Model of Inner and Outer Reductive Media Within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits
-
摘要: 含铀岩系的还原介质可以依据与铀储层砂体的产出关系划分为内部还原介质和外部还原介质.铀储层砂体的双重还原介质对铀成矿同等重要.铀储层砂体中的层间氧化作用直接与内部还原介质相关,但是当叠加有外部还原介质时,外部还原介质将通过不同的方式大大增强铀储层砂体的整体还原能力,这种组合的出现有利于稳定的层间氧化带发育和持续的铀成矿.沉积期的古气候和沉积环境决定了含铀岩系还原介质的类型和丰度,以及铀储层砂体双重还原介质的组合规律,并从根本上决定了成矿期层间氧化带的发育规模.在进行砂岩型铀矿的勘查预测时,需要将双重还原介质模型评价与具体盆地的地质背景和成矿期控矿条件研究相结合,才能获得理想的结果.Abstract: The Daying and Qianjiadian uranium deposits, the reductive media within uranium-bearing series are divided into inner reductive media and outer reductive media according to its occurrence relationship with uranium reservoir sandstone. The assemblage of the inner and outer reductive media was in favor of the formation of the interlayer oxidation zone and continuous uranium mineralization. It is found that the interlayer oxidation within uranium reservoir sandstone was directly related with the inner reductive media and the reducibility of uranium reservoir sandstone was largely enhanced when the outer reductive media participated in the process of interlayer oxidation. The reductive media outside uranium reservoir sandstone was just as important to uranium mineralization as the reductive media inside uranium reservoir sandstone. Types and abundance of the reductive media inside and outside uranium reservoir sandstone and their spatial distribution were affected by the synsedimentary palaeoclimate and depositional environment of uranium-bearing series which basically constrained the scale of interlayer oxidation zone. The desired results will be achieved during prospecting prediction for the sandstone-type uranium deposit based on evaluation of the model of the double reductive media associated with the studies of geological background and ore-controlling conditions in the uranium mineralization stage.
-
Key words:
- reductive media /
- geological model /
- uranium reservoir /
- sandstone-type uranium deposit /
- ore deposit
-
图 4 哈萨克斯坦下伊犁煤岩型铀矿床次生氧化作用与铀矿化关系
Fig. 4. Relationship between secondary oxidation and uranium mineralization of the coal-type uranium deposit in the lower Yili basin, Kazakhstan
图 5 砂岩型铀矿的双重还原介质联合控矿机理的概念模型
据焦养泉等(2015a)修改
Fig. 5. Conceptual model of the ore-controlling mechanism of the reductive media inside and outside uranium reservoir sandstone
图 6 松辽盆地南部钱家店铀矿床姚家组湖泊扩展体系域第1小层序(SQK2y-EST(Pss1))沉积环境、铀储层砂体、外部还原介质、层间氧化带与铀成矿的空间配置关系
据焦养泉等(2015a)修改;a.含铀岩系发育的沉积体系图(辫状分流河道朝北东方向分岔,在图幅东北角相变为分流间湾);b.分流间湾暗色泥岩厚度与铀矿化体叠合图(注意铀矿化位于大规模暗色泥岩的迎水面一侧,显示铀储层外部还原介质与铀矿化关系密切);c.铀储层砂体中氧化砂体厚度图(与暗色泥岩厚度呈互补关系);d.铀储层砂体内部层间氧化带分带性与铀储层砂体中TOC含量叠合图(两者呈负相关)
Fig. 6. Spatial arrangement of the depositional environment, uranium reservoir sandstone, outer reductive media, interlayer oxidation zone and uranium mineralization of the Yaojia Formation(SQK2y-EST(Pss1) in the Qianjiadian uranium deposit, southern Songliao basin
图 7 鄂尔多斯盆地大营铀矿床直罗组下段聚煤作用与铀矿化空间配置关系
a.ZKT111-16井直罗组下段薄煤层与铀矿化共生关系;b.ZK11-21井直罗组下段薄煤层与铀矿化共生关系;c.上亚段暗色泥岩厚度与铀矿化空间配置关系;d.下亚段煤层厚度与铀矿化空间配置关系
Fig. 7. Spatial arrangement of the coal accumulation and uranium mineralization of the lower part of Zhiluo Formation in the Daying uranium deposit, northeastern Ordos basin
图 10 成煤过程的外部还原介质输导含烃流体导致铀储层砂体中黄铁矿大量产生
a.延安组煤层还原介质向上运移进入直罗组铀储层砂体中导致大规模的黄铁矿胶结作用,剖面上黄色为黄铁矿结核写实,东胜神山沟露头剖面;b和c分别为东胜神山沟露头剖面单位区间黄铁矿发育个数(密度)和黄铁矿长轴规模统计图(统计显示黄铁矿的密度和粒度均向上降低和减小,反映胶结事件与下伏煤层关系密切);d.延安组煤层及其上覆直罗组铀储层砂体中发育的黄铁矿ZKD96-55(显示黄铁矿胶结作用与下伏煤层关系密切),635.8 m,大营铀矿
