Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Characteristics and Geological Significance of Carboniferous Yuejin Arc Intrusive Rocks of Xilinhot, Inner Mongolia
-
摘要: 兴蒙造山带中段锡林浩特跃进地区出露一套石炭纪侵入岩,具有类似岛弧侵入岩的岩石组合(花岗闪长岩、英云闪长岩、石英闪长岩)和地球化学特征.锆石LA-MC-ICP-MS U-Pb测年结果表明,这套侵入岩形成时代为310~330 Ma,属于石炭纪中晚期.岩石地球化学分析表明,跃进侵入岩属于钠质钙碱性系列岩石;A/CNK范围为0.86~1.17,大多属于准铝-弱过铝质系列;样品均具有较高的Mg#值,范围为47.5~55.8;微量元素分析表明,跃进侵入岩具有Rb、Ba、Th、U、K等大离子亲石元素的富集,Nb、Ta、P、Ti等高场强元素的亏损;稀土总量较低(3.62×10-6~172.33×10-6,平均值为118.33×10-6),具有轻稀土富集的配分模式,(La/Yb)N大于1,范围为2.48~9.44,重稀土分馏较弱,(Gd/Yb)N范围为1.19~1.96,具有弱的Eu负异常(δEu值0.70~1.04).跃进侵入岩均具有亏损的Hf同位素组成,176Hf/177Hf范围为0.282 651~0.282 870,εHf(t)均为正值,范围为+2.0~+9.9,地壳存留模式年龄TDMC范围为829~1 536 Ma,集中于900~1 200 Ma;(87Sr/86Sr)i范围为0.703 7~0.704 8,(143Nd/144Nd)i范围为0.512 320~0.512 401,εNd(t)均为正值(+2.1~+3.6),二阶段Nd模式年龄TDM2较集中,为新元古代(793~918 Ma).跃进侵入岩是在石炭纪活动大陆边缘的背景下,由中元古代晚期-新元古代早期的新生基性下地壳物质,在俯冲流体及岛弧基性岩浆的共同作用下部分熔融形成的,表明石炭纪中晚期兴蒙造山带中段仍然存在板块俯冲,古亚洲洋并未关闭.Abstract: The study of magmatism can reveal the structure and tectonic evolution of the orogeny. In this paper, we present zircon LA-MC-ICP-MS U-Pb dating, Hf-Sr-Nd isotopic compositions and whole rock geochemical data of the Carboniferous Arc intrusive rocks from Yuejin region of Xilinhot, central part of the Xingmeng Orogenic Belt. The rock suit consists of three major rock types, i.e., granodiorite, tonalite and quartz-diorite, with zircon U-Pb ages ranging from 310±1 to 330±1 Ma. Geochemically, these rocks show moderate SiO2, high and variable Na2O, Al2O3, and CaO contents, but low K2O, FeOt and MgO contents.The Na2O/K2O ratios are all higher than 1(1.05-2.68, average of 1.95), while these rocks are of Calc-Alkaline series. The A/CNK ratios range from 0.86 to 1.17, indicating most of samples are meta-to weak per-aluminous series. The Mg# are moderately high, from 47.5-55.8. The trace elemental data of these rocks display enrichment of LILEs, such as Rb, Ba, Th, U, K, but depletion of HFSE, i.e., Nb, Ta, P and Ti. The total REE contents are low (3.62×10-6-172.33×10-6, average of 118.33×10-6) with moderate fractionation between LREE and HREE ((La/Yb)N range from 2.48-9.44), while weak negative Eu abnormity are observed(δEu range from 0.70 to 1.04). The in-situ zircon Hf isotopic analysis show depleted compositions with 176Hf/177Hf ratios varying from 0.282 723 to 0.282 863, εHf(t) values from +2 to +9.9 and Hf two stage model ages(TDMC) from 829 to 1 536 Ma(concentrating from 900 to 1 200 Ma). The whole rock Sr-Nd isotopic analysis of (87Sr/86Sr)i range from 0.703 7 to 0.704 8, (143Nd/144Nd)i range from 0.512 320 to 0.512 401, with positive εNd(t) (+2.1 to +3.6), indicating depleted source, and the Nd two stage model ages(TDM2) are of Neoproterozoic(793-918 Ma). The rock suit, whole rock geochemistry, Hf-Sr-Nd isotopic characteristics indicate that Yuejin Carboniferous intrusive rocks were formed in active continental margin, by the partial melting of basic juvenile crust (formed in Late Mesoproterozoic to Early Neoproterozoic) triggered by subduction fluid and arc basic magma. This tectonic setting demonstrates that there was still subduction in Carboniferous in Xingmeng orogeny and the ocean was not closed.
-
Key words:
- Carboniferous /
- arc intrusive rocks /
- active continental margin /
- Xingmeng orogeny /
- subduction /
- juvenile crust
-
图 1 内蒙古锡林浩特跃进地区地质简图
a.据Xiao et al., 2003修改;b.据1:5万跃进三队(1:50 000跃进三队幅(K50E003008)地质图, 2013, 国土资料实物中心)及锡林浩特炼铜厂幅(1:50 000锡林浩特炼铜厂幅(K50E002009)地质图, 2012, 中国地质大学(武汉)地质调查院)地质图修改;1.早石炭世花岗闪长岩;2.早石炭世英云闪长岩;3.晚石炭世石英闪长岩;4.早石炭世辉长岩;5.晚石炭世二长花岗岩;6.早二叠世花岗闪长岩;7.锡林郭勒杂岩;8.中奥陶世包尔汗图群;9.早二叠世大石寨组;10.早白垩世大磨拐河组;11.第四系;12.采样点及样品号
Fig. 1. Geological sketch of Yuejin region, Xilinhot, Inner Mongolia
图 5 内蒙古锡林浩特跃进侵入岩SiO2-K2O图解
Fig. 5. SiO2-K2O diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 6 内蒙古锡林浩特跃进侵入岩A/CNK-A/NK图解
Fig. 6. A/CNK-A/NK diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 7 内蒙古锡林浩特跃进侵入岩An-Ab-Or图解
据Barker(1979),矿物含量CIPW根据标准矿物计算
Fig. 7. An-Ab-Or diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 8 内蒙古锡林浩特跃进侵入岩原始地幔标准化微量元素蛛网图
原始地幔标准化数据根据Sun and McDonough (1989)
Fig. 8. Primitive mantle-normalized trace elements spider diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 9 内蒙古锡林浩特跃进侵入岩稀土配分模式图
原始地幔标准化数据根据Sun and McDonough (1989)
Fig. 9. Chondrite-normalized REE patterns diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 10 内蒙古锡林浩特跃进侵入岩εHf(t)-t图解
兴蒙造山带东段Hf同位素组成据Yang et al.(2006)
Fig. 10. εHf(t)-t diagrams of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 12 内蒙古锡林浩特跃进侵入岩Y-Nb及(Y+Nb)-Rb构造环境判别图解
据Pearce et al.(1984);文献数据来自Chen et al.(2000)、刘建峰等(2009)及Hu et al.(2015)
Fig. 12. Y-Nb and Y+Nb-Rb discrimination diagrams of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 13 内蒙古锡林浩特跃进侵入岩Rb-Hf-Ta判别图解
据Harris et al.(1986);文献数据来自Chen et al.(2000)、刘建峰等(2009)及Hu et al.(2015)
Fig. 13. Rb-Hf-Ta discrimination diagrams of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 14 内蒙古锡林浩特跃进侵入岩R1-R2构造环境判别图解
据Batchelor and Bowden(1985);文献数据来自Chen et al.(2000),刘建峰等(2009)及Hu et al.(2015)
Fig. 14. R1-R2 discrimination diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
图 15 内蒙古锡林浩特跃进侵入岩Th/Yb-Ta/Yb判别图解
据Gorton and Schandl(2000);文献数据来自Chen et al.(2000)、刘建峰等(2009)及Hu et al.(2015)
Fig. 15. Th/Yb-Ta/Yb discrimination diagram of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
表 1 内蒙古锡林浩特跃进侵入岩锆石U-Pb测年分析结果
Table 1. Zircon LA-MC-ICPMS U-Pb dating data of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206U 1σ 14XL08.1(花岗闪长岩) 1 155 400 0.45 0.051 67 0.000 6 0.374 6 0.010 3 0.052 6 0.001 5 325 4 323 9 311 63 2 134 223 0.69 0.052 33 0.000 5 0.383 9 0.018 4 0.053 2 0.002 5 329 3 330 16 337 105 3 89 284 0.36 0.052 21 0.000 5 0.382 5 0.007 5 0.053 1 0.001 0 328 3 329 6 334 42 4 108 305 0.41 0.051 83 0.000 5 0.379 7 0.008 8 0.053 1 0.001 2 326 3 327 8 335 50 5 87 238 0.42 0.051 80 0.000 5 0.378 7 0.011 3 0.053 0 0.001 6 326 3 326 10 329 66 6 76 298 0.29 0.052 12 0.000 5 0.378 3 0.012 6 0.052 6 0.001 7 328 3 326 11 313 73 7 136 305 0.52 0.051 68 0.000 5 0.379 3 0.011 5 0.053 2 0.001 6 325 3 327 10 338 66 8 47 127 0.42 0.052 23 0.000 5 0.381 5 0.015 8 0.053 0 0.002 1 328 3 328 14 328 92 9 126 309 0.47 0.052 29 0.000 5 0.380 7 0.008 2 0.052 8 0.001 1 329 3 328 7 321 46 10 126 300 0.48 0.052 74 0.000 5 0.382 0 0.010 6 0.052 5 0.001 4 331 3 329 9 309 59 11 364 691 0.61 0.052 80 0.000 5 