Zircon U-Pb Geochronology of Ore-Bearing Porphyries in Baomai Deposit, Yulong Copper Belt, Tibet
-
摘要: 包买斑岩型铜钼矿床是西藏玉龙铜矿带北段重要组成部分,具有典型的斑岩型矿化、蚀变特征.最新勘查进展揭示其铜、钼资源量均已达中型矿床规模,但理论研究工作仍十分薄弱.以矿区基本地质特征为基础,运用LA-ICP-MS锆石U-Pb年代学方法,精确获得包买矿区与成矿有关的黑云母花岗岩和黑云母二长花岗岩侵位时代分别为:41.3±0.2 Ma和40.8±0.2 Ma,与玉龙、扎那尕等矿床一致,是始新世印度大陆与欧亚大陆碰撞造山过程的产物.综合区域已有年代学证据,玉龙铜矿带与成矿有关的斑岩体主要集中侵位于37~42 Ma,可能不存在明显的早(51 Ma)、中(41 Ma)、晚(33 Ma)三期,且从北西向南东,成岩成矿时代也没有明显降低变新的趋势.Abstract: Baomai porphyry copper-molybdenite deposit is an important part of the northern Yulong copper belt, Tibet, with typical porphyry-type mineralization and alteration. The latest exploration shows that both Cu and Mo resources have reached the medium-sized deposit, but the research work is still very poor. Based on the basic geological characteristics, intrusion ages of biotite granite porphyry and biotit-monzogranite are 41.3±0.2 Ma and 40.8±0.2 Ma, respectively, according to the LA-ICP-MS zircon U-Pb geochronology method. These results are consistent with those of Yulong and Zhanaga deposits. All of them are the products of continent collision orogeny of India with Eurasia in Eocene. Geochronology evidences show that porphyries related to mineralization in the Yulong copper belt are mainly intruded at 37-42 Ma, and no obviously early (51 Ma), medium (41 Ma) and late (33 Ma) stages magmatic activities. From northwest to southeast, the ages of diagenesis and mineralization in Yulong copper belt do not change to be younger significantly.
-
图 1 西藏玉龙斑岩铜矿带区域构造位置
据Hou et al.(2003c)、唐菊兴等(2006)以及陈喜连等(2016)
Fig. 1. Regional tectonic location of the Yulong porphyry copper belt
图 2 西藏包买斑岩铜钼矿矿区地质图
Fig. 2. Geological sketch of Baomai porphyry copper-molybdenite deposit in Tibet
图 4 包买斑岩铜钼矿床主要矿化特征及岩石组成
a.ZK0208-200.3 m泥化蚀变黑云母花岗岩中的硫化物脉;b.ZK0208-200.3 m硫化物脉中Cp、Eg、Py(反射光);c.ZK0208-271.0 m黑云母花岗岩,裂隙面上可见细粒辉钼矿;d.ZK0507-792.7 m黑云母二长花岗岩石英-辉钼矿-黄铜矿脉;e.ZK0607-207.1 m黄铜矿化片麻岩;f.ZK0607-207.1 m片麻岩(正交偏光).Q.石英;Mol.辉钼矿;Cp.黄铜矿;Eg.硫砷铜矿;Py.黄铁矿;Bio.黑云母;Pl.斜长石;Kfs.钾长石
Fig. 4. Mineralized characteristics and petrology of Baomai porphyry Cu (Mo) deposit, Tibet
图 7 西藏玉龙铜矿带斑岩体同位素年龄值直方图
数据来源见表 3
Fig. 7. Histogram of isotopic ages of porphyry bodies in the Yulong porphyry copper belt, Tibet
图 8 西藏玉龙铜矿带成岩成矿时代分布
数据来源见表 3
Fig. 8. Distribution diagram of isotopic ages in the Yulong porphyry copper belt, Tibet
表 1 包买铜钼矿床含矿斑岩锆石LA-ICP-MS U-Pb分析结果
Table 1. Zircon LA-ICP-MS U-Pb ages of the Baomai ore-bearing porphyry
样品编号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U(Ma) 1σ 黑云母花岗岩 ZK0208-266.0 m-1 629 903 0.7 0.051 6 0.003 2 0.044 6 0.002 9 0.006 3 0.000 1 40.7 0.8 ZK0208-266.0 m-2 497 958 0.5 0.051 5 0.003 7 0.044 4 0.003 2 0.006 2 0.000 1 40.1 0.7 ZK0208-266.0 m-4 1 531 1 626 0.9 0.052 3 0.004 4 0.045 5 0.003 6 0.006 4 0.000 1 41.0 0.8 ZK0208-266.0 m-5 675 1 294 0.5 0.052 1 0.002 6 0.045 4 0.002 2 0.006 3 0.000 1 40.8 0.5 ZK0208-266.0 m-6 686 1 161 0.6 0.052 4 0.002 2 0.045 8 0.001 8 0.006 4 0.000 1 41.2 0.5 ZK0208-266.0 m-7 1 723 2 497 0.7 0.048 1 0.002 3 0.041 4 0.001 9 0.006 3 0.000 1 40.2 0.5 ZK0208-266.0 m-9 789 1 360 0.6 0.051 0 0.002 0 0.044 2 0.001 6 0.006 4 0.000 1 41.3 0.5 ZK0208-266.0 m-10 608 1 205 0.5 0.050 9 0.002 9 0.044 0 0.002 5 0.006 4 0.000 1 40.9 0.6 ZK0208-266.0 m-11 354 1 124 0.3 0.050 6 0.002 5 0.044 2 0.002 2 0.006 5 0.000 1 41.7 0.6 ZK0208-266.0 m-12 541 1 083 0.5 0.051 8 0.002 3 0.045 2 0.002 1 0.006 4 0.000 1 41.2 0.6 ZK0208-266.0 m-13 1 068 2 050 0.5 0.048 2 0.001 9 0.042 9 0.001 8 0.006 5 0.000 1 41.6 0.5 ZK0208-266.0 m-14 483 1 194 0.4 0.050 1 0.002 6 0.044 3 0.002 3 0.006 6 0.000 1 42.1 0.6 ZK0208-266.0 m-15 611 1 343 0.5 0.047 7 0.002 7 0.042 8 0.002 3 0.006 5 0.000 1 41.9 0.5 ZK0208-266.0 m-16 745 1 424 0.5 0.049 9 0.002 2 0.044 3 0.002 0 0.006 5 0.000 1 41.7 0.5 ZK0208-266.0 m-19 729 1 014 0.7 0.048 1 0.007 2 0.042 4 0.006 7 0.006 5 0.000 2 41.7 1.4 ZK0208-266.0 m-20 744 1 188 0.6 0.052 2 0.002 6 0.045 3 0.002 1 0.006 5 0.000 1 41.7 0.6 ZK0208-266.0 m-21 1 642 1 990 0.8 0.050 7 0.002 1 0.044 2 0.001 9 0.006 3 0.000 1 40.7 0.5 ZK0208-266.0 m-22 316 713 0.4 0.050 5 0.008 1 0.040 6 0.004 8 0.006 