Chronology and Tectonic Implications of Neoproterozoic Volcanics from Chiniot Deposit, Pakistan
-
摘要: 罗迪尼亚超大陆的裂解及与之相关的吉尼奥德玢岩型铁矿的形成是目前研究的热点,对安山岩锆石进行了U-Pb年龄、Hf同位素和微量元素分析.所有锆石都属岩浆成因,具有一致的稀土配分型式以及明显的Ce正异常、Eu负异常和重稀土元素富集特征.锆石年龄主要分为两组,分别为947.8±4.0 Ma和883.0±5.1 Ma,代表两期安山岩的成岩年龄,指示安山岩为两期岩浆活动的混合产物;此外,捕获的基底锆石年龄为1 523.0±66 Ma,属于中元古代.εHf(t)值变化范围较大(-4.67~+13.10),指示其为壳幔物质混合的产物.安山岩产生于罗迪尼亚超大陆时期,是由高温幔源岩浆通过底侵作用,使得中元古代花岗质岩石组成的下地壳发生熔融,壳幔熔体混合形成的,与伸展裂谷有关的构造热事件及地幔柱的活动有着密切关系.吉尼奥德铁矿与凯特里铜矿在成矿地质背景方面具有诸多相似性,暗示其有大型IOCG型矿床的成矿潜力.在960~880 Ma期间,印度板块西北部与华北-刚果-圣弗朗西斯科板块可能连接在一起.Abstract: This is a hotpoint that the study the breakup of Rodinia supercontinent and the formation of Chiniot iron oxide-apatite deposit, we report zircon U-Pb ages, Hf isotopic composition and REE contents of andesite. All the zircons are magmatic origin with the similar REE patterns which are enriched in HREE with a positive Ce anomaly and a negative Eu anomaly. The zircon U-Pb isotopic analyses yields 206Pb/238U ages of 947.8±4.0 Ma and 883.0±5.1 Ma, which can be interpreted as the crystallization ages of two stages of andesites. Besides, the inherited zircons with U-Pb age of 1 523.0±66 Ma may indicate a Mesoproterozoic basement. The igneous zircons have highly variable εHf(t) values ranging from -4.67 to +13.10, indicating that the andesites were derived from partial melting of a mixed mantle sourse. The geochemical and isotopic variation suggest that mantle-derived basic magmas have went through some degree of crustal commination during migration through Mesoproterozoic granitoids. The formation of the andesites were induced by a series of tectono-thermal events, associated with extensional rift and mantle plume during Rodinia supercontinent. There are many similarities between Chiniotiron deposit and Khetri Copper Belt in geological setting of ore-forming processes, indicating that the metallogenetic potentiality of giant IOCG is very well. The northwest of Indian craton may have connection with North China-Congo-São Francisco craton between 960 Ma and 880 Ma.
-
Key words:
- Pakistan /
- andesite /
- mantle-derived /
- extensional rift /
- Rodinia supercontinent /
- geochronology /
- petrology
-
图 6 吉尼奥德安山岩中锆石稀土元素球粒陨石标准化配分模式图
Fig. 6. Chondrite-normalized REE patterns of zircons from Chiniot andesite
图 7 吉尼奥德安山岩锆石(Sm/La)N vs. La判别图解
灰色区域:Boggy Plainzoned pluton的岩浆和热液锆石分布范围(Hoskin,2005); 据Kirkland et al.(2009)修改
Fig. 7. Discrimination plots of chondrite-normalized Sm/La ratio vs. La of Chiniot andesite zircons
表 1 吉尼奥德安山岩锆石LA-ICP-MS U-Pb年代学测试结果
Table 1. LA-ICP-MS U-Pb isotopic compositions of zircons for Chiniot andesite
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) 谐和度 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 16PA-01 435 464 0.94 0.070 4 0.002 1 1.558 2 0.046 8 0.157 8 0.001 9 938.9 59.3 953.8 18.6 944.4 10.7 99% 16PA-02 272 339 0.80 0.072 0 0.002 4 1.578 9 0.048 6 0.157 8 0.002 2 987.0 66.7 962.0 19.2 944.3 12.2 98% 16PA-03 159 173 0.92 0.073 7 0.003 1 1.646 6 0.071 4 0.162 2 0.002 7 1 031.5 87.0 988.3 27.4 968.8 15.0 98% 16PA-04 519 525 0.99 0.070 2 0.002 4 1.549 2 0.050 9 0.157 6 0.002 1 1 