0.386 0 0.007 4 0.053 0 0.000 9 332 3 331 6 330 40 12 46 108 0.49 0.052 53 0.000 5 0.384 6 0.015 8 0.053 1 0.002 1 330 3 330 14 333 92 13 142 265 0.62 0.052 13 0.000 5 0.382 0 0.008 8 0.053 2 0.001 1 328 3 329 8 335 49 14 41 106 0.45 0.052 34 0.000 5 0.381 4 0.017 4 0.052 9 0.002 4 329 3 328 15 323 101 15 177 320 0.64 0.052 15 0.000 5 0.382 9 0.007 3 0.053 2 0.000 9 328 3 329 6 339 40 16 100 149 0.77 0.052 80 0.000 6 0.386 0 0.020 2 0.053 0 0.002 6 332 4 331 17 330 113 17 21 68 0.35 0.052 41 0.000 5 0.382 1 0.022 1 0.052 9 0.003 1 329 3 329 19 324 131 18 159 300 0.61 0.052 29 0.000 5 0.380 8 0.010 2 0.052 8 0.001 3 329 3 328 9 321 58 19 109 256 0.49 0.052 44 0.000 5 0.382 8 0.010 2 0.052 9 0.001 3 330 3 329 9 326 57 20 105 178 0.68 0.052 14 0.000 5 0.382 4 0.010 0 0.053 2 0.001 3 328 3 329 9 337 57 21 103 167 0.71 0.052 12 0.000 5 0.380 9 0.014 4 0.053 0 0.002 0 328 3 328 12 329 84 22 51 142 0.42 0.052 00 0.000 5 0.381 5 0.014 3 0.053 2 0.001 9 327 3 328 12 337 83 23 78 181 0.49 0.052 29 0.000 5 0.383 1 0.009 9 0.053 1 0.001 3 329 3 329 9 335 57 24 48 128 0.43 0.052 54 0.000 5 0.380 7 0.015 7 0.052 6 0.002 1 330 3 328 14 310 90 14XL09.1(花岗闪长岩) 1 8 147 0.43 0.051 20 0.000 5 0.372 6 0.013 2 0.052 8 0.001 8 322 3 322 11 321 79 2 19 357 0.37 0.051 00 0.000 5 0.375 3 0.007 4 0.053 4 0.001 0 320 3 324 6 346 42 3 7 125 0.60 0.050 90 0.000 5 0.372 8 0.011 9 0.053 1 0.001 7 320 3 322 10 333 70 4 17 316 0.68 0.050 70 0.000 5 0.371 5 0.012 7 0.053 1 0.001 7 319 3 321 11 335 73 5 16 286 0.75 0.050 60 0.000 5 0.369 9 0.010 6 0.053 0 0.001 5 318 3 320 9 331 63 6 7 135 0.46 0.050 80 0.000 5 0.371 8 0.014 3 0.053 1 0.002 0 319 3 321 12 334 83 7 7 120 0.68 0.050 90 0.000 5 0.374 8 0.018 4 0.053 4 0.002 5 320 3 323 16 347 107 8 9 156 0.80 0.050 60 0.000 5 0.367 5 0.012 4 0.052 7 0.001 7 318 3 318 11 315 74 9 10 180 0.57 0.049 80 0.000 5 0.369 6 0.026 1 0.053 8 0.003 8 313 3 319 23 364 158 10 9 157 0.63 0.050 70 0.000 5 0.372 2 0.010 2 0.053 3 0.001 4 319 3 321 9 341 60 11 8 142 0.51 0.050 10 0.000 5 0.369 1 0.010 6 0.053 4 0.001 5 315 3 319 9 345 64 12 6 116 0.63 0.050 50 0.000 5 0.367 3 0.012 7 0.052 7 0.001 8 318 3 318 11 318 76 13 6 119 0.55 0.050 30 0.000 5 0.368 3 0.011 5 0.053 1 0.001 6 316 3 318 10 333 68 14 12 225 0.57 0.050 70 0.000 5 0.373 0 0.009 7 0.053 3 0.001 3 319 3 322 8 343 57 15 8 157 0.45 0.050 90 0.000 5 0.372 0 0.011 5 0.053 0 0.001 6 320 3 321 10 330 68 16 8 144 0.50 0.050 90 0.000 5 0.371 7 0.010 4 0.052 9 0.001 4 320 3 321 9 326 62 17 10 186 0.56 0.050 60 0.000 5 0.367 9 0.010 3 0.052 7 0.001 4 318 3 318 9 317 62 18 12 232 0.51 0.050 90 0.000 5 0.370 0 0.009 4 0.052 7 0.001 3 320 3 320 8 318 55 19 5 84 0.97 0.050 40 0.000 6 0.368 6 0.025 5 0.053 1 0.003 6 317 3 319 22 332 155 20 9 160 0.62 0.050 80 0.000 5 0.372 0 0.014 8 0.053 1 0.002 1 319 3 321 13 333 88 21 16 295 0.50 0.050 20 0.000 5 0.367 3 0.007 0 0.053 1 0.000 9 316 3 318 6 331 40 22 11 193 0.47 0.050 90 0.000 5 0.369 9 0.009 0 0.052 7 0.001 2 320 3 320 8 317 54 23 10 176 0.40 0.050 70 0.000 5 0.370 7 0.010 7 0.053 0 0.001 5 319 3 320 9 329 65 24 6 115 0.44 0.050 80 0.000 5 0.370 4 0.017 8 0.052 9 0.002 5 319 3 320 15 325 107 14XL18.1(石英闪长岩) 1 23 415 0.66 0.049 30 0.000 5 0.369 8 0.007 6 0.054 3 0.001 0 311 3 319 7 383 41 2 45 806 0.71 0.049 60 0.000 5 0.362 7 0.005 4 0.053 1 0.000 7 312 3 314 5 331 32 3 25 458 0.68 0.049 50 0.000 5 0.367 6 0.006 4 0.053 8 0.000 9 311 3 318 6 365 37 4 18 329 0.55 0.049 80 0.000 5 0.363 5 0.007 6 0.052 9 0.001 1 313 3 315 7 326 46 5 22 392 0.64 0.049 60 0.000 5 0.372 7 0.007 4 0.054 4 0.001 0 312 3 322 6 388 42 6 24 421 0.76 0.049 20 0.000 5 0.356 7 0.006 4 0.052 6 0.000 9 310 3 310 6 310 38 7 19 348 0.58 0.049 80 0.000 5 0.362 8 0.006 8 0.052 9 0.000 9 313 3 314 6 324 41 8 44 794 0.60 0.049 50 0.000 5 0.365 6 0.005 4 0.053 6 0.000 7 311 3 316 5 356 31 9 24 416 0.73 0.048 60 0.000 5 0.365 4 0.007 4 0.054 5 0.001 0 306 3 316 6 390 41 10 27 458 0.73 0.049 50 0.000 5 0.363 0 0.006 1 0.053 1 0.000 8 312 3 314 5 335 35 11 16 297 0.60 0.049 20 0.000 5 0.359 1 0.007 1 0.052 9 0.001 0 310 3 312 6 326 43 12 33 567 0.75 0.049 50 0.000 5 0.362 7 0.005 7 0.053 1 0.000 8 312 3 314 5 332 33 13 22 378 0.73 0.049 10 0.000 5 0.367 5 0.007 0 0.054 3 0.001 0 309 3 318 6 385 41 14 19 347 0.62 0.049 50 0.000 5 0.357 5 0.006 5 0.052 4 0.000 9 311 3 310 6 302 39 15 16 300 0.57 0.048 90 0.000 5 0.368 6 0.007 9 0.054 7 0.001 1 308 3 319 7 399 46 16 23 432 0.46 0.048 50 0.000 5 0.361 4 0.006 8 0.054 0 0.001 0 305 3 313 6 372 40 17 25 458 0.52 0.049 20 0.000 5 0.366 1 0.006 3 0.053 9 0.000 9 310 3 317 5 367 37 18 26 395 1.17 0.049 70 0.000 5 0.369 4 0.006 9 0.053 9 0.001 0 313 3 319 6 368 40 19 15 258 0.58 0.051 40 0.000 5 0.376 2 0.007 6 0.053 0 0.001 0 323 3 324 7 330 44 20 16 284 0.62 0.049 80 0.000 5 0.364 0 0.007 1 0.053 0 0.001 0 313 3 315 6 328 42 21 14 255 0.55 0.049 30 0.000 5 0.367 5 0.007 5 0.054 1 0.001 0 310 3 318 6 374 43 22 22 402 0.65 0.048 60 0.000 5 0.361 1 0.006 2 0.053 9 0.000 9 306 3 313 5 365 36 23 19 358 0.46 0.049 00 0.000 5 0.356 1 0.006 6 0.052 7 0.000 9 308 3 309 6 318 39 24 16 305 0.47 0.049 00 0.000 5 0.358 2 0.006 6 0.053 0 0.000 9 308 3 311 6 330 40 15DX60(石英闪长岩) 1 18 301 0.71 0.052 00 0.000 3 0.395 3 0.007 1 0.055 1 0.000 9 327 4 338 6 416 38 2 40 672 0.73 0.052 50 0.000 3 0.414 7 0.003 3 0.057 3 0.000 4 330 4 352 3 504 17 3 20 349 0.66 0.052 00 0.000 3 0.377 3 0.004 2 0.052 7 0.000 6 326 4 325 4 315 25 4 25 410 0.69 0.052 50 0.000 3 0.464 7 0.004 4 0.064 3 0.000 6 330 4 388 4 750 21 5 13 230 0.61 0.053 10 0.000 3 0.390 4 0.006 5 0.053 3 0.000 9 334 4 335 6 341 38 6 25 440 0.68 0.052 30 0.000 3 0.377 6 0.004 0 0.052 4 0.000 5 328 4 325 3 302 24 7 19 317 0.71 0.052 70 0.000 4 0.398 7 0.007 1 0.054 9 0.000 9 331 5 341 6 407 38 8 36 605 0.74 0.052 80 0.000 4 0.400 3 0.003 4 0.055 0 0.000 4 332 5 342 3 410 16 9 16 283 0.70 0.052 60 0.000 4 0.389 1 0.005 1 0.053 6 0.000 7 331 5 334 4 356 28 10 17 308 0.57 0.052 20 0.000 4 0.382 3 0.004 4 0.053 1 0.000 6 328 4 329 4 335 24 11 38 634 0.82 0.052 90 0.000 3 0.391 1 0.003 1 0.053 6 0.000 4 332 4 335 3 354 17 12 13 233 0.56 0.052 20 0.000 3 0.389 9 0.008 4 0.054 2 0.001 1 328 4 334 7 379 47 13 22 399 0.63 0.052 20 0.000 3 0.385 4 0.004 1 0.053 5 0.000 5 328 4 331 4 351 22 14 19 343 0.74 0.051 80 0.000 3 0.374 1 0.004 5 0.052 4 0.000 6 325 4 323 4 304 28 15 26 451 0.77 0.052 40 0.000 3 