Resources Research, 11(4):42-55 (in Chinese with English abstract). [35] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Element Geochemistry.Science Press, Beijing (in Chinese). [36] Liu, Z.C., Zhang, Y.G., Chen, D., et al., 2013.Geochemical Characteristics and Geological Significance of "Bainitangceng" Siliceous Rocks in Zunyi Manganese Ore Fields, Guizhou Province, China. Acta Mineralogica Sinica, 33(4):665-670(in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/873157?mode=full&submit_simple=Show+full+item+record [37] Loyd, S.J., Corsetti, F.A., Eagle, R.A., et al., 2015.Evolution of Neoproterozoic Wonoka-Shuram Anomaly-Aged Carbonates:Evidence from Clumped Isotope Paleothermometry. Precambrian Research, 264:179-191.doi: 10.1016/j.precamres.2015.04.010 [38] Macouin, M., Ader, M., Moreau, M.G., et al., 2012.Deciphering the Impact of Diagenesis Overprint on Negative δ13C Excursions Using Rock Magnetism:Case Study of Ediacaran Carbonates, Yangjiaping Section, South China. Earth and Planetary Science Letters, 351-352:281-294.doi: 10.1016/j.epsl.2012.06.057 [39] Metz, S., Trefry, J.H., 2000.Chemical and Mineralogical Influences on Concentrations of Trace Metals in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 64(13):2267-2279.doi: 10.1016/s0016-7037(00)00354-9 [40] Mikhailik, P.E., Derkachev, A.N., Chudaev, O.V., et al., 2009.Fe-Mn Crusts from Underwater Rises of the Kashevarov Trough (Sea of Okhotsk). Russian Journal of Pacific Geology, 3(1):28-39.doi: 10.1134/s1819714009010047 [41] Mikhailik, P.E., Khanchuk, A.I., 2011.Ferromanganese Crusts from Submarine Volcanoes of Backarc Basins as a New Genetic Type of Gallium Deposits. Doklady Earth Sciences, 439(2):1060-1062.doi: 10.1134/s1028334x11080058 [42] Mikhailik, P.E., Mikhailik, E.V., Blokhin, M.G., et al., 2015.Sources of Gallium in Ferromanganese Crusts from the Sea of Japan. Russian Geology and Geophysics, 56(8):1148-1153.doi: 10.1016/j.rgg.2015.07.005 [43] Mishra, P., Mvohapatra, B.K., Singh, P.P., 2006.Mode of Occurrence and Characteristics of Mn-Ore Bodies in Iron Ore Group of Rocks, North Orissa, India and Its Significance in Resource Evaluation. Resource Geology, 56(1):55-64.doi: 10.1111/j.1751-3928.2006.tb00268.x [44] Moskalyk, R.R., 2003.Gallium:The Backbone of the Electronics Industry. Minerals Engineering, 16(10):921-929.doi: 10.1016/j.mineng.2003.08.003 [45] Noguchi, T., Oomori, T., Tanahara, A., et al., 2007.Chemical Composition of Hydrothermal Ores from Mid-Okinawa Trough and Suiyo Seamount Determined by Neutron Activation Analysis. Geochemical Journal, 41(2):141-148.doi: 10.2343/geochemj.41.141 [46] Okita, P.M., Maynard, J.B., Spiker, E.C., et al., 1988.Isotopic Evidence for Organic Matter Oxidation by Manganese Reduction in the Formation of Stratiform Manganese Carbonate Ore. Geochimica et Cosmochimica Acta, 52(11):2679-2685.doi: 10.1016/0016-7037(88)90036-1 [47] Okita, P.M., Shanks, W.C., 1992.Origin of Stratiform Sediment-Hosted Manganese Carbonate Ore Deposits:Examples from Molango, Mexico, and Taojiang, China. Chemical Geology, 99(1-3):139-163.doi: 10.1016/0009-2541(92)90036-5 [48] O'Neil, J.R., Epstein, S., 1966.Oxygen Isotope Fractionation in the System Dolomite-Calcite-Carbon Dioxide. Science, 152(3719):198-201.doi: 10.1126/science.152.3719.198 [49] Papp, D.C., Cociuba, I., Lazǎr, D.F., 2013.Carbon and Oxygen-Isotope Stratigraphy of the Early Cretaceous Carbonate Platform of Pǎdurea Craiului (Apuseni Mountains, Romania):A Chemostratigraphic Correlation and Paleoenvironmental Tool. Applied Geochemistry, 32:3-16.doi: 10.1016/j.apgeochem.2012.09.005 [50] Ru, T.Q., Wei, L.D., Shu, G., 1992.Geological Characteristics of Manganese Ores in Guangxi.Geological Publishing House, Nanjing (in Chinese). [51] Saelen, G., Doyle, P., Talbot, M.R., 1996.Stable-Isotope Analyses of Belemnite Rostra from the Whitby Mudstone Fm., England:Surface Water Conditions during Deposition of a Marine Black Shale. Palaios, 11(2):97.doi: 10.2307/3515065 [52] Shackleton, N.J., Kennett, J.P., 1975.Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation:Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281. Initial Reports of the Deep Sea Drilling Project, 29:743-755.doi: 10.2973/dsdp.proc.29.117.1975 [53] Shao, J.N., Tao, W.P., 2010.Mineral Resources Industry Handbook.Geological Publishing House, Beijing (in Chinese). [54] Sugisaki, R., Sugitani, K., Adachi, M., 1991.Manganese Carbonate Bands as an Indicator of Hemipelagic Sedimentary Environments. The Journal of Geology, 99(1):23-40.doi: 10.1086/629471 [55] Sverdrup, H.U., Ragnarsdóttir, K.V., 2014.Section 2.Classification of Natural Resources. Geochemical Perspectives, 3(2):172-192. http://perspectives.geoscienceworld.org/content/3/2/172 [56] Telford, M., 2001.Gallium Shortage Easing. Ⅲ-Vs Review, 14(4):54-58.doi: 10.1016/s0961-1290(01)80184-8 [57] Wang, H.W., Wen, X.P., Chang, H.L., et al., 2013.Characteristics of Carbon and Oxygen Isotope in Heqing Manganese Deposit, Yunnan, China. Geoscience, 27(3):612-620(in Chinese with English abstract). [58] Wefer, G., Berger, W.H., 1991.Isotope Paleontology:Growth and Composition of Extant Calcareous Species. Marine Geology, 100(1-4):207-248.doi: 10.1016/0025-3227(91)90234-u [59] Yang, K.H., Yu, X.G., Chu, F.Y., et al., 2016.Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea. Earth Science, 41(7):1206-1215(in Chinese with English abstract). [60] Yang, R.D., Cheng, M.L., Wei, H.R., 2009.Geochemical Characteristics and Origin of a Manganese Deposit in the Middle Permian Maokou Formation in Shuicheng, Guizhou, China. Geotectonica et Metallogenia, 33(4):613-619(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200904017.htm [61] Yang, R.D., Gao, J.B., Cheng, M.L., et al., 2010.Sedimentary Geochemistry of Manganese Deposit of the Neoproterozoic Datangpo Formation in Guizhou Province, China. Acta Geologica Sinica, 84(12):1781-1790(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201012007.htm [62] Yang, X.F., Liu, C., Chen, X., 2013.Discussion on Ore Characteristics and Ore-Forming Mechanism of Baishixi Manganese Deposit, Guizhou. Geotechnical Engineering World, 4(1):52-55(in Chinese with English abstract). [63] Yang, Y., Gao, F.H., Pu, X.G., et al., 2013.Changes to Depositional Palaeoenvironments within the Qikou Depression (Bohaiwan Basin, China):Carbon and Oxygen Isotopes in Lacustrine Carbonates of the Palaeogene Shahejie Formation. International Geology Review, 55(15):1909-1921.doi: 10.1080/00206814.2013.805926 [64] Yi, F., Yi, H.S., 2017.Geochemical Characteristics of the Beisi Formation Manganese-Bearing Rocks of the Lower Triassic Series in the Tiandeng Area, Southwest Guangxi and Their Implications. Geochimica, 46(1):46-65(in Chinese with English abstract). [65] Yi, H.S., Chen, Z.Y., Ji, C.J., et al., 2014.New Evidence for Deep Burial Origin of Sucrosic Dolomites from Middle Jurassic Buqu Formation in Southern Qiangtang Basin. Acta Petrologica Sinica, 30(3):737-746 (in Chinese with English abstract). [66] Yin, Q., 2015.Research on Depositional Feature and Mineralization Mechanism of Manganese Deposit of the Lower Triassic in Southwestern Guangxi Area (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). [67] Zeng, Z.G., 2011.Seafloor Hydrothermal Geology.Science Press, Beijing (in Chinese). [68] Zhang, C., 2013.Sedimentation Feature of Manganese-Bearing Rock Series from the Upper Devonian, Southwest of Guangxi, China (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). [69] Zhang, Z.W., Ding, H.S., Zhang, Y.J., 