2 0.000 3 40.0 2.0 ZK0208-266.0 m-23 469 688 0.7 0.052 7 0.019 9 0.044 3 0.012 9 0.006 4 0.000 5 41.3 2.9 ZK0208-266.0 m-24 707 1 610 0.4 0.051 2 0.002 8 0.043 7 0.002 3 0.006 3 0.000 1 40.3 0.5 ZK0208-266.0 m-25 618 900 0.7 0.052 7 0.002 7 0.046 0 0.002 3 0.006 5 0.000 1 41.5 0.6 ZK0208-266.0 m-26 739 1 583 0.5 0.051 0 0.002 2 0.044 8 0.002 0 0.006 4 0.000 1 41.1 0.5 ZK0208-266.0 m-27 1 381 2 204 0.6 0.048 9 0.002 0 0.043 4 0.001 8 0.006 5 0.000 1 41.9 0.5 ZK0208-266.0 m-28 1 697 1 317 1.3 0.050 0 0.003 0 0.044 1 0.002 6 0.006 5 0.000 1 41.7 0.6 ZK0208-266.0 m-29 783 1 599 0.5 0.046 2 0.002 1 0.041 0 0.001 9 0.006 5 0.000 1 41.8 0.6 ZK0208-266.0 m-30 1 182 1 246 0.9 0.052 2 0.002 7 0.045 5 0.002 4 0.006 4 0.000 1 41.1 0.7 黑云母二长花岗岩 ZK0507-789.2 m-1 592 1 014 0.6 0.043 4 0.002 8 0.037 4 0.002 5 0.006 2 0.000 1 40.2 0.6 ZK0507-789.2 m-2 661 1 076 0.6 0.052 7 0.002 0 0.046 3 0.002 0 0.006 3 0.000 1 40.6 0.5 ZK0507-789.2 m-3 541 1 514 0.4 0.050 5 0.001 7 0.043 3 0.001 5 0.006 3 0.000 1 40.4 0.5 ZK0507-789.2 m-5 376 905 0.4 0.051 4 0.003 0 0.046 2 0.002 9 0.006 5 0.000 1 41.6 0.8 ZK0507-789.2 m-6 1 100 1 689 0.7 0.052 6 0.004 6 0.044 3 0.003 4 0.006 2 0.000 1 40.1 0.8 ZK0507-789.2 m-7 844 1 665 0.5 0.050 6 0.002 7 0.043 5 0.002 3 0.006 2 0.000 1 40.1 0.6 ZK0507-789.2 m-8 623 1 346 0.5 0.052 8 0.004 6 0.045 4 0.003 8 0.006 4 0.000 1 41.2 0.9 ZK0507-789.2 m-9 726 1 365 0.5 0.050 9 0.002 7 0.043 6 0.002 2 0.006 3 0.000 1 40.3 0.7 ZK0507-789.2 m-10 951 1 555 0.6 0.048 3 0.003 5 0.041 3 0.002 9 0.006 2 0.000 1 40.1 0.8 ZK0507-789.2 m-11 807 1 248 0.7 0.051 8 0.002 7 0.044 9 0.002 4 0.006 3 0.000 1 40.3 0.5 ZK0507-789.2 m-12 848 1 505 0.6 0.050 3 0.002 4 0.043 1 0.002 0 0.0063 0.000 1 40.3 0.5 ZK0507-789.2 m-13 648 1 437 0.5 0.048 5 0.002 1 0.042 4 0.001 8 0.006 4 0.000 1 40.9 0.5 ZK0507-789.2 m-14 746 1 125 0.7 0.051 3 0.002 1 0.044 6 0.001 8 0.006 4 0.000 1 41.0 0.5 ZK0507-789.2 m-15 1 002 1 648 0.6 0.051 2 0.001 9 0.045 3 0.001 7 0.006 4 0.000 1 41.2 0.5 ZK0507-789.2 m-16 712 1 481 0.5 0.050 2 0.002 0 0.043 8 0.001 9 0.006 4 0.000 1 41.2 0.6 ZK0507-789.2 m-17 629 1 586 0.4 0.050 7 0.002 2 0.043 2 0.001 8 0.006 2 0.000 1 40.0 0.5 ZK0507-789.2 m-18 872 1 444 0.6 0.049 1 0.002 1 0.042 5 0.001 8 0.0063 0.000 1 40.6 0.5 ZK0507-789.2 m-19 1 035 1 059 1.0 0.050 3 0.004 0 0.042 8 0.003 5 0.006 2 0.000 1 39.6 0.8 ZK0507-789.2 m-20 544 1 242 0.4 0.049 8 0.002 3 0.043 5 0.002 1 0.006 3 0.000 1 40.7 0.5 ZK0507-789.2 m-21 282 644 0.4 0.054 3 0.004 4 0.044 8 0.003 2 0.006 2 0.000 2 40.2 1.0 ZK0507-789.2 m-22 517 1 144 0.5 0.047 5 0.002 0 0.041 4 0.001 7 0.006 4 0.000 1 41.2 0.5 ZK0507-789.2 m-23 732 1 566 0.5 0.050 5 0.002 1 0.044 6 0.001 9 0.006 5 0.000 1 41.6 0.5 ZK0507-789.2 m-24 1 011 1 182 0.9 0.049 9 0.002 4 0.044 4 0.002 1 0.006 5 0.000 1 41.8 0.6 ZK0507-789.2 m-25 975 1 520 0.7 0.044 7 0.002 2 0.039 4 0.002 0 0.006 5 0.000 1 41.5 0.6 ZK0507-789.2 m-26 1 051 1 399 0.8 0.051 7 0.002 3 0.045 2 0.001 9 0.006 5 0.000 1 41.6 0.5 ZK0507-789.2 m-27 479 1 015 0.5 0.0521 0.002 6 0.045 8 0.002 1 0.006 5 0.000 1 41.7 0.6 ZK0507-789.2 m-28 920 1 407 0.7 0.049 6 0.002 0 0.043 5 0.001 8 0.006 4 0.000 1 41.1 0.5 ZK0507-789.2 m-29 993 1 292 0.8 0.051 5 0.002 3 0.043 8 0.001 9 0.006 3 0.000 1 40.3 0.5 ZK0507-789.2 m-30 606 1 049 0.6 0.051 1 0.004 8 0.045 6 0.004 1 0.006 5 0.000 2 41.9 1.2 注:测试单位为中国地质科学院矿产资源研究所,测试者为王倩,测试手段为激光剥蚀-等离子体质谱仪(LA-ICP-MS). 表 2 玉龙铜矿带各矿床地质特征对比
Table 2. Comparison of the characteristics of deposits in Yulong copper belt
矿床 纳日贡玛 包买 玉龙 扎那尕 多霞松多 马拉松多 色礼 马牧普 总郭 控矿
构造受NW-SE向深大断裂控制,位于杂多复式背斜北翼,发育NE、EW、NS向小断裂 受控于NW-SE向走滑断裂系统及夏日多背斜,矿区发育多组小断裂 受控于金沙江-红河断裂,位于恒星错-甘龙拉短轴背斜南端转转端 受控于NW-SE向走滑断裂系统 受控于NW-SE向走滑断裂, 莽总背斜中段 受控于NW-SE向走滑断裂系统 受控于近南北向红河-哀牢山断裂,产于色礼背斜核部 受控于近南北向红河-哀牢山断裂,产于吉措背斜南段西翼 受控于近南北向红河-哀牢山断裂,产于色礼背斜核部 赋矿
