Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments
-
摘要: 煤层气的成因研究可以为煤层气勘探与开发提供科学依据,然而,煤层气的氢碳同位素组成受多种因素的影响,以前较多的研究是成气母质性质和成熟度对煤层气氢碳同位素的影响,对于成煤物质形成的气候环境对热解煤层气同位素的影响尚不清楚.热解模拟了高纬度寒冷干旱和低纬度热带湿润环境的草本泥炭,对热解烃类气体的氢碳同位素组成及其差异性进行了研究.研究结果表明:与低纬度热带湿润环境中形成的草本泥炭相比较,高纬度寒冷干旱环境的草本泥炭热解甲烷、乙烷和丙烷具有轻的氢同位素组成和重的碳同位素组成,并且从泥炭连续热解至Ro分别为2.5%、3.5%和5.5%时,甲烷、乙烷和丙烷δD值分别平均降低-17‰~-10‰、-32‰~-28‰和-25‰~-17‰,甲烷和乙烷δ13C值分别平均升高2.9‰~3.6‰和0.9‰~1.1‰.认为这种同位素差异起因于气候环境对形成泥炭的植物氢碳同位素组成的影响.建立了高纬度寒冷干旱和低纬度热带湿润环境中形成的成煤有机质热解烃类气体氢碳同位素组成与Ro之间的关系式,同时也建立了烃类气体的碳和氢同位素之间的关系式.这些研究成果为不同气候环境下形成的成煤有机质生成的煤层气成因研究提供了科学依据.Abstract: The study of coalbed methane (CBM) can provide scientific basis for coalbed methane exploration and development. However, the hydrogen and carbon isotopic compositions of CBM are affected by many factors. Previous studies were mainly concerned with the influence of the properties of gas-forming parent material and maturity on the hydrogen and carbon isotopic compositions of CBM. The influence of formation environment of gas-forming parent material on the isotopic compositions of thermogenic CBM is still unclear. Closed-system isothermal pyrolysis experiments were performed on herbaceous marsh peats derived from high latitude area with cold and dry climates and low latitude area with tropical moist climate. The hydrogen and carbon isotopic compositions and their differences of the hydrocarbon gases (methane, ethane and propane) generated during the pyrolysis of the samples were studied. The results show that the hydrocarbon gases generated from the herbaceous swamp peat in high latitude area had lighter hydrogen and heavier carbon isotopic compositions compared with those in low latitude area. At pyrolysis intervals from peat to vitrinite reflectance values (Ro) of 2.5%, 3.5% and 5.5%, the differences in the average δD values between the samples in high latitude and low latitude areas were from -17‰ to -10‰ for methane, -32‰ to -28‰ for ethane and -25‰ to -17‰ for propane, and in the average δ13C values between them were 2.9‰ to 3.6‰ for methane and 0.9‰ to 1.1‰ for ethane, respectively. The differences should result from the influence of climatic environment on hydrogen and carbon isotopic compositions of coal-forming original material. The relationship between Ro values and the hydrogen and carbon isotopic compositions of gases generated by coal-forming organic matter under different climatic environments as well as the hydrogen or carbon isotopic relationships of methane and ethane were established. These results may provide a basis for studying on the genesis of coalbed gas formed by coal-forming material under different climatic environments.
-
Key words:
- peat /
- simulation experiment /
- gas product /
- hydrogen and carbon isotopes /
- climatic environment /
- coalbed gas origin /
- geochemistry
-
表 1 样品参数
Table 1. Parameters of the samples
地区 样号 样品 海拔(m) 气候 TOC (%) 雨水δD值(‰) 年均降雨量(mm) 年均蒸发量(mm) 年均气温(℃) 阿尔泰 Alt 草本泥炭 2 560 寒冷干旱 32.3 -100 350~600 1 816 -3.8~1.8 湛江 Zwx-3 草本泥炭 28 热带湿润 34.5 -53 1 393~1 798 1 700~2 200 23.4 表 2 不同演化阶段烃类气体平均氢同位素组成
Table 2. Average δD value of hydrocarbon gas generated from peats at different evolution stages
温度(℃) Ro(%) δDCH4 (‰) δDC2H6 (‰) δDC3H8 (‰) δDCH4 (‰) δDC2H6 (‰) δDC3H8 (‰) ΔCH4 (‰) ΔC2H6 (‰) ΔC3H8 (‰) Alt Alt Alt Zwx-3 Zwx-3 Zwx-3 Alt-Zwx-3 Alt-Zwx-3 Alt-Zwx-3 250~400 <2.5 -337.1 -261.7 -248.4 -326.8 -233.4 -231.2 -10 -28 -17 250~500 <3.5 -310.4 -225.7 -229.3 -297.9 -194.0 -204.4 -13 -32 -25 250~650 <5.5 -257.9 -225.7 -229.3 -241.4 -194.0 -204.4 -17 -32 -25 表 3 不同演化阶段烃类气体平均碳同位素组成
Table 3. Average δ13C value of hydrocarbon gas generated from peats at different evolution stages
温度(℃) Ro(%) δ13CCH4 (‰) δ13CC2H6 (‰) δ13CC3H8 (‰) δ13CCH4 (‰) δ13CC2H6 (‰) δ13CC3H8 (‰) ΔCH4 (‰) ΔC2H6 (‰) Alt Alt Alt Zwx-3 Zwx-3 Zwx-3 Alt-Zwx-3 Alt-Zwx-3 250~400 <2.5 -41.4 -31.9 -32.6 -44.3 -32.8 -31.0 2.9 0.9 250~500 <3.5 -38.8 -30.1 -28.2 -42.4 -31.2 -28.0 3.6 1.1 250~650 <5.5 -36.2 -30.1 -28.2 -39.6 -31.2 -28.0 3.4 1.1 -