000.0 73.2 950.2 20.3 943.7 11.4 99% 16PA-05 45 57 0.79 0.068 2 0.005 9 1.600 4 0.106 3 0.159 2 0.004 6 873.8 179.6 970.4 41.5 952.2 25.8 98% 16PA-06 198 342 0.58 0.068 3 0.002 8 1.493 3 0.056 9 0.157 7 0.002 3 875.9 87.0 927.7 23.2 943.8 13.0 98% 16PA-07 1160 583 1.99 0.066 6 0.002 1 1.466 5 0.044 7 0.157 7 0.002 1 833.3 61.0 916.7 18.4 943.8 11.9 97% 16PA-08 133 595 0.22 0.067 1 0.002 9 1.554 5 0.055 7 0.162 4 0.002 6 842.6 88.9 952.3 22.2 970.3 14.5 98% 16PA-10 186 757 0.25 0.069 4 0.002 5 1.530 9 0.054 1 0.157 8 0.001 8 922.2 73.3 942.8 21.7 944.4 9.9 99% 16PA-11 153 245 0.63 0.094 1 0.003 8 3.620 4 0.135 0 0.275 0 0.005 1 1 510.8 75.9 1 554.0 29.7 1 566.0 25.7 99% 16PA-12 413 458 0.90 0.069 0 0.002 7 1.523 7 0.077 2 0.157 7 0.003 1 898.2 86.1 940.0 31.1 944.2 17.2 99% 16PA-13 357 461 0.78 0.067 7 0.002 2 1.381 4 0.048 3 0.146 8 0.002 2 861.1 68.5 881.0 20.6 882.9 12.5 99% 16PA-15 232 534 0.44 0.067 1 0.002 1 1.363 0 0.043 7 0.146 5 0.002 1 838.9 66.7 873.1 18.8 881.3 12.1 99% 16PA-16 376 289 1.30 0.094 8 0.002 6 3.559 8 0.100 8 0.271 7 0.003 8 1 524.1 51.9 1 540.6 22.5 1 549.7 19.4 99% 16PA-17 306 468 0.65 0.070 1 0.002 2 1.420 6 0.046 8 0.146 3 0.002 3 931.5 64.8 897.6 19.7 880.3 13.0 98% 16PA-18 460 535 0.86 0.069 4 0.001 7 1.408 9 0.035 0 0.147 1 0.002 0 909.3 51.9 892.7 14.8 884.7 11.2 99% 16PA-19 335 385 0.87 0.069 0 0.002 2 1.400 6 0.042 0 0.146 7 0.001 8 898.2 64.0 889.2 17.8 882.7 9.9 99% 16PA-20 277 317 0.87 0.095 0 0.002 7 3.481 1 0.094 0 0.265 3 0.003 7 1 528.7 53.7 1522.9 21.3 1516.9 18.9 99% 表 2 吉尼奥德安山岩锆石稀土元素分析结果(10-6)
Table 2. Rare earth element (10-6) data of zircons for Chiniot andesite
测点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu δEu δCe ∑REE LREE/HREE 16PA-01 0.06 15.25 0.45 11.54 16.91 3.23 118.06 38.93 475.33 179.74 759.92 153.49 1 389.16 232.20 0.162 9.96 3 394.26 0.014 16PA-02 0.31 15.51 0.41 5.32 11.79 2.03 68.36 23.72 295.59 112.68 482.85 101.98 933.16 159.14 0.171 8.98 2 212.86 0.016 16PA-03 0.71 25.53 0.33 6.29 10.48 2.32 64.54 21.38 272.11 104.13 463.67 101.93 994.03 187.42 0.209 12.84 2 254.86 0.021 16PA-04 0.90 24.13 0.76 12.50 24.13 2.85 139.48 45.73 572.62 212.61 899.18 182.75 1 581.89 273.34 0.118 6.71 3 972.87 0.017 16PA-05 0.29 32.48 0.06 0.79 4.68 1.80 20.23 6.48 79.61 28.76 137.65 34.83 358.46 73.96 0.482 56.22 780.08 0.054 16PA-06 0.01 12.49 0.07 2.71 3.32 1.40 16.97 6.70 92.75 41.94 238.14 67.16 815.94 188.11 0.463 50.18 1 487.70 0.014 16PA-07 0.27 105.00 1.36 20.47 30.08 7.76 143.59 44.17 515.59 187.53 817.33 176.16 1 648.31 297.43 0.299 22.19 3 995.07 0.043 16PA-08 0.03 3.07 0.21 2.94 7.55 0.44 71.06 25.78 314.13 114.45 486.21 100.27 918.33 155.39 0.038 4.34 2 199.86 0.007 16PA-10 0.24 8.04 0.34 2.74 11.03 1.65 92.97 38.81 510.64 175.96 721.34 148.77 1 323.80 227.57 0.109 5.78 3 263.90 0.007 16PA-11 0.13 23.19 0.27 4.56 11.63 1.55 78.58 24.43 311.12 120.59 529.44 114.26 1 039.62 185.62 0.117 22.07 2 445.00 0.017 16PA-12 2.21 74.69 2.26 13.05 10.52 3.66 45.50 17.28 213.17 85.31 446.10 113.93 1 274.24 267.31 0.435 7.37 2 569.23 0.043 16PA-13 0.24 20.15 0.27 3.41 9.77 1.21 57.55 21.39 286.23 108.49 485.47 