地层下二叠统开心岭群中基性火山熔岩 早元古生界宁多岩群片麻岩和中三叠统夏日多组灰岩、页岩 上三叠统灰岩、凝灰质泥岩,粉砂岩,砂岩 下二叠统火山岩及上三叠统甲丕拉组砂泥岩 上三叠统砂岩、粉砂岩、泥岩和页岩 上三叠统甲丕拉组泥岩、粉砂岩及下三叠统流纹岩和凝灰岩 晚三叠统砂页岩 晚三叠统砂页岩和二叠-白垩系砂砾岩中 晚三叠统巴贡组紫红色砂砾岩及页岩夹凝灰岩、灰岩 岩体特征 含矿斑岩主要为黑云母花岗斑岩 黑云母花岗斑岩,黑云母二长花岗岩 黑云母二长花岗斑岩,其次为花岗闪长斑岩、碱长花岗岩 二长花岗斑岩,正长花岗斑岩 二长花岗斑岩和碱长花岗斑岩,正常花岗斑岩 碱长花岗斑岩 二长花岗斑岩 正长斑岩 石英二长斑岩 蚀变特征 发育石英-绢云母化、青磐岩化、钾硅酸盐化、泥化 发育绢云母化、钾硅酸盐化、泥化、矽卡岩化 发育钾硅酸盐化、石英-绢云母化,泥化,青磐岩化;矽卡岩化 发育钾硅化,黄铁绢英岩化,泥化,青磐岩化 钾硅酸盐化、石英-绢云母化,青磐岩化 钾长石化、硅化、绢云母化和泥化 绿帘石化、绿泥石化 角岩化、绿泥石化、绿帘石化 - 矿体形态 条带状、透镜状 脉状、透镜状产出 矽卡岩型层状矿体,斑岩型透镜状矿体 柱状,透镜状 不规则状,透镜状 透镜状、不规则状 不规则状 不规则状 - 矿石类型 细脉-细脉状产出 浸染状,细脉状,脉状 细脉浸染状、网脉状、块状 细脉浸染状 细脉浸染状,网脉状 细脉浸染状 浸染状 浸染状 - 矿物组合 黄铜矿、辉钼矿、辉铜矿、蓝铜矿、黄铁矿 黄铜矿、辉钼矿、黄铁矿、硫砷铜矿 黄铜矿、辉钼矿、黄铁矿、斑铜矿、辉铜矿、赤铜矿 黄铜矿、辉钼矿、黄铁矿、磁铁矿、辉铜矿等,偶见方铅矿、闪锌矿等 黄铜矿、黄铁矿、少量辉钼矿、斑铜矿、磁铁矿 黄铜矿、黄铁矿、辉钼矿、方铅矿、闪锌矿等 黄铜矿、辉钼矿 黄铜矿、黄铁矿 黄铜矿 成矿元
素组合Cu、Mo Cu、Mo、Fe、As Cu、Mo、Fe、W、Au、Ag、Pb、Zn、Ni、Co Cu、Mo、Au、Fe Cu、Mo、Au、Ag Cu、Mo、Au、Ag、PGE Cu、Mo Cu、Au、Ag Cu 矿床规模 中型;Cu金属量25万t@0.33%,Mo金属量68万t 中型:Cu金属量21万t@0.22%;Mo金属量6万t@0.06% 超大型:Cu资源量6.22 Mt@0.99%,Mo@0.028%,0.35 g/t 中型:Cu金属量30万t@0.36%;Mo@0.03%,Au0.03 g/t 大型:Cu金属量50万t@0.38%,Mo@0.04%,Au@0.05 g/t 大型:Cu金属量100万t@0.44%;Mo 0.014% 矿化点 矿化点 矿化点 参考文献 杨志明等, 2008;王召林等, 2008; 本文 吴伟中等, 2013 何国朝等, 2014 吴伟中等, 2013 梁华英等, 2009 陈喜连等, 2016 陈喜连等, 2016 陈喜连等, 2016 注:@表示平均品位;“-”表示暂无相关资料. 表 3 西藏玉龙铜矿带年代学数据
Table 3. Geochronology of Yulong porphyry copper belt, Tibet
矿区 岩石类型 测试对象 矿化特征 测试方法 年龄(Ma) 均值(Ma) 数据来源 处理 纳日贡玛 辉钼矿 辉钼矿 矿化 Re-Os 40.8 40.9 郝金华等,2012 石英-辉钼矿脉 辉钼矿 矿化 Re-Os 40.9 王召林等,2008 黑云母花岗斑岩 锆石 含矿 LA U-Pb 43.4 42.3 郝金华等,2012 黑云母花岗斑岩 锆石 含矿 LA U-Pb 42.9 郝金华等,2012 黑云母花岗斑岩 锆石 含矿 LA U-Pb 41.5 宋忠宝等,2011 花岗闪长斑岩 锆石 含矿 LA U-Pb 41.4 宋忠宝等,2011 斜长花岗斑岩 锆石 含矿 LA U-Pb 41.0 宋忠宝等,2011 黑云母花岗斑岩 锆石 含矿 SHRIMP 43.3 杨志明等,2008 日胆果 二长花岗斑岩 长石 含矿 K-Ar 41.5 41.5 Hou et al., 2003c 参考 二长花岗斑岩 钾长石 含矿 K-Ar 41.5 Hou et al., 2003c 参考 夏日多 二长花岗斑岩 钾长石 无矿 K-Ar 46.0 马鸿文,1990 删除 包买 黑云母花岗岩 锆石 含矿 LA U-Pb 41.3 41.1 本文 黑云母二长花岗岩 锆石 含矿 LA U-Pb 40.8 本文 恒星错 花岗闪长岩 钾长石 含矿 K-Ar 40.7 刘荣谟和赵定华, 1981 参考 二长花岗斑岩 钾长石 含矿 K-Ar 41.5 41.3 唐仁鲤和罗怀松, 1995 参考 二长花岗斑岩 钾长石 含矿 K-Ar 41.0 唐仁鲤和罗怀松, 1995 参考 二长花岗斑岩 全岩 含矿 K-Ar 42.7 刘荣谟和赵定华, 1981 删除 玉龙 二长花岗斑岩 黑云母 含矿 K-Ar 40.7 马鸿文,1989b 删除 二长花岗斑岩 黑云母 含矿 K-Ar 48.2 马鸿文,1989b 删除 二长花岗斑岩 黑云母 含矿 K-Ar 41.5 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 钾长石 含矿 K-Ar 40.0 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 钾长石 含矿 K-Ar 37.9 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 钾长石 含矿 K-Ar 38.2 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 钾长石 含矿 K-Ar 55.0 马鸿文,1989b 删除 二长花岗斑岩 钾长石 含矿 K-Ar 55.0 马鸿文,1989b 删除 二长花岗斑岩 黑云母 含矿 Rb-Sr 41.0 马鸿文,1989b 删除 二长花岗斑岩 黑云母 含矿 Rb-Sr 41.0 马鸿文,1989b 删除 二长花岗斑岩 钾长石 含矿 K-Ar 38.0 张玉泉等,1987 删除 二长花岗斑岩 钾长石 含矿 K-Ar 41.0 张玉泉等,1987 删除 二长花岗斑岩 黑云母 含矿 Ar-Ar 52.8 马鸿文,1989b 删除 二长花岗斑岩 黑云母 含矿 Rb-Sr 52.0 马鸿文,1989b 删除 石英-辉钼矿脉 辉钼矿 含矿 Re-Os 40.1 40.9 曾普胜等,2006 石英-辉钼矿脉 辉钼矿 含矿 Re-Os 41.6 唐菊兴等,2009 石英二长花岗斑岩 锆石 成矿前 LA U-Pb 41.3 42.1 梁华英等,2008 含矿斑岩 锆石 含矿 LA U-Pb 41.2 Liang et al., 2006 二长花岗岩 锆石 含矿 SHRIMP 40.9 曾普胜等,2006 石英二长斑岩 锆石 成矿前 SHRIMP 43.6 郭利果等,2006 黑云母二长花岗斑岩 锆石 含矿 SHRIMP 41.0 郭利果等,2006 黑云母二长花岗斑岩 锆石 含矿 SHRIMP 43.8 王成辉等,2009 黑云母二长花岗斑岩 锆石 含矿 SHRIMP 43.0 王成辉等,2009 正长花岗斑岩 黑云母 含矿 Ar-Ar 41.7 梁华英等,2008 玉龙北甘龙拉 石英斜长斑岩 锆石 含矿 SHRIMP 43.9 王成辉等,2009 玉龙南纳加 石英二长花岗斑岩 锆石 无矿 SHRIMP 41.4 王成辉等,2009 扎那尕 二长花岗斑岩 黑云母 含矿 K-Ar 40.0 张玉泉等,1987 删除 二长花岗斑岩 钾长石 含矿 K-Ar 33.9 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 钾长石 含矿 K-Ar 34.0 张玉泉等,1987 删除 含矿斑岩 锆石 含矿 LA U-Pb 38.5 38.5 Liang et al., 2006 莽总 二长花岗斑岩 钾长石 含矿 K-Ar 33.9 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 锆石 含矿 LA U-Pb 37.6 37.6 Liang et al., 2006 二长花岗斑岩 钾长石 含矿 K-Ar 42.7 马鸿文等,1989b 删除 多霞松多 含矿斑岩 锆石 含矿 LA U-Pb 37.5 37.5 Liang et al., 2006 花岗斑岩 锆石 含矿 U-Pb 41.0 马鸿文等,1990 删除 二长花岗斑岩 全岩 含矿 Rb-Sr 52.0 马鸿文等,1990 删除 马拉松多 花岗斑岩 锆石 含矿 U-Pb 41.0 马鸿文等,1990 删除 正长花岗斑岩 钾长石 含矿 K-Ar 35.8 唐仁鲤和罗怀松, 1995 删除 二长花岗斑岩 锆石 含矿 U-Pb 40.9 马鸿文等,1990 删除 二长花岗斑岩 全岩 含矿 K-Ar 50.9 唐仁鲤等., 1995 删除 石英二长斑岩 锆石 成矿前 LA U-Pb 36.9 36.9 梁华英等,2009 碱长花岗斑岩 锆石 含矿 LA U-Pb 36.9 梁华英等,2009 碱长花岗斑岩 黑云母 含矿 K-Ar 36.9 梁华英等,2009 石英-辉钼矿脉 辉钼矿 含矿 Re-Os 35.9 35.8 唐仁鲤和罗怀松, 1995 石英-辉钼矿脉 辉钼矿 含矿 Re-Os 35.4 唐仁鲤和罗怀松, 1995 石英-辉钼矿脉 辉钼矿 含矿 Re-Os 36.2 唐仁鲤和罗怀松, 1995 石英-辉钼矿脉 辉钼矿 含矿 Re-Os 35.8 杜安道等,1994 拉日玛 石英正长斑岩 全岩 含矿 K-Ar 36.0 Hou et al., 2003c 删除 色礼 二长花岗斑岩 钾长石 含矿 K-Ar 96.8 刘荣谟和赵定华, 1981 删除 二长花岗斑岩 锆石 含矿 LA U-Pb 39.4 39.4 陈喜连,2016 吉错 正长斑岩 全岩 含矿 K-Ar 40.7 Hou et al., 2003c 删除 马牧普 正长斑岩 锆石 含矿 LA U-Pb 38.5 38.5 陈喜连,2016 角闪石英正长斑岩 全岩 含矿 Rb-Sr 37.6 Hou et al., 2003c 删除 巴达 石英正长岩 全岩 不含矿 K-Ar 38.4 Hou et al., 2003c 删除 总郭 石英二长斑岩 锆石 含矿 LA U-Pb 39.4 39.4 陈喜连,2016 -
