Sedimentary Characteristics and Origin of Taitung Canyon in Eastern Waters of Taiwan Island
-
摘要: 台湾东部峡谷的研究程度较低,对其沉积特征及成因缺乏系统的论述.利用近年来在台湾东部海域获得的地震剖面,对台东峡谷的形态特征、沉积充填以及成因进行了详细的分析.台东峡谷主体位于花东海盆,该部分水深在4 000~5 500 m范围内,以NE方向为主,长度约为160 km,宽度为0.2~14 km.根据峡谷的平面延伸特征,可以将台东峡谷分为3个区段:上游段为NE-NEE走向段、中游段为NE-NNW走向段、下游段为NE走向段直到峡谷嘴部;下切谷剖面形态从上游段的"V"型、中游段的复合形态("UV"并行)逐渐过渡到下游段的"U"型.台东峡谷上游段-中游段滑塌构造发育,峡谷转弯处的侧翼可见波状沉积,其下游段则以沉积充填为主.台东峡谷的成因与构造作用、地形特征和深水沉积作用关系密切.受西南高东北低的地形特征及基底隐伏断裂控制,峡谷总体呈现NE向延伸;重力流作用为峡谷的下切侵蚀和充填提供了动力与物质来源,峡谷从上游段到下游段下切侵蚀能力减弱,谷底充填增厚;峡谷中游段受海山的阻挡,发生转向;峡谷下游段因多条峡谷携带的沉积物汇入和"喇叭状"地形的影响,输送的沉积物在出加瓜脊末端后,形成了大型深水扇.Abstract: There is a lack of systematic discussion on the sedimentary characteristics and causes of Taitung Canyon. The morphological features, sedimentary filling characteristics and origin of Taitung Canyon are analyzed by using the single-channel and multi-channel seismic profiles recently acquired in eastern Taiwan. Taitung Canyon is mainly located in the Huatung Basin and is generally oriented NE oriented with a length of 160 km, a width of 0.2-14 km in the water depth of 4 000-5 500 m.The Taitung Canyon can be divided into three types in profile shape:V, U, complex types and three segments in plane:upper, middle and lower segments, which are NE-NEE-striking, NE-NNW-striking and NE-striking respectively. Mass movements such as slides or slumps are ubiquitous in the upper of Taitung Canyon, which are driven by a variety of erosional processes from gravity flow erosion to turbidity current. Wavy deposition can be observed in the flank of the middle section of Taitung Canyon, which may be formed by turbidity current. The sufficient deposits could be discharged at the lower of Taitung Canyon, where the modern submarine fan developed.The formation and development of the Taitung Canyon resulted from the interaction between the tectonic activity, topography and deep-water deposition. Upper segment is controlled by topography and deep-water deposition. Gravity flow deposition provides a material and power source for the erosion and fills in the canyon.The middle segment is controlled by tectonism, which Gagua Ridge changes the orientation of the middle reach of Taitung Canyon; The deep-water fan, located at the end of Taitung Canyon, is controlled by "trumpet" topography.When they get rid of the lateral constraints from Gagua Ridge, the debris occur to unload, resulting in a large deepwater fan.
-
图 1 台湾东部海域花东海盆区域地形特征
图中标注黑色和红色线为地震测线;红色箭头表示沉积速率,单位为mm/a,据Dadson et al.(2003);底图据Sibuet et al.(2004)
Fig. 1. A general bathymetric chart showing topography of eastern Taiwan Island
图 2 台湾东部海域海底峡谷的冲刷侵蚀特征
AA′测线位置见图 1
Fig. 2. Erosion characteristics of submarine canyon in the eastern waters of Taiwan Island
表 1 地震数据采集主要参数
Table 1. The main parameters of seismic data acquisition
单道地震 多道地震②号、⑤号、⑥号剖面 ①号剖面 ③号、④号 采集船 探宝号 采集船 东勘1号 采集船 探宝号 震源 GI枪 震源 GI枪 采样率(ms) 2 采样率(ms) 0.25 采样率(ms) 0.25 地震拖缆道数 480 偏移距(m) 11.3 偏移距(m) 33 道间距(m) 12.5 最大输出功率(cu.in) 420 最大输出功率(in3) 1 180 最大覆盖次数(次) 80 枪阵总容量(cu.in) 5 080 表 2 台东峡谷不同区段剖面的峡谷参数统计
Table 2. Morphology parameter statistics of different sections of Taitung Canyon
剖面号 剖面方向 剖面与峡谷相交角度(°) 剖面所处峡谷区段 峡谷截面形态 谷顶宽度(km) 下切海底深度 谷底沉积充填厚度 双程反射时间(ms) 深度(m) 双程反射时间(ms) 厚度(m) ① NW 90 上游段 V型 9.0 734 551 312 250 ② SN 90 上游段 V型 9.1 731 549 300 240 ③ SN 90 上游段 V型 7.3 688 516 ④ EW 45 中游段 UV并行 13.5 658 494 ⑤ EW 45 中游段 UV并行 8.2 497 373 184 147 ⑥ SN 90 下游段 U型 1.8 80 60 847 847 注:据 Le et al.(2015) 文献中的地震P波传播速度采用如下数据:海水传播速度为1 500 m/s,浅部沉积物速度为1 600 m/s,⑥号剖面充填沉积较厚速度为2 000 m/s.③、④号剖面为单道地震剖面,资料品质限制,谷底沉积充填厚度不确定. -