0.386 5 0.003 4 0.053 5 0.000 5 329 4 332 3 350 20 16 14 251 0.66 0.052 60 0.000 3 0.387 4 0.005 2 0.053 5 0.000 7 330 4 332 4 349 30 17 21 372 0.81 0.052 60 0.000 3 0.383 5 0.004 1 0.052 9 0.000 6 331 4 330 4 323 24 18 36 618 0.94 0.053 40 0.000 3 0.395 7 0.003 1 0.053 8 0.000 4 335 4 339 3 362 18 19 31 555 0.77 0.050 00 0.000 3 0.499 0 0.012 5 0.072 5 0.001 6 314 4 411 10 999 45 20 16 284 0.64 0.052 60 0.000 4 0.392 0 0.006 3 0.054 1 0.000 8 330 4 336 5 374 35 21 22 391 0.79 0.052 40 0.000 4 0.383 5 0.003 9 0.053 1 0.000 5 329 5 330 3 332 21 22 21 369 0.7 0.052 90 0.000 3 0.415 4 0.005 0 0.056 9 0.000 7 332 4 353 4 488 27 23 20 366 0.69 0.052 50 0.000 4 0.388 7 0.004 6 0.053 7 0.000 6 330 5 333 4 356 26 24 28 496 0.77 0.052 60 0.000 3 0.380 8 0.003 3 0.052 5 0.000 4 330 4 328 3 308 18 25 15 274 0.63 0.052 80 0.000 3 0.387 0 0.007 1 0.053 1 0.001 0 332 4 332 6 334 41 26 21 387 0.56 0.052 80 0.000 3 0.383 0 0.004 2 0.052 7 0.000 6 331 4 329 4 314 24 27 26 460 0.66 0.053 30 0.000 3 0.388 9 0.005 0 0.052 9 0.000 7 335 4 334 4 326 28 表 2 内蒙古锡林浩特跃进侵入岩锆石Hf同位素组成
Table 2. Zircon Hf isotopic compositions for zircons of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) 2σ TDMC(Ma) fLu/Hf 14XL08.1(花岗闪长岩) 1 325 0.051 138 0.001 466 0.282 700 0.000 019 3.9 0.7 1 367 -0.96 2 329 0.049 792 0.001 438 0.282 801 0.000 022 7.6 0.8 1 040 -0.96 4 326 0.052 908 0.001 429 0.282 745 0.000 021 5.5 0.8 1 223 -0.96 5 326 0.069 126 0.001 735 0.282 716 0.000 021 4.4 0.7 1 322 -0.95 6 328 0.037 139 0.001 056 0.282 810 0.000 021 7.9 0.7 1 006 -0.97 7 325 0.094 467 0.002 565 0.282 766 0.000 025 6.0 0.9 1 178 -0.92 10 331 0.078 992 0.002 114 0.282 789 0.000 020 7.0 0.7 1 089 -0.94 11 332 0.037 981 0.001 109 0.282 798 0.000 021 7.6 0.7 1 040 -0.97 14 329 0.065 050 0.001 951 0.282 870 0.000 019 9.9 0.7 829 -0.94 15 328 0.039 972 0.001 166 0.282 732 0.000 023 5.2 0.8 1 258 -0.96 16 332 0.036 044 0.001 136 0.282 755 0.000 016 6.1 0.6 1 177 -0.97 18 329 0.050 115 0.001 455 0.282 792 0.000 018 7.3 0.6 1 069 -0.96 20 328 0.057 107 0.001 626 0.282 799 0.000 020 7.5 0.7 1 050 -0.95 24 330 0.041 242 0.001 165 0.282 777 0.000 020 6.8 0.7 1 110 -0.96 14XL09.1(花岗闪长岩) 1 322 0.035 400 0.001 111 0.282 821 0.000 018 8.2 0.6 980 -0.97 2 320 0.057 173 0.001 552 0.282 718 0.000 019 4.4 0.7 1 318 -0.95 3 320 0.023 396 0.000 715 0.282 791 0.000 017 7.2 0.6 1 070 -0.98 4 319 0.048 622 0.001 454 0.282 790 0.000 022 7.0 0.8 1 087 -0.96 6 319 0.046 919 0.001 318 0.282 836 0.000 019 8.6 0.7 937 -0.96 7 320 0.030 346 0.000 955 0.282 753 0.000 016 5.8 0.6 1 195 -0.97 8 318 0.041 447 0.001 350 0.282 802 0.000 018 7.4 0.6 1 050 -0.96 9 313 0.038 677 0.001 328 0.282 806 0.000 017 7.4 0.6 1 043 -0.96 10 319 0.031 643 0.001 068 0.282 833 0.000 014 8.5 0.5 945 -0.97 11 315 0.031 954 0.001 073 0.282 812 0.000 018 7.7 0.6 1 015 -0.97 12 318 0.034 080 0.001 141 0.282 720 0.000 012 4.5 0.4 1 307 -0.97 13 316 0.034 259 0.001 122 0.282 719 0.000 013 4.5 0.4 1 311 -0.97 14 319 0.046 926 0.001 513 0.282 752 0.000 015 5.6 0.5 1 211 -0.95 15 320 0.050 609 0.001 597 0.282 752 0.000 017 5.6 0.6 1 211 -0.95 18 320 0.051 634 0.001 487 0.282 747 0.000 018 5.5 0.6 1 224 -0.96 19 317 0.049 093 0.001 474 0.282 651 0.000 015 2.0 0.5 1 536 -0.96 20 319 0.021 763 0.000 752 0.282 752 0.000 014 5.8 0.5 1 196 -0.98 21 316 0.047 108 0.001 507 0.282 801 0.000 016 7.3 0.6 1 058 -0.95 23 319 0.044 156 0.001 407 0.282 764 0.000 017 6.1 0.6 1 170 -0.96 24 319 0.052 834 0.001 597 0.282 840 0.000 018 8.7 0.6 931 -0.95 14XL18.1(石英闪长岩) 2 312 0.047 975 0.001 726 0.282 836 0.000 022 8.4 0.8 953 -0.95 3 311 0.061 456 0.001 987 0.282 802 0.000 019 7.1 0.7 1 068 -0.94 4 313 0.034 771 0.001 330 0.282 855 0.000 021 9.2 0.7 885 -0.96 5 312 0.037 601 0.001 348 0.282 820 0.000 021 7.9 0.7 999 -0.96 8 311 0.032 861 0.001 289 0.282 863 0.000 016 9.4 0.6 861 -0.96 10 312 0.043 213 0.001 711 0.282 801 0.000 017 7.1 0.6 1 068 -0.95 14 311 0.030 456 0.001 261 0.282 774 0.000 017 6.3 0.6 1 146 -0.96 17 310 0.042 785 0.001 690 0.282 826 0.000 017 8.0 0.6 990 -0.95 18 313 0.041 057 0.001 570 0.282 798 0.000 016 7.1 0.6 1 072 -0.95 19 323 0.029 616 0.001 160 0.282 796 0.000 018 7.3 0.6 1 059 -0.97 21 310 0.033 151 0.001 264 0.282 812 0.000 016 7.6 0.6 1 026 -0.96 15DX60(石英闪长岩) 1 327 0.060 038 0.001 729 0.282 814 0.000 018 7.9 0.6 1 006 -0.95 3 326 0.057 414 0.001 626 0.282 785 0.000 018 6.9 0.6 1 099 -0.95 5 334 0.045 281 0.001 210 0.282 856 0.000 018 9.7 0.6 855 -0.96 6 328 0.056 495 0.001 406 0.282 787 0.000 016 7.1 0.6 1 086 -0.96 8 332 0.061 491 0.001 616 0.282 855 0.000 020 9.5 0.7 868 -0.95 9 331 0.039 834 0.001 166 0.282 791 0.000 019 7.3 0.7 1 065 -0.96 10 328 0.043 964 0.001 372 0.282 838 0.000 016 8.9 0.6 921 -0.96 11 332 0.054 540 0.001 483 0.282 819 0.000 019 8.3 0.7 978 -0.96 13 328 0.044 226 0.001 440 0.282 808 0.000 013 7.8 0.5 1 019 -0.96 14 325 0.044 280 0.001 371 0.282 765 0.000 016 6.2 0.6 1 158 -0.96 15 329 0.045 989 0.001 582 0.282 820 0.000 015 8.2 0.5 983 -0.95 16 330 0.037 070 0.001 334 0.282 782 0.000 013 6.9 0.5 1 098 -0.96 17 331 0.050 036 0.001 677 0.282 801 0.000 016 7.5 0.5 1 044 -0.95 18 335 0.070 227 0.002 212 0.282 813 0.000 017 7.9 0.6 1 011 -0.93 20 330 0.033 972 0.001 343 0.282 779 0.000 012 6.8 0.4 1 108 -0.96 21 329 0.043 470 0.001 446 0.282 837 0.000 016 8.9 0.6 924 -0.96 23 330 0.043 174 0.001 363 0.282 779 0.000 014 6.8 0.5 1 108 -0.96 24 330 0.046 520 0.001 383 0.282 723 0.000 016 4.8 0.5 1 287 -0.96 表 3 内蒙古锡林浩特跃进地区侵入岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Major (%) and trace elements (10-6) data of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