[1] Chen, J.P., Gu, X.X., Tang, J.X., 2000.Synthetical Research on Targets of Cu-Mo-(Au) Deposit in the Northern Sector of Yulong Metallogenic Zone, Xizang(Tibet). Geological Review, 46(Z1):64-70(in Chinese with English abstract). [2] Chen, J.P., Tang, J.X., Cong, Y., et al., 2009.Geological Characteristics and Metallogenic Model in the Yulong Porphyry Copper Deposit, East Tibet. Acta Geologica Sinica, 83(12):1887-1900(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200912007.htm [3] Chen, W.M., Sheng, J.F., Qian, H.D., 2006.Degrees of Ordering and Origin of K-Feldspar Phenocrysts in a Mineralized Porphyry of the Yulong Porphyry Copper Deposit, Tibet. Acta Petrologica Sinica, 22(4):1017-1022(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604025.htm [4] Chen, X.L., Huang, W.T., Zou, Y.Q., et al., 2016.Zircon U-Pb Geochronology and Geochemistry of Ore-Bearing Porphyries in the Southern Yulong Porphyry Copper Belt, and Factors Resulting in the Differences in Scale of Mineralization between the Southern and Northern Yulong Porphyry Copper Belt. Acta Petrologica Sinica, 32(8):2522-2534(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20160820 [5] Chiaradia, M., Schaltegger, U., Spikings, R., et al., 2013.How Accurately can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems?-An Invited Paper. Economic Geology, 108(4):565-584.doi: 10.2113/econgeo.108.4.565 [6] Deckart, K., Silva, W., Spröhnle, C., et al., 2014.Timing and Duration of Hydrothermal Activity at the Los Bronces Porphyry Cluster:An Update. Mineralium Deposita, 49(5):535-546.doi: 10.1007/s00126-014-0512-9 [7] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Sciences, 42(1):1-23.doi: 10.3799/dqkx.2017.001 [8] Du, A.D., He, H.L., Yin, N.W., et al., 1994.A Study on the Rhenium-Osmium Geochro-Nometry of Molybdenites. Acta Geologica Sinica, 68(4):339-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE199404003.htm [9] Guo, L.G., Liu, Y.P., Xu, W., et al., 2006.Constraints to the Mineralization Age of the Yulong Porphyry Copper Deposit from SHRIMP U-Pb Zircon Data in Tibet. Acta Petrologica Sinica, 22(4):1009-1016(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604024.htm [10] Hao, J.H., Chen, J.P., Tian, Y.G., et al., 2010.Mineralogical Features of Porphyries in the Narigongma Mo(-Cu) Deposit, Southern Qinghai and Their Implications for Petrogenesis and Mineralization. Geology and Prospecting, 46(3):367-376(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201003001.htm [11] Hao, J.H., Chen, J.P., Dong, Q.J., et al., 2012.Zircon LA-ICP-MS U-Pb Dating for Narigongma Porphyry Molybdenitecopper Deposit in Southern Qinghai Province and Its Geological Implication. Geoscience, 26(1):45-53(in Chinese with English abstract). [12] He, G.C., Wang, G.Q., Huang, W.T., et al., 2014.Zircon LA-ICP-MS U-Pb Age of the Zalaga Porphyry Associated with Cu-Mo Mineralization in the Yulong Ore Belt and Its Geological Implication. Geochimica, 43(4):399-407(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201404010.htm [13] Hoskin, P.W.O., Ireland, T.R., 2000.Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7):627-630.doi:10.1130/0091-7613(2000)028<0627:reecoz>2.3.co; 2 [14] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposit, 28(4):481-492(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200904009.htm [15] Hou, Z.Q., 2004.Porphyry Cu-Mo-Au Deposits:Some New Insights and Advances. Earth Science Frontiers, 11(1):131-144(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401014.htm [16] Hou, Z.Q., Lü, Q.T., Wang, A.J., et al., 2003a.Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen. Mineral Deposits, 22(4):319-333(in Chinese with English abstract). [17] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003b.Adakite, a Possible Host Rock for Porphyry Copper Deposits:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile. Mineral Deposits, 22(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200301000.htm [18] Hou, Z.Q., Ma, H.W., Zaw, K., et al., 2003c.