103.23 968.87 171.14 0.121 17.19 2 237.43 0.016 16PA-15 0.36 8.92 0.77 6.32 13.95 2.53 47.38 12.69 114.42 36.67 152.60 33.66 381.21 73.90 0.271 3.03 885.39 0.039 16PA-16 0.96 138.69 0.47 5.92 11.60 1.75 59.34 22.46 286.47 113.28 523.86 118.96 1 174.24 205.44 0.166 50.15 2 663.46 0.064 16PA-17 0.76 16.80 0.96 11.65 16.49 2.24 92.55 38.05 458.43 173.49 785.64 171.08 1 613.61 272.53 0.138 4.12 3 654.29 0.014 16PA-18 0.14 19.75 0.34 9.04 21.23 2.28 124.82 44.49 531.59 200.99 877.82 190.20 1 731.93 290.67 0.105 15.30 4 045.29 0.013 16PA-19 1.30 16.90 0.70 7.86 13.24 2.27 85.81 27.12 338.57 127.22 552.66 113.93 1 062.94 177.21 0.155 4.30 2 527.73 0.017 16PA-20 0.11 57.14 0.73 11.93 23.68 4.02 116.90 36.54 437.20 166.56 729.25 159.37 1 527.51 262.17 0.192 23.05 3 533.10 0.028 表 3 吉尼奥德安山岩锆石Lu-Hf同位素组成
Table 3. Zircon Lu-Hf isotopic compositions for the Chiniot andesite
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ εHf(0) εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf 16PA-01 948 0.039 999 0.001 5 0.282 193 0.000 017 -20.5 -0.47 1 513 1 726 -0.95 16PA-02 948 0.028 189 0.001 1 0.282 169 0.000 014 -21.3 -1.04 1 529 1 757 -0.97 16PA-03 948 0.018 261 0.000 7 0.281 689 0.000 018 -38.3 -17.80 2 171 2 670 -0.98 16PA-04 948 0.032 286 0.001 4 0.282 473 0.000 016 -10.6 9.50 1 114 1 178 -0.96 16PA-05 948 0.030 862 0.001 1 0.282 138 0.000 014 -22.4 -2.19 1 575 1 820 -0.97 16PA-06 948 0.004 009 0.000 1 0.282 354 0.000 017 -14.8 6.10 1 240 1 365 -1.00 16PA-07 948 0.008 419 0.000 4 0.282 531 0.000 017 -8.5 12.22 1 003 1 027 -0.99 16PA-08 948 0.016 916 0.000 8 0.282 457 0.000 016 -11.1 9.34 1 118 1 186 -0.98 16PA-09 1523 0.034 658 0.001 3 0.281 955 0.000 016 -28.9 4.02 1 837 1 952 -0.96 16PA-10 883 0.030 309 0.001 1 0.282 179 0.000 015 -21.0 -2.12 1 517 1 765 -0.97 16PA-11 883 0.040 152 0.001 6 0.282 337 0.000 018 -15.4 3.23 1 311 1 471 -0.95 16PA-12 883 0.006 677 0.000 3 0.282 318 0.000 012 -16.0 3.31 1 294 1 467 -0.99 16PA-13 883 0.040 720 0.001 6 0.282 114 0.000 016 -23.3 -4.67 1 626 1 904 -0.95 16PA-14 1523 0.040 086 0.001 6 0.282 051 0.000 019 -25.5 7.12 1 717 1 783 -0.95 16PA-15 883 0.025 434 0.001 0 0.282 190 0.000 016 -20.6 -1.64 1 496 1 739 -0.97 16PA-16 948 0.026 902 0.001 1 0.281 739 0.000 014 -36.5 -16.27 2 125 2 587 -0.97 16PA-17 948 0.025 834 0.001 1 0.282 569 0.000 014 -7.2 13.10 970 978 -0.97 16PA-18 948 0.039 073 0.001 5 0.282 211 0.000 013 -19.8 0.21 1 486 1 688 -0.96 16PA-19 948 0.025 073 0.001 0 0.282 416 0.000 012 -12.6 7.75 1 181 1 274 -0.97 16PA-20 948 0.016 708 0.000 6 0.282 163 0.000 013 -21.5 -1.00 1 521 1 755 -0.98 -
[1] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622.doi: 10.1007/s00410-002-0364-7 [2] Biju-Sekhar, S., Yokoyama, K., Pandit, M.K., et al., 2003.Late Paleoproterozoic Magmatism in Delhi Fold Belt, NW India and its Implication:Evidence from EPMA Chemical Ages of Zircons.Journal of Asian Earth Sciences, 22(2):189-207.doi: 10.1016/s1367-9120(02)00188-8 [3] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260.doi: 10.1007/s004100050278 [4] Boger, S., 2000.Neoproterozoic Deformation in the Radok Lake Region of the Northern Prince Charles Mountains, East Antarctica; Evidence for a Single Protracted Orogenic Event.Precambrian Research, 104(1-2):1-24.doi: 10.1016/s0301-9268(00)00079-6 [5] Bolhar, R., Weaver, S.D., Whitehouse, M.J., et al., 2008.Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand).Earth and Planetary Science Letters, 268(3-4):312-324.doi: 10.1016/j.epsl.2008.01.022 [6] Choudhary, A.K., Gopalan, K., Sastry, C.A., 1984.Present Status of the Geochronology of the Precambrian Rocks of Rajasthan.Tectonophysics, 105(1-4):131-140.doi: 10.1016/0040-1951(84)90199-9 [7] Correa-Gomes, L.C., Oliveira, E.P., 2000.Radiating 1.0 Ga Mafic Dyke Swarms of Eastern Brazil and Western Africa:Evidence of Post-Assembly Extension in the Rodinia Supercontinent? Gondwana Research, 3(3):325-332.doi: 10.1016/s1342-937x(05)70291-4 [8] Crawford, A.R., Compston, W., 1973.The Age of the Cuddapah and Kurnool Systems, Southern India.Journal of the Geological Society of Australia, 19(4):453-464.doi: 10.1080/00167617308728813 [9] Dalziel, I.W.D., 1997.OVERVIEW:Neoproterozoic-Paleozoic Geography and Tectonics:Review, Hypothesis, Environmental Speculation.Geological Society of America Bulletin, 109(1):16-42.doi:10.1130/0016-7606(1997)109 < 0016:onpgat > 2.3.co; 2 [10] Dalziel, I.W.D., Soper, N. J., 2001.Neoproterozoic Extension on the Scottish Promontory of Laurentia:Paleogeographic and Tectonic Implications.The Journal of Geology, 109(3):299-317.doi: 10.1086/319974 [11] Davies, R.G., Crawford, A.R., 1971.Petrography and Age of the Rocks of Bulland Hill, Kirana Hills, Sarghoda District, West Pakistan.Geological Magazine, 108(3):235.doi: 10.1017/s001675680005158x [12] Deb, M., Sarkar, S.C., 1990.Proterozoic Tectonic Evolution and Metallogenesis in the Aravalli-Delhi Orogenic Complex, Northwestern India.Precambrian Research, 46(1-2):115-137.doi: 10.1016/0301-9268(90)90069-3 [13] Deb, M., 2001.Zircon U-Pb and Galena Pb Isotope Evidence for an Approximate 1.0 Ga Terrane Constituting the Western Margin of the Aravalli-Delhi Orogenic Belt, Northwestern India.Precambrian Research, 108(3-4):195-213.doi: 10.1016/s0301-9268(01)00134-6 [14] Delpomdor, F., Linnemann, U., Boven, A., et al., 2013.Depositional Age, Provenance, and Tectonic and Paleoclimatic Settings of the Late Mesoproterozoic-Middle Neoproterozoic Mbuji-Mayi Supergroup, Democratic Republic of Congo.Palaeogeography, Palaeoclimatology, Palaeoecology, 389:4-34.doi: 10.1016/j.palaeo.2013.06.012 [15] Eby, G.N., Kochhar, N., 1990.Geochemistry and Petrogenesis of the Malani Igneous Suite, North Peninsular India.Journal Geological Society of India, 36(36):109-130. doi: 10.1007/s12594-013-0122-7 [16] Evans, D.A.D., Heaman, L.M., Trindade, R.I.F., et al., 2010.Precise U-Pb Baddeleyite Ages from Neoproterozoic Mafic Dykes in Bahia, Brazil, and Their Paleomagnetic/Paleogeographic Implications.Abstract, GP31E-07.American Geophysical Union, Joint Assembly, Meeting of the Americas, Iguassu Falls, August 2010. [17] Evans, D.A.D., Trindade, R.I.F., Catelani, E.L., et al., 2015.Return to Rodinia? Moderate to High Palaeolatitude of the São Francisco/Congo Craton at 