[1] Berner, U., Faber, E., 1988.Maturity Related Mixing Model for Methane, Ethane and Propane, Based on Carbon Isotopes. Organic Geochemistry, 13(1-3):67-72.doi: 10.1016/0146-6380(88)90026-5 [2] Bi, X.H., Sheng, G.Y., Liu, X.H., et al., 2005.Molecular and Carbon and Hydrogen Isotopic Composition of n-Alkanes in Plant Leaf Waxes. Organic Geochemistry, 36(10):1405-1417.doi: 10.1016/j.orggeochem.2005.06.001 [3] Chikaraishi, Y., Naraoka, H., 2007. δ 13C and δ D Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38:198-215. doi: 10.1016/j.orggeochem.2006.10.003 [4] Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004.Hydrogen and Carbon Isotopic Fractionations of Lipid Biosynthesis among Terrestrial (C3, C4 and CAM) and Aquatic Plants. Phytochemistry, 65(10):1369-1381.doi: 10.1016/j.phytochem.2004.03.036 [5] Clayton, J.L., 1998.Geochemistry of Coalbed Gas-A Review. International Journal of Coal Geology, 35(1-4):159-173.doi: 10.1016/s0166-5162(97)00017-7 [6] Criss, R.E., 1999.Principles of Stable Isotope Distribution.Oxford University Press Inc, New York. [7] Dai, J.X., Qi, H.F., Song, Y., et al., 1986.Composition, Carbon Isotope Characteristics and the Origin of Coalbed Gases in China and Their Implications. Chinese Science Bulletin, 30(12):1324-1337(in Chinese). doi: 10.1360/yb1987-30-12-1324 [8] Dai, J.X., Qi, H.F., 1989.The Relationship between δ13C and Ro of Coal-Derived Gas in China. Chinese Science Bulletin, 34(9):690-692 (in Chinese). [9] Dansgaard, W., 1964.Stable Isotopes in Precipitation. Tellus, 16(4):436-468.doi: 10.3402/tellusa.v16i4.8993 [10] Duan, Y., Duan, M.C., Sun, T., et al., 2016.Thermal Simulation Study on the Influence of Coal-Forming Material on the Isotopic Composition of Thermogenic Coalbed Gas. Geochemical Journal, 50(1):81-88.doi: 10.2343/geochemj.2.0386 [11] Duan, Y., He, J.X., Wu, B.X., et al., 2011.Composition and Genesis of n-Alkanes and their Hydrogen Isotope in Sediments from Saline Lake, China. Earth Science, 36(1):53-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101007.htm [12] Duan, Y., Wu, B.X., 2009.Hydrogen Isotopic Compositions and Their Environmental Significance for Individual n-Alkanes in Typical Plants from Land in China. Chinese Science Bulletin, 54(3):461-467.doi: 10.1007/s11434-008-0443-x [13] Duan, Y., Wu, B.X., He, J.X., et al., 2011.Characterization of Gases and Solid Residues from Closed System Pyrolysis of Peat and Coals at Two Heating Rates. Fuel, 90(3):974-979.doi: 10.1016/j.fuel.2010.10.039 [14] Duan, Y., Wu, Y.Z., Yao, J.L., et al., 2013.Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1):87-93(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301012.htm [15] Edwards, T.W.D., Graf, W., Trimborn, P., et al., 2000. δ13C Response Surface Resolves Humidity and Temperature Signals in Trees. Geochimica et Cosmochimica Acta, 64:161-167. doi: 10.1016/S0016-7037(99)00289-6 [16] Francey, R.J., Farquhar, G.D., 1982.An Explanation of 13C/12C Variations in Tree Rings. Nature, 297(5861):28-31.doi: 10.1038/297028a0 [17] Gu, S., Cai, J.H., Chang, D.W., et al., 2015.Reducing Formation Damage to Low-Porosity and Low-Permeability CBM Reservoirs Using Calcium Carbonate Nanoparticles. Earth Science, 40(6):1093-1100(in Chinese with English abstract). [18] Kotarba, M.J., Rice, D.D., 2001.Composition and Origin of Coalbed Gases in the Lower Silesian Basin, Southwest Poland. Applied Geochemistry, 16(7-8):895-910.doi: 10.1016/s0883-2927(00)00058-5 [19] Kotarba, M., 1990.Isotopic Geochemistry and Habitat of the Natural Gases from the Upper Carboniferous Žacle Coal-Bearing Formation in the Nowa Ruda Coal District (Lower Silesia, Poland). Organic Geochemistry, 16(1-3):549-560.doi: 