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet. Economic Geology, 98(1):125-145. doi: 10.2113/98.1.125 [19] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-Collisional Transformation Setting. Mineral Deposits, 25(5):521-543(in Chinese with English abstract). [20] Hou, Z.Q., Xie, Y.L., Xu, W.Y., et al., 2007.Yulong Deposit, Eastern Tibet:A High-Sulfidation Cu-Au Porphyry Copper Deposit in the Eastern Indo-Asian Collision Zone. International Geology Review, 49(3):235-258.doi: 10.2747/0020-6814.49.3.235 [21] Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 70:346-384.doi: 10.1016/j.oregeorev.2014.10.026 [22] Huang, P., Gu, X.X., Tang, J.X., et al., 2002.Sources of Ore-Forming Materials of the Yulong Porphyry Copper (Molybdenum) Deposit, Tibet. Geotectonica et Metallogenia, 26(4):429-435(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200204013.htm [23] Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2006a.Comparison on Elemental and Isotopic Geochemistry of Ore-Bearing and Barren Porphyries from the Yulong Porphyry Cu Deposit, East Tibet. Acta Petrologica Sinica, 22(10):2561-2566(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200610016.htm [24] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2006b.Petrogenesis of Cu-Bearing Porphyry Associated with Continent-Continent Collisional Setting:Evidence from the Yulong Porphyry Cu Ore-Belt, East Tibet. Acta Petrologica Sinica, 22(3):697-706(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200603019.htm [25] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6):999-1015.doi: 10.3799/dqkx.2016.083. [26] Li, C., Qu, W.J., Du, A.D., et al., 2012.Study on Re-Os Isotope in Molybdenite Containing Common Os. Acta Petrologica Sinica, 28(2):702-708(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201202028.htm [27] Li, J., Sun, Y.L., He, K., et al., 2010.The Improved Molybdenite Re-Os Dating Method and Its Application. Acta Petrologica Sinica, 26(2):642-648(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201002026.htm [28] Li, W., 2014.The Geochemical Characteristics, Rock-Forming Mechanism and Metallogenic Potential of Xiariduo Rockbody in Eastern Tibet, China (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). [29] Li, Y.Z., Song, Z.B., Du, Y.L., et al., 2012.Metallogenic Characteristics Comparative Study of Narigongma Porphyry Copper-Molybdenum Deposit and Yulong Porphyry Copper Deposit. Northwestern Geology, 45(1):149-158(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201201026.htm [30] Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006.Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2):152-159.doi: 10.1007/s00126-005-0047-1 [31] Liang, H.Y., Mo, J.H., Sun, W.D., et al., 2008.Study on the Duration of the Ore-Forming System of the Yulong Giant Porphyry Copper Deposit in Eastern Tibet, China. Acta Petrologica Sinica, 24(10):2352-2358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810016.htm [32] Liang, H.Y., Mo, J.H., Sun, W.D., et al., 2009.Study on Geochemical Composition and Isotope Ages of the Malasongduo Porphyry Associated with Cu-Mo Mineralization. Acta Petrologica Sinica, 25(2):385-392(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200902012.htm [33] Liu, R.M., Zhao, D.H., 1981.A Discussion on the Isotopic Ages of the Intrusive Rocks in Eastern Xizang (Tibet), China. Geological Review, 27(4):362-332(in Chinese with English abstract). [34] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4 [35] Lin, B., Wang, L.Q., Tang, J.X., 2017.Geology, Geochronology, Geochemical Characteristics and Origin of Baomai Porphyry Cu (Mo) Deposit, Yulong Belt, Tibet. Ore Geology Reviews (Under Review). [36] Ma, H.W., 1983.On the Petrology of the Porphyry of Malasongduo, Eastern Xizang, China, with Special Reference to the Relationship between Magmatism and Mineralization. Earth Sciences, 19(1):147-159(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198401011.htm [37] Ma, H.W., 1988.On the Source of Rock-And Ore-Forming Material in Yulong Porphyry Copper Belt Eastern Tibet. Geoscience, 2(4):429-439 (in Chinese with English