• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    缝洞型油藏井钻遇大尺度部分充填溶洞数学模型

    雷刚 张东晓 杨伟 王会杰

    雷刚, 张东晓, 杨伟, 王会杰, 2017. 缝洞型油藏井钻遇大尺度部分充填溶洞数学模型. 地球科学, 42(8): 1413-1420. doi: 10.3799/dqkx.2017.519
    引用本文: 雷刚, 张东晓, 杨伟, 王会杰, 2017. 缝洞型油藏井钻遇大尺度部分充填溶洞数学模型. 地球科学, 42(8): 1413-1420. doi: 10.3799/dqkx.2017.519
    Lei Gang, Zhang Dongxiao, Yang Wei, Wang Huijie, 2017. Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs. Earth Science, 42(8): 1413-1420. doi: 10.3799/dqkx.2017.519
    Citation: Lei Gang, Zhang Dongxiao, Yang Wei, Wang Huijie, 2017. Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs. Earth Science, 42(8): 1413-1420. doi: 10.3799/dqkx.2017.519

    缝洞型油藏井钻遇大尺度部分充填溶洞数学模型

    doi: 10.3799/dqkx.2017.519
    基金项目: 

    中国博士后科学基金项目 2017M610706

    国家科技重大专项 2016ZX05014004-006

    详细信息
      作者简介:

      雷刚(1987-), 男, 博士后, 主要从事缝洞型碳酸盐岩油藏开发方面研究

    • 中图分类号: P345

    Mathematical Model for Wells Drilled in Large-Scale Partially Filled Cavity in Fractured-Cavity Reservoirs

    • 摘要: 缝洞型油藏不同介质间流体窜流的研究对于大尺度溶洞中原油是否能够得到有效开发具有重大意义.基于缝洞型油藏大尺度溶洞充填特征,建立了井钻遇大尺度部分充填溶洞数学模型,采用Laplace变换和Stehfest数值反演,分别得到了基岩-溶洞未充填区域窜流量、溶洞充填区域-溶洞未充填区域窜流量和大尺度溶洞无因次流量,并分析了不同参数对窜流特征曲线的影响.研究结果表明:流体窜流过程可划分为4个流动阶段,流动前期和中前期主要为基质中流体向溶洞未充填部分窜流;流动中后期和后期主要为溶洞充填物流体向溶洞未充填部分窜流.在流动前期,基质和未充填溶洞间流体交换对部分充填溶洞流量贡献较大;而流动后期,溶洞充填物和未充填溶洞间流体交换对部分充填溶洞流量贡献较大.重力会导致溶洞充填物-溶洞未充填部分窜流量减小,而基质-溶洞未充填部分窜流不受到重力影响.溶洞充填程度、溶洞未充填部分和基质系统能量等因素对窜流特征曲线具有重大的影响.研究方法和结果对合理分析缝洞型油藏大尺度溶洞流动特征具有一定的指导意义.

       

    • 图  1  溶洞-基岩型缝洞油藏示意

      Fig.  1.  The sketch of large size vug and matrix in fractured-vuggy reservoir

      图  2  流动特征曲线

      Fig.  2.  Typical crossflow characteristic curve for the model

      图  3  无因次重力对窜流特征曲线影响

      Fig.  3.  Effect of dimensionless gravity on the crossflow characteristic curve

      图  4  无因次变量CD对窜流特征曲线影响

      Fig.  4.  Effect of dimensionless variable CD on the crossflow characteristic curve

      图  5  无因次变量h2D对窜流特征曲线影响

      Fig.  5.  Effect of dimensionless variable h2D on the crossflow characteristic curve

      图  6  无因次变量δ对窜流特征曲线影响

      Fig.  6.  Effect of dimensionless variable δ on the crossflow characteristic curve

      图  7  无因次变量ω对窜流特征曲线影响

      Fig.  7.  Effect of dimensionless variable ω on the crossflow characteristic curve

      图  8  无因次变量reD对窜流特征曲线影响

      Fig.  8.  Effect of dimensionless variable reD on the crossflow characteristic curve