Fig. 10. Numerous pyrite in the uranium reservoir sandstone formed by hydrocarbon fluid transformed from outer reductive media during the coal-forming process
图 12 二连盆地断坳转换末期巴彦乌拉铀矿床成矿模式
据鲁超等(2013)修改
Fig. 12. Metallogenic model of the Bayanwula uranium deposit during the late stage of the fault-sag transition of the Erlian basin
表 1 几种古气候背景和沉积环境条件下发育的还原介质组合规律
Table 1. Assemblage of the reductive media developed in different palaeoclimate and depositional environment
沉积期 还原介质组合规律 典型盆地及层位 典型矿床(田) 氧化带纵向发育规模(km) 古气候类型 沉积环境 内部还原介质类型 外部还原介质类型 相对干旱 辫状分流河道 炭质碎屑+黄铁矿
(贫乏)/ 松辽盆地姚家组 钱家店铀矿床 >250 相对干旱 分流间湾 / 暗色泥岩
(分散有机质+黄铁矿)相对潮湿 炭质碎屑+黄铁矿
(丰富)(工业)煤层+炭质泥岩 伊犁盆地 水西沟群 伊犁铀矿田 2~15 吐哈盆地 水西沟群 十红滩铀矿床 潮湿→干旱 辫状河、辫状分流
河道、分流河道炭质碎屑+黄铁矿
(介于潮湿与干旱之间)/ 鄂尔多斯盆地直罗组 东胜铀矿田 150 潮湿→干旱 泛滥平原、分流间湾 / 薄煤层(煤线)+暗色泥岩 -
[1] Abzalov, M.Z., Paulson, O., 2012.Sandstone Hosted Uranium Deposits of the Great Divide Basin, Wyoming, USA.Applied Earth Science, 121(2):76-83. https://doi.org/10.1179/1743275812y.0000000017 [2] Cai, X.Y., Wang, G.H., Chi, Y.L., et al., 2001.Reverse Structure in China Petroleum Province.Petroleum Industry Press, Beijing (in Chinese). [3] Chen, Z.H., 1988.The Sedimentary Environment of Coal and Coal-Bearing Series.China University of Geosciences Press, Wuhan (in Chinese). [4] Chen, Z. Y., Chen, D. S., Gu, K. H., 2001. China's Uranium Deposit Research Evaluation (The Third Volume: Sandstone Type Uranium Deposits). China Nuclear Geology and Beijing Research Institute of Uranium Geology, Beijing (in Chinese). [5] Chen, Z.Y., Guo, Q.Y., 2007.Mechanism of U-Reduction and Concentration by Sulphides at Sandstone Type Uranium Deposits.Uranium Geology, 23(6):321-327, 334(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200706000.htm [6] Coal Field Teaching and Research Section in Wuhan College of Geology, 1979.Coal Geology.Geological Publishing House, Beijing (in Chinese). [7] Cui, X.S., Li, J.F., 1993.Late Mesozoic Basin Types and Their Coal Accumulation Characteristics of Erlian Basins in Inner Mongolia.Geoscience, 7(4):497-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ199304013.htm [8] Dai, S.F., Yang, J.Y., Ward, C.R., et al., 2015.Geochemical and Mineralogical Evidence for a Coal-Hosted Uranium Deposit in the Yili Basin, Xinjiang, Northwestern China.Ore Geology Reviews, 70:1-30. https://doi.org/10.1016/j.oregeorev.2015.03.010 [9] Douglas, G.B., Butt, C.R.M., Gray, D.J., 2011.Geology, Geochemistry and Mineralogy of the Lignite-Hosted Ambassador Palaeochannel Uranium and Multi-Element Deposit, Gunbarrel Basin, Western Australia.Mineralium Deposita, 46(7):761-787. https://doi.org/10.1007/s00126-011-0349-4 [10] Du, W.L., Li, X.P., Xiao, Y., et al., 2007.Reverse Structures in Erlian Basin and Their Relations with Hydrocarbon.Science & Technology Review, 25(11):45-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB200711010.htm [11] Franz, J. D., 1993. Uranium Ore Deposits. Springer-Verlag, Berlin. [12] Granger, H.C., Warren, C.G., 1969.Unstable Sulfur Compounds and the Origin of Roll-Type Uranium Deposits.Economic Geology, 64(2):160-171. https://doi.org/10.2113/gsecongeo.64.2.160 [13] Huang, J.B., Li, S.X., 2007.Metallogenic Characteristics, Model and Exploration Prospect for the Paleo-Interlayer-Oxidation