abstract). [38] Ma, H.W., 1989a.On the Tectonic Environment of Magmatism in Yulong Porphyry Copper Belt, Eastern Tibet. Acta Petrologica Sinica, 5(1):1-11 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/269266 [39] Ma, H.W., 1989b.Emplacement Age of Granitic Magma in the Yulong Porphyry Copper Belt, Eastern Tibet. Geochimica, 18(3):210-216 (in Chinese with English abstract). [40] Ma, H.W., 1990.Granitoid and Mineralization of the Yulong Porphyry Copper Belt in Eastern Tibet:Beijing.Press of China Univeristy of Geosciences, Wuhan (in Chinese). [41] Qin, J.H., Ding, J., Liu, C.Z., et al., 2010.Relationship between Porphyry Deposits and Strike Slip Faults and Its Implications to Exploration in Southwestern China. Geology and Prospecting, 46(6):1028-1035(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201006008.htm [42] Richards, J.P., 2009.Postsubduction Porphyry Cu-Au and Epithermal Au Deposits:Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3):247-250.doi: 10.1130/g25451a.1 [43] Rui, Z.Y., Huang, C.K., Qi, G.M., et al., 1984.The Porphyry Cu(Mo) Deposits in China.Geological Publishing House, Beijing (in Chinese). [44] Rui, Z.Y., Zhang, H.T., Chen, R.Y., et al., 2006.An Approach to Some Problems of Porphyry Copper Deposits. Mineral Deposits, 25(4):491-500(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200604013.htm [45] Sillitoe, R.H., 2010.Porphyry Copper Systems. Economic Geology, 105(1):3-41.doi: 10.2113/gsecongeo.105.1.3 [46] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the Shrimp Dating. Geological Review, 48(S1):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [47] Song, Z.B., Jia, Q.Z., Chen, X.Y., et al., 2011.The Petrogenic Age of Narigongma Granitic Diorite-Porphyry in the Northern Part of the Sanjiang Region and Its Geological Implications. Acta Geoscientia Sinica, 32(2):154-162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201102007.htm [48] Tang, J.X., Wang, C.H., Qu, W.J., et al., 2009.Re-Os Isotopic Dating of Molybdenite from the Yulong Porphyry Copper-Molybdenum Deposit in Tibet and Its Metallogenic Significance. Rock and Mineral Analysis, 28(3):215-218(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903008.htm [49] Tang, J.X., Zhang, L., Li, Z.J., et al., 2006.Porphyry Copper Deposit Controlled by Structural Nose Trap:Yulong Porphyry Copper Deposit in Eastern Tibet. Mineral Deposits, 25(6):652-662(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200606001.htm [50] Tang, R.L., Luo, H.S., 1995.The Geology of Yulong Porphyry Copper (Molybdenum) Ore Belt, Xizang(Tibet).Geological Publishing House, Beijing (in Chinese). [51] Wang, C.H., Tang, J.X., Chen, J.P., et al., 2009.Chronological Research of Yulong Copper-Molybdenum Porphyry Deposit. Acta Geologica Sinica, 83(10):1445-1455(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200910010.htm [52] Wang, Z.L., Yang, Z.M., Yang, Z.S., et al., 2008.Narigongma Porphery Molybdenite Copper Deposit, Northern Extension of Yulong Copper Belt:Evidence from the Age of Re-Os Isotope. Acta Petrologica Sinica, 24(3):503-510 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200803010.htm [53] Wu, J., Liang, H.Y., Mo, J.H., et al., 2011.Petrochemistry and Zircon LA-ICP-MS U-Pb Age of the Mangzong Porphyry Associated with Cu-Mo Mineralization in the Yulong Ore Belt. Geotectonica et Metallogenia, 35(2):300-306(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201102016.htm [54] Wu, W.Z., Xia, B., Zhang, Y.Q., et al., 2013.Geochemical Characteristics and Metallogenic Mechanism of the Porphyry Cu-Mo Deposits in the Yulong Ore Belt, Eastern Tibet:A Case Study of the Yulong and Duoxiasongduo Porphyries. Geotectonica et Metallogenia, 37(3):440-454(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201303010.htm [55] Xie, Y.L., Hou, Z.Q., Xu, J.H., et al., 2005.Evolution of Multi-Stage Ore-Forming Fluid and Mineralization:Evidence Form Fluid Inclusions in Yulong Porphyry Copper Deposit, East Tibet. Acta Petrologica Sinica, 21(5):1409-1415(in Chinese with English abstract). [56] Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2008.