2016.Carbon and Oxygen Stable Isotope Features of the Lower Ordovician Gucheng Region of Tarim Basin. Marine Geology & Quaternary Geology, 36(2):59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200001011.htm [70] Zheng, Y.F., 1999.Oxygen Isotope Fractionation in Carbonate and Sulfate Minerals. Geochemical Journal, 33(2):109-126.doi: 10.2343/geochemj.33.109 [71] Zhu, S.Q., 1997.Geochemical Characteristics of Rare Earth Elements in Dongping Manganese Deposit, Guangxi. South China Metallurgical Geology, 2:27-30 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201205008.htm [72] Zhu, S.Q., 2001.Phodochrosite of Hemioxidative Zone in Dongping Manganese Ore. Geology and Prospecting, 37(2):58-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200102016.htm [73] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2006.Carbon Isotope Composition of the Lower Triassic Marine Carbonates, Lower Yangtze Region, South China. Science China Earth Science, 49(3):225-241.doi: 10.1007/s11430-006-0225-8 [74] 陈骏, 王鹤年, 2004.地球化学.北京:科学出版社. [75] 高军波, 杨瑞东, 陶平, 等, 2013.贵州镇宁泥盆系大型重晶石矿床地球化学特征及其成因研究.现代地质, 27(1):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201301005.htm [76] 韩晓涛, 鲍征宇, 谢淑云, 2016.四川盆地西南中二叠统白云岩的地球化学特征及其成因.地球科学, 41(1):167-176. http://www.earth-science.net/WebPage/Article.aspx?id=3229 [77] 何志威, 杨瑞东, 高军波, 等, 2013.贵州省松桃杨家湾锰矿含锰岩系地质地球化学特征.现代地质, 27(3):593-602. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303010.htm [78] 贾艳艳, 邢学军, 孙国强, 等, 2015.柴北缘西段古-新近纪古气候演化.地球科学, 40(12):1955-1967. http://www.earth-science.net/WebPage/Article.aspx?id=3202 [79] 李升福, 王泽华, 李朗田, 等, 2009.桂西南优质锰矿成矿机理分析.资源环境与工程, 23(4):363-370. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200904001.htm [80] 刘腾飞, 1996.广西东平表生富集型锰矿床地质特征及成矿条件初步研究.地质找矿论丛, 11(4):42-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK604.004.htm [81] 刘英俊, 1984.元素地球化学.北京:科学出版社. [82] 刘志臣, 张远国, 陈登, 等, 2013.贵州遵义锰矿区"白泥塘层"硅质岩地球化学特征及其地质意义.矿物学报, 33(4):665-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201304036.htm [83] 茹廷锵, 1992.广西锰矿地质.南京:地质出版社. [84] 邵厥年, 陶维屏, 2010.矿产资源工业要求手册.北京:地质出版社. [85] 王宏伟, 温兴平, 常海亮, 等, 2013.云南鹤庆锰矿碳氧同位素特征分析.现代地质, 27(3):612-620. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303012.htm [86] 杨克红, 于晓果, 初凤友, 等, 2016.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录.地球科学, 41(7):1206-1215. http://www.earth-science.net/WebPage/Article.aspx?id=3329 [87] 杨瑞东, 程玛莉, 魏怀瑞, 2009.贵州水城二叠系茅口组含锰岩系地质地球化学特征与锰矿成因分析.大地构造与成矿学, 33(4):613-619. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200904017.htm [88] 杨瑞东, 高军波, 程玛莉, 等, 2010.贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征.地质学报, 84(12):1781-1790. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012007.htm [89] 杨晓飞, 刘畅, 陈旭, 2013.贵州白石溪锰矿矿石特征及成矿机制探讨.矿产勘查, 4(1):52-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201301011.htm [90] 伊帆, 伊海生, 2017.桂西南地区下三叠统北泗组含锰岩系地球化学特征及意义.地球化学, 46(1):46-65. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201701005.htm [91] 伊海生, 陈志勇, 季长军, 等, 2014.羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据.岩石学报, 30(3):737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403013.htm [92] 尹青, 2015. 桂西南地区下三叠统锰矿沉积特征与成因机理研究(博士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312805.htm [93] 曾志刚, 2011.海底热液地质学.北京:科学出版社. [94] 张超, 2013. 桂西南地区上泥盆统含锰岩系沉积特征研究(硕士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013288862.htm [95] 张振伟, 丁寒生, 张亚金, 2016.塔里木盆地古城地区下奥陶统碳酸盐岩碳氧同位素特征.海洋地质与第四纪地质, 36(2):59-64. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SYXH201504001073.htm [96] 祝寿泉, 1997.广西东平锰矿稀土元素地球化学特征.中南冶金地质, (2):27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201610130.htm [97] 祝寿泉, 2001.广西东平锰矿半氧化带中的菱锰矿.地质与勘探, 37(2):58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200102016.htm