Type Sandstone Hosted Uranium Deposits in China.Uranium Geology, 23(1):7-16 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ykdz200701001.htm [14] Huang, S.J., 1994.Formation Conditions and Prospecting Criteria for Sandstone Uranium Deposit of Interlayered Oxidation Type.Uranium Geology, 10(1):6-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ401.001.htm [15] Jiao, G.H., Wang, T.H., Guo, X.J., et al., 2003.Rift Tectonic Evolution and Oil and Gas in Erlian Basin.Petroleum Industry Press, Beijing (in Chinese). [16] Jiao, Y.Q., Chen, A.P., Wang, M.F., et al., 2005.Genetic Analysis of the Bottom Sandstone of Zhiluo Formation, Northeastern Ordos Basin:Predictive Base of Spatial Orientation of Sandstone-Type Uranium Deposit.Acta Sedimentologica Sinica, 23(3):371-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200503000.htm [17] Jiao, Y.Q., Wu, L.Q., Peng, Y.B., et al., 2015a.Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China.Earth Science Frontiers, 22(1):189-205 (in Chinese with English abstract). http://www.en.cnki.com.cn/article_en/cjfdtotal-dxqy201501018.htm [18] Jiao, Y.Q., Wu, L.Q., Rong, H., 2015b.Sedimentology of Coal-Bearing Basins.China University of Geosciences Press, Wuhan (in Chinese). [19] Jiao, Y.Q., Wu, L.Q., Rong, H., et al., 2016.The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China.Acta Geologica Sinica (English Edition), 90(6):2117-2132. https://doi.org/10.1111/1755-6724.13026 [20] Jiao, Y.Q., Wu, L.Q., Wang, M.F., et al., 2005.Forecasting the Occurrence of Sandstone-Type Uranium Deposits by Spatial Analysis:An Example from the Northeastern Ordos Basin, China.Mineral Deposit Research:Meeting the Global Challenge, 273-275. https://doi.org/10.1007/3-540-27946-6_71 [21] Jiao, Y.Q., Wu, L.Q., Yang, S.K., et al., 2006.Sedimentology of Uranium Reservior:The Foundation of Sandstone Type Uranium Deposit Exploration and Development.Geological Publishing House, Beijing (in Chinese). [22] Li, S.F., Zhang, Y., 2004.Formation Mechanism of Uranium Minerals at Sandstone-Type Uranium Deposits.Uranium Geology, 20(2):80-84, 90 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200402002.htm [23] Li, S.T., 1988.Analysis of Rift-Subsidence Basins and Coal-Gathering Regulations.Geological Publishing House, Beijing (in Chinese). [24] Li, S.T., Cheng, S.T., Yang, S.G., et al., 1992.Sequence Stratigraphic Research and Sedimentary System Analysis in Northeastern Ordos Basin-The Formation, Distribution and Predicting Basis of Jurassic Coal Rich Units.Geological Publishing House, Beijing (in Chinese). [25] Li, X.N., Wang, T.H., 1997.Inversion Structures and Oil-Gas in Erlian Basin.China Offshore Oil and Gas (Geology), 11(2):106-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD199702005.htm [26] Liu, Z.B., Jiao, Y.Q., Xue, C.J., et al., 2013.The Correlation between Sandstone Uranium Ore-Body and the Coal Bed in Jurassic System, Dongsheng, Inner Mongolia.Earth Science Frontiers, 20(1):146-153(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201301015.htm [27] Lu, C., Peng, Y.B., Liu, X.Y., et al., 2013.Sedimentary Backgrounds of Sandstone-Type Uranium Deposits in Western Manite Depression of Erlian Basin.Uranium Geology, 29(6):336-343(in Chinese with English abstract). [28] Ma, X.H., Xiao, A.C., 2000.Structure Reversal History of Erlian