    • [1] Arbogast, T., Gomez, M.S.M., 2008.A Discretization and Multigrid Solver for a Darcy-Stokes System of Three Dimensional Vuggy Porous Media.Computational Geosciences, 13(3):331-348.doi: 10.1007/s10596-008-9121-y
      [2] Cai, J.C., Guo, S.L., You, L.J., et al., 2013.Fractal Analysis of Spontaneous Imbibition Mechanism in Fractured-Porous Dual Media Reservoir.Acta Physica Sinica, 62(1):220-224 (in Chinese with English abstract). doi: 10.7498/aps.62.014701
      [3] Cai, J.C., Hu, X.Y., Standnes, D.C., et al., 2012.An Analytical Model for Spontaneous Imbibition in Fractal Porous Media Including Gravity.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 414:228-233.doi: 10.1016/j.colsurfa.2012.08.047
      [4] Chen, F.F., Zhang, F.X., Deng, X.L., et al., 2015.A Numerical Well Test Model for Wells Drilled out of Big-Size Cavity of Fractured Carbonate Reservoirs.Science & Technology Review, 33(9):46-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KJDB201509018.htm
      [5] Cheng, C.L., Perfect, E., Donnelly, B., et al., 2015.Rapid Imbibition of Water in Fractures within Unsaturated Sedimentary Rock.Advances in Water Resources, 77:82-89.doi: 10.1016/j.advwatres.2015.01.010
      [6] Cheng, Q., Xiong, W., Gao, S.S., et al., 2009.Channeling Model of Non-Steady Flow from Matrix to Insular Cavity.Special Oil and Gas Reservoirs, 16(3):53-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ200903017.htm
      [7] Gao, B., Huang, Z.Q., Yao, J., et al., 2016.Pressure Transient Analysis of a Well Penetrating a Filled Cavity in Naturally Fractured Carbonate Reservoirs.Journal of Petroleum Science and Engineering, 145:392-403.doi:org/ 10.1016/j.petrol.2016.05.037
      [8] Han, J.F., Mei, L.F., Pan, W.Q., et al., 2007.Complex Carbonate Hydrocarbon Reservoir Modeling and Reserve Calculating:Taking the Buried Carbonate Hill Oil-Gas Pool Reserve Calculation as an Example.Earth Science, 32(2):267-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702016.htm
      [9] Hu, X.Y., Quan, L.S., Qi, D.S., 2014.Features of Cavern Filling in Fractured/Vuggy Carbonate Oil Reservoirs, Tahe Oilfield.Special Oil & Gas Reservoirs, 21(1):18-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TZCZ201401004.htm
      [10] Huo, Z.P., Jiang, T., Pang, X.Q., et al., 2016.Evaluation of Deep Carbonate Source Rocks with Low TOC and Contribution to Oil-Gas Accumulation in Tazhong Area, Tarim Basin.Earth Science, 41(12):2061-2074 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201612010.htm
      [11] Jin, Q., Tian, F., Lu, X.B., et al., 2015.Characteristics of Collapse Breccias Filling in Caves of Runoff Zone in the Ordovician Karst in Tahe Oilfield, Tarim Basin.Oil & Gas Geology, 36(5):729-735, 755 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201505004.htm
      [12] Kang, Z.J., 2010.New Method of Coupling Numerical Simulation and Application to Fracture-Cavern Carbonate Reservoir.Xinjiang Petroleum Geology, 31(5):514-516 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201005024.htm
      [13] Li, S., Li, Y., 2010.An Experimental Research on Water Injection to Replace the Oil in Isolated Caves in Fracture-Cavity Carbonate Rock Oilfield.Journal of Southwest Petroleum University (Science & Technology Edition), 32(1):117-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201001021.htm