[1] Chen, H., Xie, X.N., Mao, K.N., 2015.Deep-Water Contourite Depositional System in Vicinity of Yitong Shoal on Northern Margin of the South China Sea.Earth Science, 40(4):733-743 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.061 [2] Dadson, S.J., Hovius, N., Chen, H., et al., 2003.Links between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen.Nature, 426(6967):648-651. https://doi.org/10.1038/nature02150 [3] Ding, W.W., Li, J.B., Li, J., et al., 2013.Morphotectonics and Evolutionary Controls on the Pearl River Canyon System, South China Sea.Marine Geophysical Research, 34(3-4):221-238. https://doi.org/10.1007/s11001-013-9173-9 [4] Geng, W., Zhang, X.H., Wen, Z.H., et al., 2013.A Review on Response of Arc-Continent Collision in Coastal Range, Eastern Taiwan Island.Geological Review, 59(1):129-136(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201301018.htm [5] Harris, P.T., Whiteway, T., 2011.Global Distribution of Large Submarine Canyons:Geomorphic Differences between Active and Passive Continental Margins.Marine Geology, 285(1-4):69-86. https://doi.org/10.1016/j.margeo.2011.05.008 [6] Huang, C.Y., Xia, K.Y., Yuan, P.B., et al., 2001.Structural Evolution from Paleogene Extension to Latest Miocene-Recent Arc-Continent Collision Offshore Taiwan:Comparison with on Land Geology.Journal of Asian Earth Sciences, 19(5):619-638. https://doi.org/10.1016/s1367-9120(00)00065-1 [7] Le, A.N., Huuse, M., Redfern, J., et al., 2015.Seismic Characterization of a Bottom Simulating Reflection (BSR) and Plumbing System of the Cameroon Margin, Offshore West Africa.Marine and Petroleum Geology, 68:629-647. doi: 10.1016/j.marpetgeo.2014.12.006 [8] Lee, T.Q., Kissel, C., Barrier, E., et al., 1991.Paleomagnetic Evidence for a Diachronic Clockwise Rotation of the Coastal Range, Eastern Taiwan.Earth and Planetary Science Letters, 104(2-4):245-257. https://doi.org/10.1016/0012-821x(91)90207-x [9] Lehu, R., Lallemand, S., Hsu, S.K., et al., 2015.Deep-Sea Sedimentation Offshore Eastern Taiwan:Facies and Processes Characterization.Marine Geology, 369:1-18. https://doi.org/10.1016/j.margeo.2015.05.013 [10] Liao, J.H., Xu, Q., Chen, Y., et al., 2016.Sedimentary Characteristics and Genesis of the Deepwater Channel System in Zhujiang Formation of Baiyun-Liwan Sag.Earth Science, 41(6):1041-1054 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.086 [11] Liu, B.H., Zheng, Y.P., Wu, J.L., et al., 2005.The Topographical Characteristics in the Area off Eastern Taiwan Island and Their Tectonic Implication.Acta Oceanologica Sinica, 27(5):82-91(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb200505012 [12] Liu, J., Su, M., Qiao, S.H., et al., 2016.Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River.Acta Sedimentologica Sinica, 34(5):940-950(in Chinese with English abstract). [13] Micallef, A., Ribó, M., Canals, M., et al., 2014.Space-for-Time Substitution and the Evolution of a Submarine Canyon-Channel System in a Passive Progradational Margin.Geomorphology, 221:34-50. https://doi.org/10.1016/j.geomorph.2014.06.008 [14] Qu, J.W., 2011.Preliminary Study in the Grain Size and Sedimentation Rate of Sediments from Eastern Taiwan(Dissertation).National Taiwan University, Taiwan (in Chinese with English abstract). [15] Ramsey, L.A., Hovius, N., Lague, D., et al., 2006.Topographic Characteristics of the Submarine Taiwan Orogen.Journal of Geophysical Research, 111(F2):1-21. https://doi.org/10.1029/2005jf000314 [16] Schnürle, P., Liu, C.S., Lallemand, S.E., et al., 1998.Structural Controls of the Taitung Canyon