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(-Cu) Deposit, Southern Qinghai.Acta Petrologica Sinica, 24(3):489-502(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200803009.htm [57] Zeng P, S., Hou, Z.Q., Gao, Y.F., et al., 2006.The Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Collosion Zone:Constraints from Re-Os Dating of Molybdenite. Geological Review, 52(1):72-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200601013.htm [58] Zhang, Y.Q., Xie, Y.W., Liang, H.Y., et al., 1998a.Petrogenesis Series and the Ore-Bearing Porphyry of the Yulong Copper Ore Belt in Eastern Tibet. Geochimica, 27(3):236-243(in Chinese with English abstract). [59] Zhang, Y.Q., Xie, Y.W., Qiu, H.N., et al., 1998b.Shoshonitic Series:Sr-Nd, and Pb Isotopic Compositions of Ore-Bearing Porphyry for Yulong Copper Ore Belt in the Eastern Xizang (Tibet). Chinese Journal of Geology, 33(3):359-366(in Chinese with English abstract). [60] Zhang, Y.Q., Xie, Y.W., Qiu, H.N., et al., 1998c.Shoshonitic Series:Geochemical Characteristics of Elements for Ore-Bearing Porphyry from Yulong Copper Ore Belt in Eastern Tibet. Earth Science, 23(6):557-561(in Chinese with English abstract). [61] Zhang, Y.Q., Xie, Y.W., Tu, G.Z., 1987.Preliminary Studies of the Alkali-Rich Intrusive Rocks in Their Ailaoshan-Jinshajiang Belt and Their Bearing on Rift Tectonics. Acta Petrologica Sinica, 3(1):17-26.(in Chinese with English abstract). [62] Zhou, Y.J., 1985.Alteration and Mineralization Zoning of Ore Deposits in the Yulong Porphyry Copper Belt. Mineral Deposits, 4(2):23-30 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/54286/1/1000004599996.pdf [63] 陈建平, 顾雪祥, 唐菊兴, 2000.玉龙成矿带北段铜钼(金)矿靶区优选综合研究.地质论评, 46(Z1):64-70. doi: 10.3321/j.issn:0371-5736.2000.z1.011 [64] 陈建平, 唐菊兴, 丛源, 等, 2009.藏东玉龙斑岩铜矿地质特征及成矿模型.地质学报, 83(12):1887-1900. doi: 10.3321/j.issn:0001-5717.2009.12.007 [65] 陈文明, 盛继福, 钱汉东, 2006.西藏玉龙斑岩铜矿含矿斑岩体钾长石斑晶的有序度及成因探讨.岩石学报, 22(4):1017-1022. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604025.htm [66] 陈喜连, 黄文婷, 邹银桥, 等, 2016.玉龙斑岩铜矿带南段含矿斑岩体锆石U-Pb年龄、地球化学特征及南北段成矿规模差异分析.岩石学报, 32(8):2522-2534. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608020.htm [67] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. http://www.earth-science.net/WebPage/Article.aspx?id=3409 [68] 杜安道, 何红蓼, 殷宁万, 等, 1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报, 68(4):339-347. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199404003.htm [69] 郭利果, 刘玉平, 徐伟, 等, 2006.SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约.岩石学报, 22(4):1009-1016. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604024.htm [70] 郝金华, 陈建平, 董庆吉, 等, 2012.青海省纳日贡玛斑岩钼铜矿床成矿花岗斑岩锆石LA-ICP-MS U-Pb定年及地质意义.现代地质, 26(1):45-53. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201201005.htm [71] 郝金华, 陈建平, 田永革, 等, 2010.青海纳日贡玛斑岩钼(铜)矿含矿斑岩矿物学特征及成岩成矿意义.地质与勘探, 46(3):367-376. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201003001.htm [72] 何国朝, 王广强, 黄文婷, 等, 2014.藏东玉龙斑岩铜矿带扎拉尕含矿斑岩体锆石U-Pb年龄及其地质意义.地球化学, 43(4):399-407. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404010.htm [73] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm [74] 侯增谦, 2004.斑岩Cu-Mo-Au矿床:新认识与新进展.地学前缘, 11(1):131-144. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401014.htm [75] 侯增谦, 吕庆田, 王安建, 等, 2003a.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200304000.htm [76] 侯增谦, 潘桂棠, 王安建, 等, 2006.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200605000.htm [77] 侯增谦, 莫宣学, 高永丰, 等, 2003b.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200301000.htm [78] 黄朋, 顾雪祥, 唐菊兴, 等, 2002.西藏玉龙斑岩铜(钼)矿床物质来源研究.大地构造与成矿学, 26(4):429-435. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200204013.htm [79] 姜耀辉, 蒋少涌, 戴宝章, 等, 2006a.玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究.岩石学报, 22(10):2561-2566. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610016.htm [80] 姜耀辉, 蒋少涌, 凌洪飞, 等, 2006b.陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例.岩石学报, 22(3):697-706. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603019.htm [81] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312tm [82] 李超, 屈文俊, 杜安道, 等, 2012.