      [14] Li, Y., 2012.Ordovician Carbonate Fracture-Cavity Reservoirs Identification and Quantitative Characterization in Tahe Oilfield.Journal of China University of Petroleum (Edition of Natural Science), 36(1):1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201201002.htm
      [15] Li, Y., 2013.The Theory and Method for Development of Carbonate Fractured-Cavity Reservoirs in Tahe Oilfield.Acta Petrolei Sinica, 34(1):115-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201301012.htm
      [16] Li, Y., Fan, Z.H., 2011.Developmental Pattern and Distribution Rule of the Fracture-Cavity System of Ordovician Carbonate Reservoirs in the Tahe Oilfield.Acta Petrolei Sinica, 32(1):101-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201101016.htm
      [17] Liu, H., Wang, X.H., Yang, F., et al., 2012.Pressure Response Characteristics of Large Size Cave.Fault-Block Oil & Gas Field, 19(1):99-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201201024.htm
      [18] Liu, Z.C., Li, J.L., Lü, C.Y., et al., 2009.Experimental Study on Effect of Reservoir Space Types on Water Cut of Wells in Karstic-Fractured Carbonate Reservoir.Acta Petrolei Sinica, 30(2):271-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200902021.htm
      [19] Pan, J.G., Wei, P.S., Cai, Z.X., et al., 2012.Reservoir Architectural System in the Middle-Lower Ordovician Carbonate Rock of Tazhong Areas in Tarim.Earth Science, 37(4):751-762 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204015.htm
      [20] Peng, X.L., Du, Z.M., Liang, B.S., et al., 2009.Darcy-Stokes Streamline Simulation for the Tahe-Fractured Reservoir with Cavities.SPE Journal, 14(3):543-552.doi: 10.2118/107314-pa
      [21] Popov, P., Qin, G., Bi, L., et al., 2007.Multiphysics and Multiscale Methods for Modeling Fluid Flow through Naturally Fractured Carbonate Karst Reservoirs.SPE Reservoir Evaluation & Engineering, 12(2):218-231.doi: 10.2118/105378-PA
      [22] Qian, H.T., Sun, Q., Wang, S.J., 2014.Effects of Geo-Stress on Carbonate Dissolution and Karst Evolution.Earth Science, 39(7):896-904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201407012.htm
      [23] Wang, J., Liu, H.Q., Ning, Z.F., et al., 2014.Experiments on Water Flooding in Fractured-Vuggy Cells in Fractured-Vuggy Reservoirs.Petroleum Exploration and Development, 41(1):67-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201401009.htm
      [24] Wang, J., Liu, H.Q., Xu, J., et al., 2012.Formation Mechanism and Distribution Law of Remaining Oil in Fracture-Cavity Reservoirs.Petroleum Exploration and Development, 39(5):585-590 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201205012.htm
      [25] Xiong, W., Chang, B.H., Pan, M., et al., 2011.Impact of Water Injection on Water Content in Single Well Fractured-Vuggy System.Fault-Block Oil & Gas Filed, 18(4):479-481 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201104019.htm
      [26] Yao, J., Huang, Z.Q., Wang, Z.S., et al., 2010.Mathematical Model of Fluid Flow in Fractured Vuggy Reservoirs Based on Discrete Fracture-Vug Network.Acta Petrolei Sinica, 31(5):815-819 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201005023.htm
      [27] Yao, J., Wang, X., Wang, C.C., et al., 2013.The Influence of Carbonate Rocks Reservoir Parameters on Microscopic Flow.Earth Science, 38(5):1047-1052 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201305016.htm