样品号 14XL08-1 14XL08-2 14XL08-3 14XL09-1 14XL09-2 14XL11-1 15DX55 15DX56 14XL13-1 15DX50 15DX51 14XL12-1 14XL17-1 14XL18-1 14XL18-2 15DX57 15DX58 15DX59 15DX60 岩性 花岗闪长岩 英云闪长岩 石英闪长岩 SiO2 66.93 67.05 67.00 64.96 66.21 64.28 65.48 64.46 65.69 62.51 62.14 61.32 62.26 61.26 57.05 61.03 62.74 60.70 62.58 Al2O3 14.75 15.18 14.63 15.74 14.58 16.58 15.72 15.72 16.29 14.91 15.96 15.98 15.68 18.14 16.81 15.57 15.99 16.08 16.25 Fe2O3 2.30 1.69 2.03 2.20 1.95 1.93 1.66 2.03 0.65 2.68 2.29 2.52 2.7 1.78 2.7 2.75 1.83 2.59 2.48 FeO 2.02 2.27 2.31 2.45 2.76 2.78 2.86 3.08 3.47 4.10 3.55 3.68 3.48 3.09 4.48 4.04 3.41 3.20 3.06 CaO 3.32 3.32 3.22 2.67 3.03 4.78 3.74 4.82 2.38 4.28 5.28 5.03 4.33 4.42 5.5 4.47 3.45 5.55 4.91 MgO 1.91 1.88 1.93 2.09 2.30 1.99 2.10 2.20 1.75 3.20 2.70 2.80 2.67 2.82 4.03 3.36 2.52 2.48 2.60 K2O 2.20 2.44 3.07 2.39 2.18 2.12 1.73 1.72 2.5 1.52 1.28 1.96 2.24 1.67 1.67 1.40 1.73 1.92 1.35 Na2O 4.11 3.61 3.21 3.74 3.60 3.64 3.74 3.65 4.19 2.98 3.35 3.28 3.15 3.76 3.67 3.41 4.18 3.92 3.62 TiO2 0.51 0.49 0.61 0.60 0.63 0.60 0.59 0.65 0.59 0.72 0.72 0.82 0.81 0.61 0.98 0.87 0.68 0.61 0.70 P2O5 0.17 0.14 0.16 0.15 0.15 0.15 0.17 0.21 0.17 0.21 0.18 0.19 0.21 0.14 0.29 0.22 0.17 0.19 0.19 MnO 0.10 0.09 0.10 0.09 0.10 0.10 0.09 0.11 0.094 0.15 0.12 0.13 0.13 0.1 0.11 0.14 0.11 0.12 0.12 LOI 1.47 1.58 1.49 2.66 2.20 0.75 1.80 1.02 1.84 2.28 2.04 1.88 1.95 1.87 2.2 2.30 2.81 2.29 1.78 Total 99.79 99.74 99.76 99.74 99.69 99.70 99.68 99.67 99.61 99.54 99.61 99.59 99.61 99.66 99.49 99.56 99.62 99.65 99.64 Mg# 49.50 51.00 49.50 49.70 51.70 48.00 50.30 48.50 47.50 50.80 50.20 49.70 48.70 55.80 55.00 52.00 51.10 48.50 50.70 Na2O/K2O 1.87 1.48 1.05 1.56 1.65 1.72 2.16 2.12 1.68 1.96 2.62 1.67 1.41 2.25 2.20 2.44 2.42 2.04 2.68 Cr 9.49 9.42 9.78 9.25 12.00 9.71 10.80 9.88 12.40 14.40 12.00 13.30 9.84 3.17 35.30 15.30 12.50 11.90 12.80 Ni 7.42 7.18 7.42 6.43 7.92 7.12 6.28 5.14 8.16 7.48 6.81 9.84 7.88 11.90 23.90 7.59 6.00 9.99 6.57 Co 10.90 10.00 11.00 11.90 13.00 12.50 11.20 13.50 15.30 18.40 16.70 17.60 15.70 15.20 23.70 18.40 14.30 14.80 15.40 Rb 58.90 57.70 78.00 61.60 60.40 53.20 55.10 59.50 33.50 57.90 43.30 59.40 58.9 49.7 38.10 55.00 71.80 68.30 49.70 Cs 4.90 4.40 4.21 10.80 7.16 3.46 5.86 3.76 2.33 3.58 2.54 2.02 1.90 11.10 6.23 6.41 6.00 2.96 3.86 Sr 248.00 204.00 220.00 252.00 190.00 252.00 404.00 336.00 293.00 310.00 348.00 262.00 267.00 401.00 252.00 362.00 299.00 279.00 382.00 Ba 314.00 409.00 591.00 371.00 380.00 444.00 347.00 359.00 326.00 284.00 292.00 376.00 540.00 288.00 343.00 283.00 348.00 458.00 339.00 Nb 4.75 4.56 8.31 6.27 6.62 5.24 5.12 6.27 6.04 7.00 6.26 6.26 6.32 5.05 7.78 8.11 8.90 5.94 6.36 Ta 0.41 0.43 1.21 0.64 0.66 0.45 0.34 0.44 0.45 0.44 0.50 0.52 0.36 0.47 0.63 0.62 1.03 0.37 0.44 Zr 118.00 129.00 125.00 98.10 124.00 131.00 140.00 156.00 115.00 134.00 133.00 134.00 179 91.1 174 172.00 108.00 116.00 144.00 Hf 3.72 3.94 3.98 3.28 4.04 4.00 3.88 4.28 3.55 3.76 3.79 4.02 5.21 2.87 4.89 4.74 3.11 3.36 4.00 U 1.67 1.24 1.52 1.62 1.64 1.19 1.05 1.04 1.20 0.75 1.32 1.34 0.86 0.95 2.07 2.01 1.38 1.06 1.56 Th 9.36 7.90 10.70 6.25 11.20 6.32 4.88 4.78 6.97 1.72 6.91 3.92 2.75 5.59 4.96 4.29 2.63 3.44 4.10 La 11.60 11.70 23.70 14.20 17.10 16.50 20.00 17.80 15.70 12.60 26.10 16.50 16.30 11.80 15.80 15.70 12.30 11.10 15.50 Ce 24.10 23.70 55.70 32.10 37.60 31.00 38.20 36.20 34.40 27.80 52.50 38.20 36.40 28.00 39.10 39.60 31.80 30.10 37.20 Pr 2.83 3.01 7.37 4.11 4.75 4.28 4.53 4.70 4.86 4.30 5.99 5.31 5.19 3.38 4.73 5.82 5.02 4.38 4.92 Nd 11.00 11.90 29.70 16.30 18.40 16.80 17.20 19.20 20.10 19.80 23.00 22.80 22.50 14.00 19.70 24.80 22.00 20.20 20.70 Sm 2.20 2.42 6.14 3.42 3.82 3.69 3.22 4.06 4.57 4.97 4.56 5.22 5.25 3.13 4.12 5.70 5.32 5.08 4.54 Eu 0.73 0.83 1.36 0.93 0.98 1.09 1.02 1.10 1.17 1.24 1.18 1.32 1.32 0.87 1.18 1.45 1.33 1.30 1.24 Gd 2.24 2.45 5.75 3.60 3.68 3.49 2.93 4.44 4.80 4.90 4.29 5.40 5.59 3.43 4.48 6.35 5.24 5.93 4.20 Tb 0.37 0.40 0.91 0.55 0.62 0.56 0.46 0.62 0.75 0.81 0.69 0.89 0.85 0.51 0.63 0.90 0.85 0.88 0.70 Dy 2.19 2.37 5.43 3.32 3.64 3.50 2.63 3.86 4.52 4.96 4.18 5.29 5.14 3.15 3.61 5.57 5.59 5.37 4.36 Ho 0.45 0.48 1.07 0.65 0.74 0.70 0.52 0.80 0.91 1.00 0.85 1.05 1.02 0.64 0.71 1.15 1.17 1.08 0.89 Er 1.35 1.44 3.08 1.84 2.18 2.05 1.46 2.26 2.62 2.76 2.45 3.00 2.89 1.79 1.95 3.27 3.37 2.97 2.52 Tm 0.22 0.23 0.46 0.30 0.34 0.31 0.22 0.35 0.40 0.42 0.38 0.45 0.44 0.28 0.28 0.57 0.53 0.45 0.39 Yb 1.56 1.59 3.07 2.13 2.35 2.07 1.52 2.54 2.66 2.58 2.58 2.98 2.82 1.84 1.89 3.52 3.51 3.21 2.75 Lu 0.28 0.29 0.49 0.35 0.40 0.34 0.23 0.36 0.44 0.40 0.38 0.47 0.45 0.3 0.31 0.52 0.50 0.43 0.40 Y 12.50 13.40 28.10 16.70 19.80 18.50 13.20 20.10 23.90 24.40 21.60 27.80 27.4 17.1 18.3 29.40 30.50 26.90 22.80 A/CNK 0.97 1.04 1.01 1.16 1.06 0.98 1.06 0.95 1.17 1.04 0.97 0.96 1.01 1.13 0.94 1.02 1.06 0.86 0.99 ΣREE 61.12 62.81 144.23 83.80 96.60 86.38 94.14 98.29 97.90 88.54 129.13 108.88 106.16 73.12 98.49 114.92 98.53 92.48 100.31 δEu 1.01 1.04 0.70 0.81 0.80 0.93 1.02 0.79 0.760 0.77 0.82 0.76 0.74 0.81 0.84 0.74 0.77 0.72 0.87 表 4 内蒙古锡林浩特跃进侵入岩Sr-Nd同位素组成
Table 4. Sr-Nd isotopic compositions of Yuejin intrusive rocks, Xilinhot, Inner Mongolia
样品 87Rb/86Sr 87Sr/86Sr ± 2σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ± 2σ (143Nd/144Nd)i εNd(t) TDM(t) 花岗闪长岩 14XL08-1 0.687 131 0.707 092 0.000 007 0.703 9 0.126 479 0.512 640 0.000 005 0.512 368 3.0 844 14XL08-2 0.818 354 0.707 559 0.000 005 0.703 7 0.128 605 0.512 677 0.000 005 0.512 401 3.6 793 14XL09-1 0.707 240 0.707 344 0.000 007 0.704 1 0.132 687 0.512 633 0.000 007 0.512 356 2.5 875 14XL09-2 0.919 831 0.708 250 0.000 005 0.704 1 0.131 291 0.512 675 0.000 010 0.512 401 3.4 804 石英闪长岩 14XL12-1 0.655 923 0.706 909 0.000 007 0.703 8 0.144 785 0.512 633 0.000 005 0.512 320 2.1 918 14XL18-1 0.358 557 0.706 405 0.000 016 0.704 8 0.141 386 0.512 657 0.000 008 0.512 370 2.6 863 英云闪长岩 14XL13-1 0.330 740 0.705 528 0.000 004 0.704 0 0.143 784 0.512 669 0.000 003 0.512 358 2.8 857 -
[1] Badarch, G., Gunningham, W.D., Windley, B.F., 2002.A New Terrane Subdivision for Mongolia:Implications for the Phanerozoic Crustal Growth of Central Asia.Journal of Asian Earth Sciences, 21(1):87-110. https://doi.org/10.1016/S1367-9120(02)00017-2 [2] Bao, Q.Z., Zhang, C.J., Wu, Z.L., et al., 2007a.SHRIMP U-Pb Zircon Geochronology of a Carboniferous Quartz-Diorite in Baiyingaole Area, Inner Mongolia and Its Implications.Journal of Jilin University(Earth Science Edition), 37(1):15-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200701002.htm [3] Bao, Q.Z., Zhang, C.J., Wu, Z.L., et al., 2007b.Zircon SHRIMP U-Pb Dating of Granitoids in a Late Paleozoic Rift Area, Southeastern Inner Mongolia, and Its Implications.Geology in China, 34(5):790-798(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200705004.htm [4] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46:605-626. https://doi.org/10.1016/S0024-4937(98)00085-1 [5] Barker, F., 1979. Trondhjemite: Definition, Environment and Hypothesis of Origin. In: Trondhjemite, D., ed., Dacites and Related Rocks. Elsevier, Amsterdam, 1-12. https: //doi. org/10. 