含有普通锇的辉钼矿Re-Os同位素定年研究.岩石学报, 28(2):702-708. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202028.htm [83] 李晶, 孙亚莉, 何克, 等, 2010.辉钼矿Re-Os同位素定年方法的改进与应用.岩石学报, 26(2):642-648. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002026.htm [84] 李伟, 2014. 藏东夏日多岩体岩石地球化学特征及其成岩机制与成矿潜力(硕士学位论文): 成都: 成都理工大学. [85] 栗亚芝, 宋忠宝, 杜玉良, 等, 2012.纳日贡玛斑岩型铜钼矿与玉龙斑岩铜矿成矿特征对比研究.西北地质, 45(1):149-158. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201201026.htm [86] 梁华英, 莫济海, 孙卫东, 等, 2008.藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析.岩石学报, 24(10):2352-2358. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810016.htm [87] 梁华英, 莫济海, 孙卫东, 等, 2009.玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析.岩石学报, 25(2):385-392. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902012.htm [88] 刘荣谟, 赵定华, 1981.西藏东部中酸性侵入岩同位素年龄讨论.地质论评, 27(4):362-332. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198104005.htm [89] 马鸿文, 1983.藏东马拉松多铜矿区斑岩岩石学及其与成矿关系的研究.地球科学, (1):147-158, 191. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198301015.htm [90] 马鸿文, 1988.论藏东玉龙斑岩铜矿带成岩成矿物质来源.现代地质, 2(4):429-439. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ198804003.htm [91] 马鸿文, 1989a.论藏东玉龙斑岩铜矿带岩浆活动的构造环境.岩石学报, 5(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198901000.htm [92] 马鸿文, 1989b.论藏东玉龙斑岩铜矿带岩浆侵入时代.地球化学, 18(3):210-216. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198903002.htm [93] 马鸿文, 1990.西藏玉龙斑岩铜矿带花岗岩类与成矿.武汉:中国地质大学出版社. [94] 秦建华, 丁俊, 刘才泽, 等, 2010.我国西南地区斑岩矿床与走滑断裂关系及其勘查意义.地质与勘探, 46(6):1028-1035. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201006008.htm [95] 芮宗瑶, 黄崇轲, 齐国明, 等, 1984.中国斑岩铜(钼)矿床.北京:地质出版社. [96] 芮宗瑶, 张洪涛, 陈仁义, 等, 2006.斑岩铜矿研究中若干问题探讨.矿床地质, 25(4):491-500. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604013.htm [97] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [98] 宋忠宝, 贾群子, 陈向阳, 等, 2011.三江北段纳日贡玛花岗闪长斑岩成岩时代的确定及地质意义.地球学报, 32(2):154-162. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201102007.htm [99] 唐菊兴, 王成辉, 屈文俊, 等, 2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义.岩矿测试, 28(3):215-218. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903008.htm [100] 唐菊兴, 张丽, 李志军, 等, 2006.西藏玉龙铜矿床——鼻状构造圈闭控制的特大型矿床.矿床地质, 25(6):652-662. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606001.htm [101] 唐仁鲤, 罗怀松, 1995.西藏玉龙斑岩铜(钼)矿带地质.北京:地质出版社. [102] 王成辉, 唐菊兴, 陈建平, 等, 2009.西藏玉龙铜钼矿同位素年代学研究.地质学报, 83(10):1445-1455. doi: 10.3321/j.issn:0001-5717.2009.10.009 [103] 王召林, 杨志明, 杨竹森, 等, 2008.纳日贡玛斑岩钼铜矿床:玉龙铜矿带的北延——来自辉钼矿Re-Os同位素年龄的证据.岩石学报, 24(3):503-510. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803010.htm [104] 伍静, 梁华英, 莫济海, 等, 2011.玉龙斑岩铜矿带莽总含矿斑岩体岩石学特征及锆石U-Pb年龄研究.大地构造与成矿学, 35(2):300-306. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102016.htm [105] 吴伟中, 夏斌, 张玉泉, 等, 2013.西藏玉龙成矿带斑岩Cu-Mo矿床地质地球化学特征及成矿机制探讨——玉龙和多霞松多对比研究.大地构造与成矿学, 37(3):440-454. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303010.htm [106] 谢玉玲, 侯增谦, 徐九华, 等, 2005.藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据.岩石学报, 21(5):1409-1415. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505010.htm [107] 杨志明, 侯增谦, 杨竹森, 等, 2008.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制.岩石学报, 24(3):489-502. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803009.htm [108] 曾普胜, 侯增谦, 高永峰, 等, 2006.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用.地质论评, 52(1):72-84. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601013.htm [109] 张玉泉, 谢应雯, 梁华英, 等, 1998a.藏东玉龙铜矿带含矿斑岩及成岩系列.地球化学, 27(3):236-243. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199803003.htm [110] 张玉泉, 谢应雯, 邱华宁, 等, 1998b.钾玄岩系列:藏东玉龙铜矿带含矿斑岩Sr、Nd、Pb同位素组成.地质科学, 33(3):359-366. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX803.010.htm [111] 张玉泉, 谢应雯, 邱华宁, 等, 1998c.钾玄岩系列:藏东玉龙铜矿带含矿斑岩元素地球化学特征.地球科学, 23(6):557-561. http://www.earth-science.net/WebPage/Article.aspx?id=718 [112] 张玉泉, 谢应雯, 涂光炽, 1987.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报, 3(1):17-26. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198701002.htm [113] 周宜吉, 1985.试论玉龙斑岩铜矿带内矿床的蚀变和矿化分带.矿床地质, 4(2):23-30. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198502002.htm