      [28] Zhang, F.X., Chen, F.F., Peng, J.X., et al., 2009.A Well Test Model for Wells Drilled in Big-Size Cavity of Naturally Fractured Vuggy Carbonate Reservoirs.Acta Petrolei Sinica, 30(6):912-915 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2009/V30/I6/912
      [29] 蔡建超, 郭士礼, 游利军, 等, 2013.裂缝-孔隙型双重介质油藏渗吸机理的分形分析.物理学报, 62(1): 220-224. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201301035.htm
      [30] 陈方方, 张福祥, 邓兴梁, 等, 2015.井打在溶洞外的缝洞型油藏数值试井模型.科技导报, 33(9): 46-49. doi: 10.3981/j.issn.1000-7857.2015.09.007
      [31] 程倩, 熊伟, 高树生, 等, 2009.基岩-孤立溶洞不稳定窜流方程.特种油气藏, 16(3): 53-54. http://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200903017.htm
      [32] 韩剑发, 梅廉夫, 潘文庆, 等, 2007.复杂碳酸盐岩油气藏建模及储量计算方法:以潜山油气储量计算为例.地球科学, 32(2): 267-272. http://earth-science.net/WebPage/Article.aspx?id=3450
      [33] 胡向阳, 权莲顺, 齐得山, 等, 2014.塔河油田缝洞型碳酸盐岩油藏溶洞充填特征.特种油气藏, 21(1): 18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201401004.htm
      [34] 霍志鹏, 姜涛, 庞雄奇, 等, 2016.塔中地区深层低丰度碳酸盐岩有效烃源岩评价及其对油气藏贡献.地球科学, 41(12): 2061-2074. http://earth-science.net/WebPage/Article.aspx?id=3401
      [35] 金强, 田飞, 鲁新便, 等, 2015.塔河油田奥陶系古径流岩溶带垮塌充填特征.石油与天然气地质, 36(5): 729-735, 755. doi: 10.11743/ogg20150503
      [36] 康志江, 2010.缝洞型碳酸盐岩油藏耦合数值模拟新方法.新疆石油地质, 31(5): 514-516. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201005024.htm
      [37] 李鹴, 李允, 2010.缝洞型碳酸盐岩孤立溶洞注水替油实验研究.西南石油大学学报(自然科学版), 32(1): 117-120. http://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201001021.htm
      [38] 李阳, 2012.塔河奥陶系碳酸盐岩溶洞型储集体识别及定量表征.中国石油大学学报(自然科学版), 36(1): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201201002.htm
      [39] 李阳, 2013.塔河油田碳酸盐岩缝洞型油藏开发理论及方法.石油学报, 34(1): 115-121. doi: 10.7623/syxb201301013
      [40] 李阳, 范智慧, 2011.塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律.石油学报, 32(1): 101-106. doi: 10.7623/syxb201101015
      [41] 刘洪, 王新海, 杨锋, 等, 2012.大尺度溶洞压力响应特征.断块油气田, 19(1): 99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201201024.htm
      [42] 刘中春, 李江龙, 吕成远, 等, 2009.缝洞型油藏储集空间类型对油井含水率影响的实验研究.石油学报, 30(2): 271-274. doi: 10.7623/syxb200902020
      [43] 潘建国, 卫平生, 蔡忠贤, 等, 2012.塔中地区中-下奥陶统碳酸盐岩孔洞-裂缝储集系统划分及其特征.地球科学, 37(4): 751-762. http://earth-science.net/WebPage/Article.aspx?id=2281
      [44] 钱海涛, 孙强, 王思敬, 2014.地应力对碳酸盐岩溶解和岩溶发育的影响.地球科学, 39(7): 896-904. http://earth-science.net/WebPage/Article.aspx?id=2890
      [45] 王敬, 刘慧卿, 宁正福, 等, 2014.缝洞型油藏溶洞-裂缝组合体内水驱油模型及实验.石油勘探与开发, 41(1): 67-73. doi: 10.11698/PED.2014.01.08
      [46] 王敬, 刘慧卿, 徐杰, 等, 2012.缝洞型油藏剩余油形成机制及分布规律.石油勘探与开发, 39(5): 585-590. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205012.htm
      [47] 熊伟, 常宝华, 潘懋, 等, 2011.单井缝洞系统注水对含水率的影响分析.断块油气田, 18(4): 479-481. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201104019.htm
      [48] 姚军, 黄朝琴, 王子胜, 等, 2010.缝洞型油藏的离散缝洞网络流动数学模型.石油学报, 31(5): 815-819. doi: 10.7623/syxb201005020
      [49] 姚军, 王鑫, 王晨晨, 等, 2013.碳酸盐岩储层参数对微观渗流的影响.地球科学, 38(5): 1047-1052. http://earth-science.net/WebPage/Article.aspx?id=2786
      [50] 张福祥, 陈方方, 彭建新, 等, 2009.井打在大尺度溶洞内的缝洞型油藏试井模型.石油学报, 30(6): 912-915. doi: 10.7623/syxb200906021
    • 加载中
    图(8)
    计量
    • 文章访问数:  5058
    • HTML全文浏览量:  1718
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-03
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回