10.1016/0146-6380(90)90069-c [20] Liu, Q.Y., Liu, W.H., Dai, J.X., 2007.Characterization of Pyrolysates from Maceral Components of Tarim Coals in Closed System Experiments and Implications to Natural Gas Generation. Organic Geochemistry, 38(6):921-934.doi: 10.1016/j.orggeochem.2007.02.002 [21] Pedentchouk, N., Sumner, W., Tipple, B., et al., 2008. δ13C and δ D Compositions of n-Alkanes from Modern Angiosperms and Conifers:An experimental Set up in Central Washington State, USA. Organic Geochemistry, 39:1066-1071. doi: 10.1016/j.orggeochem.2008.02.005 [22] Qin, Y., Tang, X.Y., Ye, J.P., et al., 2000.Characteristics and Origins of Stable Carbon Isotope in Coalbed Methane of China. Journal of China University of Mining & Technology, 29(2):113-119(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200002000.htm [23] Rao, P.L.S., Rasheed, M.A, Hasan, S.Z, et al., 2014.Role of Geochemistry in Coalbed Methane-A Review. Geosciences, 4(2):29-32. http://www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.geo.20140402.01 [24] Rice, D.D., 1993.Composition and Origins of Coalbed Gas.Hydrocarbons from Coal.In:Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal.AAPG Studies in Geology Series 38, AAPG, Tulsa, 159-184. http://www.searchanddiscovery.com/documents/rice/index.htm [25] Rice, D.D., 1993.Composition and Origins of Coalbed Gas.In:Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal.AAPG Studies in Geology Series 38, Tulsa, 159-184. [26] Rozanski, K., Arguas, L., Gongiantini, R., 1993.Isotope Patterns in Modern Global Precipitation, In:Swart, P.K., Lohmann, K.C., McKenzie, J., et al., eds., Climate Change in Continental Isotope Records.American Geophysical Union, Geophysical Monograph 78, Washington, D.C., 1-36. [27] Sessions, A.L., 2006.Seasonal Changes in D/H Fractionation Accompanying Lipid Biosynthesis in Spartina Alterniflora. Geochimica et Cosmochimica Acta, 70(9):2153-2162.doi: 10.1016/j.gca.2006.02.003 [28] Song, Y., Liu, S.B., Hong, F., et al., 2012.Geochemical Characteristics and Genesis of Coalbed Methane in China. Acta Petrolei Sinica, 33(z1):99-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2012S1014.htm [29] Song, Y., Liu, S.B., Zhang, Q., et al., 2012.Coalbed Methane Genesis, Occurrence and Accumulation in China. Petroleum Science, 9(3):269-280.doi: 10.1007/s12182-012-0209-6 [30] Stahl, W.J., Carey, B.D., 1975.Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas. Chemical Geology, 16(4):257-267.doi: 10.1016/0009-2541(75)90065-0 [31] Wang, G., Qin, Y., Xie, Y.W., et al., 2016.Geochemical Characteristics and Its Origin of Cbm in Gujiao Blocks. Journal of China Coal Society, 41(5):1180-1187(in Chinese with English abstract). [32] Zhang, L., Luo, J., Cui, G.D., et al., 2016.Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4):664-674(in Chinese with English abstract). [33] 戴金星, 戚厚发, 1989.我国煤成气的δ13C-Ro关系.科学通报, 34(9):690-692. [34] 段毅, 吴应忠, 姚泾利, 等, 2013.森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征.地球科学, 38(1):87-93. http://www.earth-science.net/WebPage/Article.aspx?id=2346 [35] 段毅, 何金先, 吴保祥, 等, 2011.咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因.地球科学, 36(1):53-61. http://www.earth-science.net/WebPage/Article.aspx?id=2064 [36] 谷穗, 蔡记华, 常德武, 等, 2015.使用纳米碳酸钙降低低孔低渗煤层气储层伤害.地球科学, 40(6):1093-1100. http://www.earth-science.net/WebPage/Article.aspx?id=3095 [37] 秦勇, 唐修义, 叶建平, 等, 2000.中国煤层甲烷稳定碳同位素分布与成因探讨.中国矿业大学学报, 29(2):113-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200002000.htm [38] 宋岩, 柳少波, 洪峰, 等, 2012.中国煤层气地球化学特征及成因.石油学报, 33(z1):99-106. doi: 10.3969/j.issn.1001-8719.2012.z1.023 [39] 汪岗, 秦勇, 解奕炜, 等, 2016.古交区块煤层气地球化学特征及其成因.煤炭学报, 41(5):1180-1187. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201605017.htm [40] 张亮, 罗炯, 崔国栋, 等, 2016.低温气体辅助煤层气压裂中的冷冲击机理.地球科学, 41(4):664-674. http://www.earth-science.net/WebPage/Article.aspx?id=3283