1016/B978-0-444-41765-7. 50006-X [6] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [7] Blight, J.H.S., Crowley, Q.G., Petterson, M.G., et al., 2010.Granites of the Southern Mongolia Carboniferous Arc:New Geochronological and Geochemical Constraints.Lithos, 116:35-52. https://doi.org/10.1016/j.lithos.2010.01.001 [8] Brown, G.C., Thorpe, R.S., Webb, P.C., 1984.The Geochemical Characteristics of Granitoids in Contrasting Arc and Comments on Magma Source.Journal of the Geological Society, 141(3):413-426. https://doi.org/10.1144/gsjgs.141.3.0413 [9] Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34:245-257. https://doi.org/10.1016/j.jseaes.2008.05.007 [10] Chen, B., Jahn, B.M., Wilde, S., et al., 2000.Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China:Petrogenesis and Tectonic Implications.Tectonophysics, 328:157-182. https://doi.org/10.1016/S0040-1951(00)00182-7 [11] Chen, B., Ma, X.H., Liu, A.K., et al., 2009.Zircon U-Pb Ages of the Xilinhot Metamorphic Complex and Blueschist, and Implications for Tectonic Evolution of the Solonker Suture.Acta Petrologica Sinica, 25(12):3123-3129(in Chinese with English abstract). http://www.oalib.com/paper/1471736 [12] Chen, B., Xu, B., 1996.The Main Characteristics and Tectonic Implications of Two Kinds of Paleozoic Granitoids in Sunidzuqi, Central Inner Mongolia.Acta Petrologica Sinica, 12(4):49-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB604.003.htm [13] Chen, B., Zhao, G.C., Wilde, S., 2001.Subduction-and Collision-Related Granitoids from Southern Sonidzuoqi, Inner Mongolia:Isotopic Ages and Tectonic Implications.Geological Review, 47(4):361-367(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104005.htm [14] Cheng, Y.H., Li, Y.F., Li, M., et al., 2014.Geochronology and Petrogenesis of the Alkaline Pluton in Dong Ujimqi, Inner Mongolia and Its Tectonic Implications.Acta Geologica Sinica, 88(11):2086-2096 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201411006.htm [15] Cheng, Y.H., Teng, X.J., Xin, H.T., et al., 2012.SHRIMP Zircon U-Pb Dating of Granites in Mahonondor Area, East Ujimqin Banner, Inner Mongolia.Acta Petrologica et Mineralogica, 31(3):323-334(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201203004.htm [16] Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015.Magmatic Arc and Ocean-Continent Transition:Discussion.Geological Review, 61(3):473-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201503001.htm [17] Deng, J. F., Luo Z. H., Su, S. G., et al., 2004. Petrogenesis, Tectonic Setting and Mineralization. Geological Publishing House, Beijing (in Chinese with English abstract). [18] Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007.Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion.Geological Journal of China Universities, 13(3):392-402(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200703004.htm [19] Ge, M.C., Zhou, W.X., Yu, Y., et al., 2011.Dissolution and Supracrustal Rocks Dating of Xilin Gol Complex, Inner Mongolia, China.Earth Science Frontiers, 18(5):182-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201105017.htm [20] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS.Geological Bulletin of China, 30(10):1508-1513(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201110005.htm [21] Gorton, M.P., Schandl, E.V., 2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 [22] Hao, X., Xu, B., 1997.Sm-Nd, Rb-Sr Isotopic Geochronology of the Xilin Gol Complex, Inner Mongolia, China.Geological Review, 43(1):101-105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP199701015.htm [23] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.In:Coward, M.P., Reis, A.C., eds., Collision Tectonics.Geological Society of London Special Publications, 19:67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04 [24] Hong, D.W., Huang, H.Z., Xiao, Y.J., et al., 1994.The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance.Acta Geologica Sinica, 68(3):219-230(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0743954794900175 [25] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000.Genesis of Positive εNd(t) Granitoids in the Da Hinggan Mts.-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm [26] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2003.Correlation between Continental Crustal Growth and the Super-continental Cycle:Evidence from the Granites with Positive εNd(t) in the Central Asian Orogenic Belt.Acta Geologica Sinica, 77(2):203-209(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200302015.htm [27] Hong, D.W., Zhang, J.S., Wang, T., et al., 2004.Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt.Journal of Asian Earth Science, 23:799-813. https://doi.org/10.1016/S1367-9120(03)00134-2 [28] Hu, C.S., Li, W.B., Xu, C., et al., 2015.Geochemistry and Zircon U-Pb-Hf Isotopes of the Granitoids of Baolidao and Halatu Plutons in Sonidzuoqi Area, Inner Mongolia:Implications for Petrogenesis and Geodynamic Setting.Journal of Asian Earth Sciences, 97(B):294-306. https://doi.org/10.1016/j.jseaes.2014.07.030 [29] Jahn, B.M., Capdevila, R., Liu, D.Y., et al., 2004.Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth.Journal of Asian Earth Sciences, 23(5):629-653. https://doi.org/10.1016/S1367-9120(03)00125-1 [30] Jahn, B.M., Wu, F.Y., Chen, B., 2000.Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic.Episodes, 23(2):82-92. http://www.mendeley.com/research/massive-granitoid-generation-central-asia-nd-isotope-evidence-implication-continental-growth-phanero/ [31] Jian, P., Kröner, A., Windly, B.F., et al., 2012.Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China):A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite".Lithos, 142-143:48-66. https://doi.org/10.1016/j.lithos.2012.03.007 [32] Jian, P., Liu, D.Y., Kröner, A., et al., 2008.Time Scale of the Early to Mid-Paleozoic Orogenic Cycle of the Longlived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for Continental Growth.Lithos, 101(3-4):233-259. https://doi.org/10.1016/j.lithos.2007.07.005 [33] Jian, P., Liu, D.Y., Kröner, A., et al., 2010.Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia.Lithos, 118(1-2):169-190. https://doi.org/10.1016/j.lithos.2010.04.014 [34] Kang, J.L., Xiao, Z.B., Wang, H.C., et al., 2016.Late Paleozoic Subduction of the Paleo-Asian Ocean:Geochronological and Geochemical Evidence from the Meta-Basic Volcanics of Xilinhot, Inner Mongolia.Acta Geologica Sinica, 90(2):383-397 (in Chinese with English abstract). http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=2015226&flag=1 [35] Khain, E.V., Bibikova, E.V., Kröner, A., et al., 2002.The Most Ancient Ophiolite of the Central Asian Fold Belt:U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications.Earth and Planetary Science Letters, 199(3-4):311-325. https://doi.org/10.1016/S0012-821X(02)00587-3 [36] Khain, E.V., Bibikova, E.V., Salnikova, E.B., et al., 2003.The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochronologic Data and Palaeotectonic Reconstructions.Precambrian Research, 122(1-4):329-358. https://doi.org/10.1016/S0301-9268(02)00218-8 [37] Kröner, A., Demoux, A., Zack, T., et al., 2011.Zircon Ages for a Felsic Volcanic Rock and Arc-Related Early Palaeozoic Sediments on the Margin of the Baydrag Microcontinent, Central Asian Orogenic Belt, Mongolia.Journal of Asian Earth Sciences, 42(5):1008-1017. https://doi.org/10.1016/j.jseaes.2010.09.002 [38] Kröner, A., Kovach, V., Belousova, E., et al., 2014.Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt.Gondwana Research, 25(1):103-125. https://doi.org/10.1016/j.gr.2012.12.023 [39] Kröner, A., Lehmann, J., Schulmann, K., et al., 2010.Lithostratigraphic and Geochronological Constrains on the Evolution of the Central Asian Orogenic Belt in SW Mongolia:Early Paleozoic Rifting Followed by Late Paleozoic Accretion.American Journal of Science, 310(1):523-574. https://doi.org/10.2475/07.2010.01 [40] Kröner, A., Windley, B.F., Badarch, G., 2007.Accretionary Growth and Crust-Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield.Geological Society of America Memoir, 200:181-209. doi: 10.1130/2007.1200(11) [41] Le Maitre, R. W., Bateman, P., Dudek, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford. [42] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al., 2010.Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China.Acta Petrologica Sinica, 26(7):2131-2140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007016.htm [43] Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 26(3-4):207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [44] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007.Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates.Acta Petrologica Sinica, 23(3):565-582(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200703006.htm [45] Li, K., Zhang, Z.C., Feng, Z.S., et al., 2014.Zircon SHRIMP U-Pb Dating and Its Geological Significance of the Late-Carboniferous to Early-Permian Volcanic Rocks in Bayanwula Area, the Central of Inner Mongolia.Acta Petrologica Sinica, 30(7):2041-2054(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407017.htm [46] Li, K., Zhang, Z.C., Feng, Z.S., et al., 2015.Two-Phase Magmatic Events during Late Paleozoic in the North of the Central Inner Mongolia-Da Hinggan Orogenic Belt and Its Tectonic Significance.Acta Geologica Sinica, 89(2):272-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201502006.htm [47] Li, W.G., Li, Q.F., Jiang, W.D., et al., 1996.Stratigraphy(Lithostratic) of Inner Mongol Autonomous Region.China University of Geosciences Press, Wuhan, 119-120 (in Chinese). [48] Li, Y.L., Zhou, H.W., Brouwer, F.M., et al., 2011.Tectonic Significance of the Xilin Gol Complex, Inner Mongolia, China:Petrological, Geochemical and U-Pb Zircon Age Constraints.Journal of Asian Earth Sciences, 42(5):1018-1029. https://doi.org/10.1016/j.jseaes.2010.09.009 [49] Li, Y.L., Zhou, H.W., Brouwer, F.M., et al., 2014.Nature and Timing of the Solonker Suture of the Central Asian Orogenic Belt:Insights from Geochronology and Geochemistry of Basic Intrusions in the Xilin Gol Complex, Inner Mongolia, China.International Journal of Earth Sciences, 103(1):41-60. https://doi.org/10.1007/s00531-013-0931-3 [50] Liu, J.F., Chi, X.G., Zhang, X.Z., et al., 2009.Geochemical Characteristic of Carboniferous Quartz-Diorite in the Southern Xiwuqi Area, Inner Mongolia and Its Tectonic Significance.Acta Geologica Sinica, 83(3):365-376(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200903006.htm [51] Liu, J.F., Li, J.Y., Chi, X.G., et al., 2013.A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia:Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin.Lithos, 177:285-296. https://doi.org/10.1016/j.lithos.2013.07.008 [52] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537 -571. https://doi.org/10.1093/petrology/egp082 [53] Ludwig, K.R., 2003.Users Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 4:1-71. https://www.mendeley.com/research-papers/users-manual-isoplot-300-geochronological-toolkit-microsoft-excel/ [54] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606 [55] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [56] Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia.Nature, 364:299-307. https://doi.org/10.1038/364299a0 [57] Shao, J.A., He, G.Q., Tang, K.D., 2015.The Evolution of Permian Continental Crust in Northern Part of North China.Acta Petrologica Sinica, 31(1):47-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501003.htm [58] Shao, J.A., Tang, K.D., He, G.Q., 2014.Early Permian Tectono-Paleogeographic Reconstruction of Inner Mongolia, China.Acta Petrologica Sinica, 30(7):1858-1866(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407002.htm [59] Shao, J.A., Tang, K.D., Wang, C.Y., et al., 1991.The Tectonic Characters of Nadanhada Massif and Its Evolution.Science in China(Series B), 21(7):744-751(in Chinese). [60] Shi, G.H., Liu, D.Y., Zhang, F.Q., et al., 2003.SHRIMP Zircon Geochronology and Its Significance of Xilin Gol Complex, Inner Mongolia, China.Chinese Science Bulliten, 48(20):2187-2192(in Chinese). [61] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in Oceanic Basins.Geological Society Special Publication, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 [62] Tang, K.D., 1992.Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margins of Sino-Korean Plate.Peking University Press, Beijing, 305(in Chinese with English abstract). [63] Tong, Y., Jahn, B.M., Wang, T., et al., 2015.Permian Alkaline Granites in the Erenhot-Hegenshan Belt, Northern Inner Mongolia, China:Model of Generation, Time of Emplacement and Regional Tectonic Significance.Journal of Asian Earth Sciences, 97(Part B):320-336. https://doi.org/10.1016/j.jseaes.2014.10.011 [64] Wang, Q., Liu, X.Y., Li, J.Y., 1991.Plate Tectonics between Cathaysia and Angaraland in China.Peking University Press, Beijing, 151(in Chinese with English abstract). [65] Wang, S.Q., Xin, H.T., Hu, X.J., et al., 2016.Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia.Earth Science, 41(4):555-569(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604001.htm [66] Wang, T., Jahn, B.M., Kovach, P.V., et al., 2009.Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt.Lithos, 110(1-4):359-372. https://doi.org/10.1016/j.lithos.2009.02.001 [67] Windley, B.F., Alexelev, D., Xiao, W.J., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of Geological Society, 164:31-47. https://doi.org/10.1144/0016-76492006-022 [68] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1-2):89-113. https://doi.org/10.1016/S0040-1951(00)00179-7 [69] Wu, F.Y., Sun, D.Y., Lin, Q., 1999.Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China.Acta Petrologica Sinica, 15(2):181-189(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB902.003.htm [70] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069-1090. https://doi.org/10.1029/2002TC001484 [71] Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364. https://doi.org/10.1016/j.gr.2012.05.015 [72] Xu, B., Charvet, J., Zhang, F.Q., 2001.Primary Study on Petrology and Geochronology of Blueschists in Sunitezuoqi, Northern Inner Mongolia.Chinese Journal of Geology, 36(4):424-434(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX200104005.htm [73] Xu, B., Chen, B., 1997.Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia.Science China Earth Sciences, 27(3):227-232 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg199705002&dbname=CJFD&dbcode=CJFQ [74] Xu, B., Chen, B., Shao, J.A., 1996.Sm-Nd, Rb-Sr Study of Xilin Gol Complex, Inner Mongolia.Chinese Science Bulletin, 41(2):153-155(in Chinese). [75] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt(XMOB).Acta Petrologica Sinica, 30(7):1841-1857(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407001.htm [76] Xu, B., Zhao, P., Wang, Y.Y., et al., 2015.The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China.Journal of Asian Earth Sciences, 97(Part B):183-196. https://doi.org/10.1016/j.jseaes.2014.07.020 [77] Xu, L.Q., Ju, W.X., Liu, C., et al., 2012.Sr-Yb Classification and Genesis of Late Carboniferous Granites in Arenshaobu Area of Erenhot, Inner Mongolia.Geological Bulletin of China, 31(9):1410-1419(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201209006.htm [78] Xu, Y.G., Wu, X.Y., Luo, Z.Y., et al., 2007.Zircon Hf Isotope Compositions of Middle Jurassic-Early Cretaceous Intrusions in Shandong Province and Its Implications.Acta Petrologica Sinica, 23(2):307-316(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702012.htm [79] Xue, H.M., Guo, L.J., Hou, Z.Q., et al., 2009.The Xilingele Complex from the Eastern Part of the Central Asian-Mongolia Orogenic Belt, China:Products of Early Variscan Orogeny other than Ancient Block:Evidence from Zircon SHRIMP U-Pb Ages.Acta Petrologica Sinica, 25(8):2001-2010(in Chinese with English abstract). http://www.oalib.com/paper/1471963 [80] Xue, H.M., Guo, L.J., Hou, Z.Q., et al., 2010.SHRIMP Zircon U-Pb Ages of the Middle Neopaleozoic Unmetamorphosed Magmatic Rocks in the Southwestern Slope of the Da Hinggan Mountains, Inner Mongolia.Acta Petrologica et Mineralogica, 29(6):811-823(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201006016.htm [81] Yang, G., Xiao, L., Wang, G.C., et al., 2015.Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar.Earth Science, 40(3):548-562 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201503014.htm [82] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [83] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm [84] Zhang, Q., Wang, Y., Xiong, X.L., 2008.Adakite and Granite:Challenge and Opportunity.China Land Press, Beijing (in Chinese with English abstract). [85] Zhang, S.H., Zhao, Y., Kröner, A., et al., 2009.Early Permian Plutons from the Northern North China Block:Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt.International Journal of Earth Sciences, 98(6), 1441-1467. https://doi.org/10.1007/s00531-008-0368-2 [86] Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2016.Different Sources Involved in Generation of Continental Arc Volcanism:The Carboniferous-Permian Volcanic Rocks in the Northern Margin of the North China Block.Lithos, 240-243:382-401. https://doi.org/10.1016/j.lithos.2015.11.027 [87] Zhang, S.H., Zhao, Y., Song, B., et al., 2007.Carboniferous Granitic Plutons from the Northern Margin of the North China Block:Implications for a Late Palaeozoic Active Continental Margin.Journal of the Geological Society, 164(2):451-463. https://doi.org/10.1144/0016-76492005-190 [88] Zhang, X.H., Yuan, L.L., Xue, F.H., et al., 2015.Early Permian A-Type Granites from Central Inner Mongolia, North China:Magmatic Tracer of Post-Collisional Tectonics and Oceanic Crustal Recycling.Gondwana Research, 28(1):311-327. https://doi.org/10.1016/j.gr.2014.02.011 [89] Zhang, Y.Q., Xu, L.Q., Kang, X.L., et al., 2009.Age Dating of Alkali Granite in Jingesitai Area of Dong Ujimqin Banner, Inner Mongolia, and Its Significance.Geology in China, 36(5):988-995 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dizi200905006.htm [90] Zhao, P., Xu, B., Tong, Q., et al., 2016.Sedimentological and Geochronological Constraints on the Carboniferous Evolution of Central Inner Mongolia, Southeastern Central Asian Orogenic Belt:Inland Sea Deposition in a Post-Orogenic Setting.Gondwana Research, 31:253-270. https://doi.org/10.1016/j.gr.2015.01.010 [91] Zhou, W. X., 2012. Studies of Geochronology and Geochemistry of Paleozoic Magmatism in Xilinhot Area, Inner Mongolia (Dissertation). China University of Geosciences, Wuhan, 69-72(in Chinese with English abstract). [92] Zhou, W.X., Ge, M.C., 2013.Redefinition and Significance of Metamorphism Xilinhot Group in Xilinhot Area, Inner Mongolia, China.Earth Science, 38(4):715-724(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201304006.htm [93] Zhu, Y.F., Sun, S.H., Mao, Q., et al., 2004.Geochemistry of the Xilingele Complex, Inner Mongolia:A Historic Record from Rodinia Accretion to Continental Collision after Closure of the Paleo-Asian Ocean.Geological Journal of China Universities, 10(3):343-355(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200403004.htm [94] 鲍庆中, 张长捷, 吴之理, 等, 2007a.