in the Huatung Basin East of Taiwan.Terrestrial, Atmospheric and Oceanic Sciences, 9(3):446-453. https://doi.org/10.3319/tao.1998.9.3.453(taicrust) [17] Sibuet, J.C., Hsu, S.K., Normand, A., 2004.Tectonic Significance of the Taitung Canyon, Huatung Basin, East of Taiwan.Marine Geophysical Researches, 25(1-2):95-107. https://doi.org/10.1007/s11001-005-0736-2 [18] Su, M., Xie, X.N., Wang, Z.F., et al., 2013.Sedimentary Evolution of the Canyon System in Qiongdongnan Basin, Northern South China Sea.Acta Petrolei Sinica, 34(3):467-478 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201303007 [19] Su, M., Zhang, C., Xie, X.N., et al., 2014.Controlling Factors on the Submarine Canyon System:A Case Study of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea.Science China Earth Sciences, 57(10):2457-2468. https://doi.org/10.1007/s11430-014-4878-4 [20] Sui, B., 2003.Geophysical Field Character and Tectonic Evolution of Eastern Waters off Taiwan Island(Dissertation).Ocean University of China, Qingdao (in Chinese with English abstract). [21] Xie, X.N., Chen, Z.H., Sun, Z.P., et al., 2012.Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South Sea.Earth Science, 37(4):627-634(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.072 [22] Xu, H.Z., Cai, D.S., Sun, Z.P., et al., 2012.Filling Characters of Central Submarine Canyon of Qiongdongnan Basin and Its Significance of Petroleum Geology.Acta Geologica Sinica, 86(4):641-649 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201204010 [23] Xu, S., Wang, Y.M., Peng, X.C., et al.2014.Origin of Taiwan Canyon and Its Effects on Deepwater Sediment.Science in China(Series D), 44(9):1913-1924 (in Chinese). doi: 10.1007/s11430-014-4942-0 [24] Yu, H.S., Hong, E., 2006.Shifting Submarine Canyons and Development of a Foreland Basin in SW Taiwan:Controls of Foreland Sedimentation and Longitudinal Sediment Transport.Journal of Asian Earth Sciences, 27(6):922-932. https://doi.org/10.1016/j.jseaes.2005.09.007 [25] Zhao, Y.X., Liu, B.H., Li, X.S., et al.Distributions of Different Submarine Canyons on the East China Sea Slope and Their Tectonic Response.Advances in Marine Science, 27(4):460-468 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbhhy200904007 [26] 陈慧, 解习农, 毛凯楠, 2015.南海北缘一统暗沙附近深水等深流沉积体系特征.地球科学, 40(4):733-743. https://doi.org/10.3799/dqkx.2015.061 [27] 耿威, 张训华, 温珍河, 等, 2013.台湾东部海岸山脉对弧陆碰撞的响应.地质论评, 59(1):129-136. doi: 10.3969/j.issn.0371-5736.2013.01.014 [28] 廖计华, 徐强, 陈莹, 等, 2016.白云-荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制.地球科学, 41(6):1041-1054. https://doi.org/10.3799/dqkx.2016.086 [29] 刘保华, 郑彦鹏, 吴金龙, 等, 2005.台湾岛以东海域海底地形特征及其构造控制.海洋学报, 27(5):82-91. doi: 10.3321/j.issn:0253-4193.2005.05.012 [30] 刘杰, 苏明, 乔少华, 等, 2016.珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨.沉积学报, 34(5):940-950. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605013 [31] 屈继文, 2011.台湾岛东部海域的沉积物粒径及沉积速率初探(硕士学位论文).台湾:国立台湾大学. [32] 苏明, 解习农, 王振峰, 等, 2013.南海北部琼东南盆地中央峡谷体系沉积演化.石油学报, 34 (3):467-478. http://d.old.wanfangdata.com.cn/Periodical/syxb201303007 [33] 隋波, 2003.台湾岛以东海域地球物理场特征及其构造演化(硕士学位论文).青岛:中国海洋大学. [34] 解习农, 陈志宏, 孙志鹏, 等, 2012.南海西北缘深水沉积体系内部构成特征.地球科学, 37(4):627-634. https://doi.org/10.3799/dqkx.2012.072 [35] 许怀智, 蔡东升, 孙志鹏, 等, 2012.琼东南盆地中央峡谷沉积充填特征及油气地质意义.地质学报, 86(4):641-649. doi: 10.3969/j.issn.0001-5717.2012.04.010 [36] 徐尚, 王英民, 彭学超, 等, 2014.台湾峡谷的成因及其对沉积的控制.中国科学(D辑), 44(9):1913-1924. http://d.old.wanfangdata.com.cn/Conference/8632452 [37] 赵月霞, 刘保华, 李西双, 等, 2009.东海陆坡不同类型海底峡谷的分布构造响应.海洋科学进展, 27(4):460-468. doi: 10.3969/j.issn.1671-6647.2009.04.007