Basin in Inner Mongolia.Journal of Southwest Petroleum Institute, 22(2):1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY200002000.htm [29] Miao, A. S., 2010. The Relationship between Uranium Mineralization and the Characteristic of the Paleo-Interlayer-Oxidation Zone of Sandstone-Type Uranium Deposit in Northeastern Ordos Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [30] Min, M.Z., Luo, X.Z., Mao, S.L., et al., 2001.An Excellent Fossil Wood Cell Texture with Primary Uranium Minerals at a Sandstone-Hosted Roll-Type Uranium Deposit, NW China.Ore Geology Reviews, 17(4):233-239. https://doi.org/10.1016/s0169-1368(00)00007-x [31] Peng, Y. B., 2007. The Forming and Reconstruction Conditions of Ancient Sandstone-Type Uranium Deposit in the Northeast of Ordos Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [32] Peng, Y.B., Jiao, Y.Q., 2015.Synsedimentary Mudstone-Type Uranium Deposit:Typical Analysis of Superlarge Nuheting Uranium Deposits in Erlian Basin.Geological Publishing House, Beijing (in Chinese). [33] Ren, J.Y., Liu, W.L., Lin, C.S., et al., 1996.Features of Late Mesozoic Rifting in East China and Its Episodic Extension.Geoscience, 10(4):526-531 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ604.012.htm [34] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2016.Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin.Earth Science, 41(1):153-166 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.012 [35] Spirakis, C.S., 1996.The Roles of Organic Matter in the Formation of Uranium Deposits in Sedimentary Rocks.Ore Geology Reviews, 11(1-3):53-69. https://doi.org/10.1016/0169-1368(95)00015-1 [36] Xie, H.L., Wu, L.Q., Jiao, Y.Q., et al., 2016.The Quantitative Evaluation Index System for Uranium Reservoir Heterogeneity in Hantaimiao Region, Ordos Basin.Earth Science, 41(2):279-292(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.021 [37] Yu, D.G., 1989.Reduction Body (System) and the Formation of Rich-Uranium Ore.Uranium Geology, 5(6):343-349, 336 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ198906003.htm [38] Zhang, J.D., Jian, X.F., Guo, Q.Y., et al., 2013.Exploration and Evaluation of Uranium Sources in Meso-Cenozoic Basins in North China (2000-2010).Geological Publishing House, Beijing.(in Chinese). [39] Zhang, J.D., Xu, G.Z., Lin, J.R., et al., 2010.The Implication of Six Kinds of New Sandstone-Type Uranium Deposits to Uranium Resources Potential in North China.Geology in China, 37(5):1434-1449 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201005023.htm [40] Zhao, F. M., 2015. Uranium Geology in Central Asia. Beijing Research Institute of Uranium Geology, Beijing (in Chinese). [41] Zhao, F.M., Shen, C.Q., 1986.Experimental Researches on Paragenetic Condition for Pyrite and Pitchblende and Its Role in Pitchblende Formation Process.Uranium Geology, 2(4):193-199 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ198604000.htm [42] Zhu, Y.H., Zhang, W.C., 2000.The Sedimentary Facies and Oil Potential of Lower Cretaceous in Erlian Basin.Science Press, Beijing (in Chinese). [43] 蔡希源, 王根海, 迟元林, 等, 2001.中国油气区反转构造.北京:石油工业出版社. [44] 陈钟惠, 1988.煤和含煤岩系的沉积环境.武汉:中国地质大学出版社. [45] 陈祖伊, 陈戴生, 古抗衡, 2011. 中国铀矿床研究评价(第三卷: 砂岩型铀矿床). 北京: 中国核工业地质局和核工业北京地质研究院. [46] 陈祖伊, 郭庆银, 2007.砂岩型铀矿床硫化物还原富集铀的机制.铀矿地质, 23(6):321-327, 334. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz200706000&dbname=CJFD&dbcode=CJFQ [47] 崔新省, 李建伏, 1993.内蒙古二连盆地群晚中生代煤盆地的类型与聚煤特征.现代地质, 7(4):497-484. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz199304013&dbname=CJFD&dbcode=CJFQ [48] 杜维良, 李先平, 肖阳, 等, 2007.二连盆地反转构造及其与油气的关系.科技导报, 25(11):45-47. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kjdb200711010&dbname=CJFD&dbcode=CJFQ [49] 黄净白, 李胜祥, 2007.试论我国古层间氧化带砂岩型铀矿床成矿特点、成矿模式及找矿前景.铀矿地质, 23(1):7-16. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz200701001&dbname=CJFD&dbcode=CJFQ [50] 黄世杰, 1994.层间氧化带砂岩型铀矿的形成条件及找矿判据.铀矿地质, 10(1):6-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz401.001&dbname=CJFD&dbcode=CJFQ [51] 焦贵浩, 王同和, 郭绪杰, 等, 2003.二连裂谷构造演化与油气.北京:石油工业出版社. [52] 焦养泉, 陈安平, 王敏芳, 等, 2005.鄂尔多斯盆地东北部直罗组底部砂体成因分析——砂岩型铀矿床预测的空间定位基础.沉积学报, 23(3):371-379. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb200503000&dbname=CJFD&dbcode=CJFQ [53] 焦养泉, 吴立群, 彭云彪, 等, 2015a.中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析.地学前缘, 22(1):189-205. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201501018&dbname=CJFD&dbcode=CJFQ [54] 焦养泉, 吴立群, 荣辉, 2015b.聚煤盆地沉积学.武汉:中国地质大学出版社. [55] 焦养泉, 吴立群, 杨生科, 等, 2006.铀储层沉积学:砂岩型铀矿勘查与开发的基础.北京:地质出版社. [56] 李盛富, 张蕴, 2004.砂岩型铀矿床中铀矿物的形成机理.铀矿地质, 20(2):80-84, 90. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz200402002&dbname=CJFD&dbcode=CJFQ [57] 李思田, 1988.断陷盆地分析与聚煤规律.北京:地质出版社. [58] 李思田, 程守田, 杨士恭, 等, 1992.鄂尔多斯盆地东北部层序地层及沉积体系分析——侏罗系富煤单元的形成、分布及预测基础.北京:地质出版社. [59] 李心宁, 王同和, 1997.二连盆地反转构造与油气.中国海上油气(地质), 11(2):106-110. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhsd199702005&dbname=CJFD&dbcode=CJFQ [60] 刘正邦, 焦养泉, 薛春纪, 等, 2013.内蒙古东胜地区侏罗系砂岩铀矿体与煤层某些关联性.地学前缘, 20(1):146-153. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201301015&dbname=CJFD&dbcode=CJFQ [61] 鲁超, 彭云彪, 刘鑫扬, 等, 2013.二连盆地马尼特坳陷西部砂岩型铀矿成矿的沉积学背景.铀矿地质, 29(6):336-343. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz201306003&dbname=CJFD&dbcode=CJFQ [62] 马新华, 肖安成, 2000.内蒙古二连盆地的构造反转历史.西南石油学院学报, 22(2):1-4. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnsy200002000&dbname=CJFD&dbcode=CJFQ [63] 苗爱生, 2010. 鄂尔多斯盆地东北部砂岩型铀矿古层间氧化带特征与铀成矿的关系(博士学位论文). 武汉: 中国地质大学. [64] 彭云彪, 2007. 鄂尔多斯盆地东北部古砂岩型铀矿的形成与改造条件分析(博士学位论文). 武汉: 中国地质大学. [65] 彭云彪, 焦养泉, 2015.同沉积泥岩型铀矿床:二连盆地超大型努和廷铀矿床典型分析.北京:地质出版社. [66] 任建业, 刘文龙, 林畅松, 等, 1996.中国大陆东部晚中生代裂陷作用的表现形式及其幕式扩展.现代地质, 10(4):526-531. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz604.012&dbname=CJFD&dbcode=CJFQ [67] 荣辉, 焦养泉, 吴立群, 等, 2016.松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束.地球科学, 41(1):153-166. https://doi.org/10.3799/dqkx.2016.012 [68] 武汉地质学院煤田教研室, 1979.煤田地质学.北京:地质出版社. [69] 谢惠丽, 吴立群, 焦养泉, 等, 2016.鄂尔多斯盆地罕台庙地区铀储层非均质性定量评价指标体系.地球科学, 41(2):279-292. https://doi.org/10.3799/dqkx.2016.021 [70] 余达淦, 1989.还原体(体系)与富铀矿的形成.铀矿地质, 5(6):343-349, 336. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz198906003&dbname=CJFD&dbcode=CJFQ [71] 张金带, 简晓飞, 郭庆银, 等, 2013.中国北方中新生代沉积盆地铀矿资源调查评价(2000-2010).北京:地质出版社. [72] 张金带, 徐高中, 林锦荣, 等, 2010.中国北方6种新的砂岩型铀矿对铀资源潜力的提示.中国地质, 37(5):1434-1449. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201005023&dbname=CJFD&dbcode=CJFQ [73] 赵凤民, 2015. 中亚铀矿地质. 北京: 核工业北京地质研究院. [74] 赵凤民, 沈才卿, 1986.黄铁矿与沥青铀矿的共生条件及在沥青铀矿形成过程中所起作用的实验研究.铀矿地质, 2(4):193-199. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ykdz198604000&dbname=CJFD&dbcode=CJFQ [75] 祝玉衡, 张文朝, 2000.二连盆地下白垩统沉积相及含油性.北京:科学出版社.