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报(地球科学版), 37(1):15-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz200701002&dbname=CJFD&dbcode=CJFQ [95] 鲍庆中, 张长捷, 吴之理, 等, 2007b.内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义.中国地质, 34(5):790-798. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200705004&dbname=CJFD&dbcode=CJFQ [96] 陈斌, 马星华, 刘安坤, 等, 2009.锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索仑缝合带演化的意义.岩石学报, 25(12):3123-3129. http://www.oalib.com/paper/1471450 [97] 陈斌, 徐备, 1996.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义.岩石学报, 12(4):49-64. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19960469&journal_id=ysxb [98] 陈斌, 赵国春, Wilde, S., 2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义.地质论评, 47(4):361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005 [99] 程银行, 李艳锋, 李敏, 等, 2014.内蒙古东乌旗碱性侵入岩的时代、成因及地质意义.地质学报, 88(11):2086-2096. http://d.g.wanfangdata.com.cn/Periodical_dizhixb201411006.aspx [100] 程银行, 滕学建, 辛后田, 等, 2012.内蒙古东乌旗狠麦温都尔花岗岩SHRIMP锆石U-Pb年龄及其地质意义.岩石矿物学杂志, 31(3):323-334. http://www.oalib.com/paper/4337885 [101] 邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质论评, 61(3):473-484. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201503001.htm [102] 邓晋福, 罗照华, 苏尚国, 等, 2004.岩石成因、构造环境与成矿作用.北京:地质出版社. [103] 邓晋福, 肖庆辉, 苏尚国, 等, 2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3):392-402. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxdx200703004&dbname=CJFD&dbcode=CJFQ [104] 葛梦春, 周文孝, 于洋, 等, 2011.内蒙古锡林郭勒杂岩解体及表壳岩系年代确定.地学前缘, 18(5):182-195. https://www.cnki.com.cn/qikan-DXQY201105017.html [105] 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 [106] 郝旭, 徐备, 1997.内蒙古锡林浩特锡林郭勒杂岩的原岩年代和变质年代.地质论评, 43(1):101-105. http://d.wanfangdata.com.cn/Periodical/OA000002527 [107] 洪大卫, 黄怀曾, 肖宜君, 等, 1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报, 68(3):219-230. http://www.oalib.com/paper/4874630 [108] 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200002016&dbname=CJFD&dbcode=CJFQ [109] 洪大卫, 王式洸, 谢锡林, 等, 2003.从中亚正εNd(t)值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200302015&dbname=CJFD&dbcode=CJFQ [110] 康健丽, 肖志斌, 王惠初, 等, 2016.内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据.地质学报, 90(2):383-397. http://www.cqvip.com/QK/95080X/201602/667927999.html [111] 李怀坤, 朱士兴, 相振群, 等, 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报, 26(7):2131-2140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007015 [112] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3):565-582. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20070354&year_id=2007&quarter_id=3&falg=1 [113] 李可, 张志诚, 冯志硕, 等, 2014.内蒙古中部巴彦乌拉地区晚石炭世-早二叠世火山岩锆石SHRIMPU-Pb定年及其地质意义.岩石学报, 30(7):2041-2054. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407017.htm [114] 李可, 张志诚, 冯志硕, 等, 2015.兴蒙造山带中段北部晚古生代两期岩浆活动及其构造意义.地质学报, 89(2):272-288. http://www.oalib.com/paper/4874839 [115] 李文国, 李庆富, 姜万德, 等, 1996.内蒙古自治区岩石地层.武汉:中国地质大学出版社, 119-120. [116] 刘建峰, 迟效国, 张兴洲, 等, 2009.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义.地质学报, 83(3):365-376. http://d.wanfangdata.com.cn/Periodical_dizhixb200903006.aspx [117] 邵济安, 何国琦, 唐克东, 2015.华北北部二叠纪陆壳演化.岩石学报, 31(1):47-55. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20150103&journal_id=ysxb&year_id=2015 [118] 邵济安, 唐克东, 何国琦, 2014.内蒙古早二叠世构造古地理的再造.岩石学报, 30(7):1858-1866. http://mall.cnki.net/magazine/Article/YSXB201407002.htm [119] 邵济安, 唐克东, 王成源, 等, 1991.那丹哈达地体的构造特征及演化.中国科学(B辑):化学生命科学, 21(7):744-751. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jbxk199107010&dbname=CJFD&dbcode=CJFQ [120] 施光海, 刘敦一, 张福勤, 等, 2003.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义.科学通报, 48(20):2187-2192. doi: 10.3321/j.issn:0023-074X.2003.20.017 [121] 唐克东, 1992.中朝板块北侧褶皱带构造演化及成矿规律.北京:北京大学出版社, 305. [122] 王荃, 刘雪亚, 李锦轶, 1991.中国华夏与安加拉古陆间的板块构造.北京:北京大学出版社, 151. [123] 王树庆, 辛后田, 胡晓佳, 等, 2016.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 41(4):555-569. http://www.earth-science.net/WebPage/Article.aspx?id=3274 [124] 吴福元, 孙德有, 林强, 1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报, 15(2):181-189. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19990236&journal_id=ysxb [125] 徐备, 陈斌, 邵济安, 1996.内蒙古锡林郭勒杂岩Sm-Nd, Rb-Sr同位素年代研究.科学通报, 41(2):153-155. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199602015.htm [126] 徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学:地球科学, 27(3):227-232. https://www.wenkuxiazai.com/doc/722d0fbf9ec3d5bbfd0a74a7.html [127] 徐备, Charvet, J., 张福勤, 2001.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究.地质科学, 36(4):424-434. http://www.cqvip.com/qk/94066X/200104/5910909.html [128] 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7):1841-1857. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140701&journal_id=ysxb&year_id=2014 [129] 许立权, 鞠文信, 刘翠, 等, 2012.内蒙古二连浩特北部阿仁绍布地区晚石炭世花岗岩Sr-Yb分类及其成因.地质通报, 31(9):1410-1419. http://www.oalib.com/paper/1473353 [130] 徐义刚, 巫祥阳, 罗震宇, 等, 2007.山东中侏罗世-早白垩世侵入岩的锆石Hf同位素组成及其意义.岩石学报, 23(2):307-316. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20070233&journal_id=ysxb&year_id=2007 [131] 薛怀民, 郭利军, 侯增谦, 等, 2009.中亚-蒙古造山带东段的锡林郭勒杂岩:早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据.岩石学报, 25(8):2001-2010. http://d.wanfangdata.com.cn/Periodical_ysxb98200908023.aspx [132] 薛怀民, 郭利军, 侯增谦, 等, 2010.大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学.岩石矿物学杂志, 29(6):811-823. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yskwxzz201006016 [133] 杨钢, 肖龙, 王国灿, 等, 2015.西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义.地球科学, 40(3):548-562. http://www.earth-science.net/WebPage/Article.aspx?id=3236 [134] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200609238 [135] 张旗, 王焰, 熊小林, 2008.埃达克岩和花岗岩:挑战与机遇.北京:中国大地出版社. [136] 张玉清, 许立权, 康小龙, 等, 2009.内蒙古东乌珠穆沁旗京格斯台碱性花岗岩年龄及意义.中国地质, 36(5):988-995. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200905006&dbname=CJFD&dbcode=CJFQ [137] 周文孝, 2012. 内蒙古锡林浩特地区古生代岩浆作用的年代学与地球化学研究(博士学位论文). 武汉: 中国地质大学, 69-72. [138] 周文孝, 葛梦春, 2013.内蒙古锡林浩特地区中元古代锡林浩特岩群的厘定及其意义.地球科学, 38(4):715-724. http://www.earth-science.net/WebPage/Article.aspx?id=2747 [139] 朱永峰, 孙世华, 毛骞, 等, 2004.内蒙古锡林格勒杂岩的地球化学研究:从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录.高校地质学报, 10(3):343-355. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200403005