920 Ma.Geological Society, London, Special Publications, 424(1):167-190.doi: 10.1144/sp424.1 [18] Farah, A., 1973.Example of Application of Geophysical Techniques in Determining Geological Environment of a Coal Deposit.Geological Society of America Bulletin, 84(7):2435.doi:10.1130/0016-7606(1973)84 < 2435:eoaogt > 2.0.co; 2 [19] Farah, A., DeJong, K.A., 1979.Geodynamics of Pakistan.Geological Survey of Pakistan, Quetta.5-24. [20] Fisher, C.M., Vervoort, J.D., Hanchar, J.M., 2014.Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of these Data.Chemical Geology, 363:125-133.doi: 10.1016/j.chemgeo.2013.10.019 [21] Franssen, L., André, L., 1988.The Zadinian Group (late Proterozoic, Zaire) and its Bearing on the Origin of the West-Congo Orogenic Belt.Precambrian Research, 38(3):215-234.doi: 10.1016/0301-9268(88)90003-4 [22] Gopalan, K., Trivedi, J.R., Balasubramanyam, M.N., et al., 1979.Rb-Sr Chronology of the Khetri Copper Belt, Rajasthan.Journal of the Geological Society of India, 20:450-456. doi: 10.1007%2FBF02716727.pdf [23] Groves, D.I., Bierlein, F.P., Meinert, L.D., et al., 2010.Iron Oxide Copper-Gold (IOCG) Deposits through Earth History:Implications for Origin, Lithospheric Setting, and Distinction from other Epigenetic Iron Oxide Deposits.Economic Geology, 105(3):641-654.doi: 10.2113/gsecongeo.105.3.641 [24] Heaman, L., 1991.U-Pb Dating of Giant Radiating Dyke Swarms:Potential for Global Correlation of Mafic Magmatic Events.International Symposium on Mafic Dykes.São Paulo, Brazil, Extended Abstracts, 3o Congresso Brasileira De GeoquÍMica-Lo Congresso De GeoquÍMica Dos PaÍSes De LÍNgua Portuguesa, 7-9. [25] Hoskin, P.W.O., 2005.Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia.Geochimica et Cosmochimica Acta, 69(3):637-648.doi: 10.1016/j.gca.2004.07.006 [26] Hoskin, P.W.O., Ireland, T.R., 2000.Rare Earth Element Chemistry of Zircon and its Use as a Provenance Indicator.Geology, 28(7):627-630.doi:10.1130/0091-7613(2000)028 < 0627:reecoz > 2.3.co; 2 [27] Hoskin, P.W.O., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62.doi: 10.2113/0530027 [28] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008a.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093.doi: 10.1039/b804760j [29] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2008b.A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry.Journal of Analytical Atomic Spectrometry, 23(9):1192.doi: 10.1039/b803934h [30] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012a.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391.doi: 10.1039/c2ja30078h [31] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012b.A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis.Spectrochimica Acta Part B Atomic Spectroscopy, 78(78):50-57. https://www.sciencedirect.com/science/article/pii/S058485471200331X [32] Johnson, S. P., De Waele, B., Evans, D., et al., 2007.Geochronology of the Zambezi Supracrustal Sequence, Southern Zambia:A Record of Neoproterozoic Divergent Processes along the Southern Margin of the Congo Craton.The Journal of Geology, 115(3):355-374.doi: 10.1086/512757 [33] Johnson, S.P., Rivers, T., De Waele, B., 2005.A Review of the Mesoproterozoic to Early Palaeozoic Magmatic and Tectonothermal History of South-Central Africa:Implications for Rodinia and Gondwana.Journal of the Geological Society, 162(3):433-450.doi: 10.1144/0016-764904-028 [34] Kaur, P., Chaudhri, N., Okrusch, M., et al., 2006.Palaeoproterozoic A-Type Felsic Magmatism in the Khetri Copper Belt, Rajasthan, Northwestern India:Petrologic and Tectonic Implications.Mineralogy and Petrology, 87(1-2):81-122.doi: 10.1007/s00710-005-0118-0 [35] Kazmi, A.H., Rana, R.A., 1982.Tectonic Map of Pakistan at a Scale of 1:200, 000.Geological Survey of Pakistan, Quetta. [36] Kelly, N., 2002.A Two-Stage Evolution of the Neoproterozoic Rayner Structural Episode:New U-Pb Sensitive High Resolution Ion Microprobe Constraints from the Oygarden Group, Kemp Land, East Antarctica.Precambrian Research, 116(3-4):307-330.doi: 10.1016/s0301-9268(02)00028-1 [37] Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983.doi: 10.1126/science.1136154 [38] Kirkland, C.L., Whitehouse, M.J., Slagstad, T., 2009.Fluid-Assisted Zircon and Monazite Growth within a Shear Zone:A Case Study from Finnmark, Arctic Norway.Contributions to Mineralogy and Petrology, 158(5):637-657.doi: 10.1007/s00410-009-0401-x [39] Knight, J., Lowe, J., Joy, S., et al., 2002.The Khetri Copper Belt, Rajasthan:Iron Oxide Copper-Gold Terrane in the Proterozoic of the NW India.In:Porter, T.M., ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits a Global Perspective.Australian Mineral Foundation, 2:321-341. http://trove.nla.gov.au/work/32241234 [40] Kouyaté, D., Söderlund, U., Youbi, N., et al., 2013.U-Pb Baddeleyite and Zircon Ages of 2 040 Ma, 1 650 Ma and 885 Ma on Dolerites in the West African Craton (Anti-Atlas Inliers):Possible Links to Break-Up of Precambrian Supercontinents.Lithos, 174:71-84.doi: 10.1016/j.lithos.2012.04.028 [41] Kröener, A., 2000.Age and Magmatic History of the Antananarivo Block, Central Madagascar, as Derived from Zircon Geochronology and Nd Isotopic Systematics.American Journal of Science, 300(4):251-288.doi: 10.2475/ajs.300.4.251 [42] Kumar, R., Virdi, N.S., 1997.Evolution of Inter-Montane Kargil Basin (Oligo-Miocene), Ladakh Himalaya:A Sedimentological Approach.Journal of Geological Society of India, 49(6):675-686. https://www.sciencedirect.com/science/article/pii/S1631068315002316 [43] Lin GuangChun, Li, X.H., Li WuXian, 2007.SHRIMP U-Pb Zircon Age, Geochemistry and Nd-Hf Isotope of Neoproterozoic Mafic Dyke Swarms in Western Sichuan:Petrogenesis and Tectonic Significance.Science in China Series D:Earth Sciences, 50(1):1-16.doi: 10.1007/s11430-007-2018-0 [44] Li, Z., 2003.Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume that Broke up Rodinia.Precambrian Research, 122(1-4):85-109.doi: 10.1016/s0301-9268(02)00208-5 [45] Lin, C.X., 1984.Geology and Mineral Introduction of Pakistan.Geology-Geochemistry, 1:61-63 (in Chinese). [46] Liu, S., Hu, R.Z., Gao, S., et al., 2012.U-Pb Zircon Age, Geochemical and Sr-Nd Isotopic Data as Constraints on the Petrogenesis and Emplacement Time of the Precambrian Mafic Dyke Swarms in the North China Craton (NCC).Lithos, 140-141:38-52.doi: 10.1016/j.lithos.2012.01.002 [47] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082 [48] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004 [49] Lu, P.R., Yao, W.G., Zhang, H.D., et al., 2016.Metallogenic Setting, Genetic Types and Geological Features of Main Metallic Deposits in Pakistan.Geological Science and Technology Information, 35(4):150-157 (in Chinese with English abstract). doi: 10.1007/s00531-004-0383-x [50] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00.A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronological Center Spec.Publ.No.4. [51] McCourt, S., Hanson, R., Key, R., 2006.Mesoproterozoic Orogenic Belts in Southern and Central Africa.Journal of African Earth Sciences, 46(1-2):v-xi.doi: 10.1016/j.jafrersci.2006.05.002 [52] Mezger, K., Cosca, M.A., 1999.The Thermal History of the Eastern Ghats Belt (India) as Revealed by U-Pb and 40Ar/39Ar Dating of Metamorphic and Magmatic Minerals:Implications for the SWEAT Correlation.Precambrian Research, 94(3-4):251-271.doi: 10.1016/s0301-9268(98)00118-1 [53] Mishra, D.C., Singh, B., Tiwari, V.M., et al., 2000.Two Cases of Continental Collisions and Related Tectonics during the Proterozoic Period in India-Insights from Gravity Modelling Constrained by Seismic and Magnetotelluric Studies.Precambrian Research, 99(3-4):149-169.doi: 10.1016/s0301-9268(99)00037-6 [54] Pandit, M.K., Khatatneh, M.K., 1998.Geochemical Constraints on Anorogenic Felsic Plutonism in North Delhi Fold Belt, Western India.Gondwana Research, 1(2):247-255.doi: 10.1016/s1342-937x(05)70835-2 [55] Paulsson, O., Andreasson, P.G., 2002.Attempted Break-Up of Rodinia at 850 Ma:Geochronological Evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides.Journal of the Geological Society, 159(6):751-761.doi: 10.1144/0016-764901-156 [56] Peng, P., 2015.Precambrian Mafic Dyke Swarms in the North China Craton and their Geological Implications.Science China Earth Sciences, 58(5):649-675.doi: 10.1007/s11430-014-5026-x [57] Peng, P., Bleeker, W., Ernst, R.E., et al., 2011a.U-Pb Baddeleyite Ages, Distribution and Geochemistry of 925 Ma Mafic Dykes and 900 Ma Sills in the North China Craton:Evidence for a Neoproterozoic Mantle Plume.Lithos, 127(1-2):210-221.doi: 10.1016/j.lithos.2011.08.018 [58] Peng, P., Zhai MingGuo, Li Qiuli, et al., 2011b.Neoproterozoic (~900 Ma) Sariwon Sills in North Korea:Geochronology, Geochemistry and Implications for the Evolution of the South-Eastern Margin of the North China Craton.Gondwana Research, 20(1):243-254.doi: 10.1016/j.gr.2010.12.011 [59] Porada, H., Berhorst, V., 2000.Towards a New Understanding of the Neoproterozoic-Early Palæozoic Lufilian and Northern Zambezi Belts in Zambia and the Democratic Republic of Congo.Journal of African Earth Sciences, 30(3):727-771.doi: 10.1016/s0899-5362(00)00049-x [60] Ray, S.K., 1990.The Albitite Line of Northern Rajasthan-A Fossil Intracontinental Rift Zone.Journal of Geological Society of India, 36(4):413-423. [61] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1-2):123-138.doi: 10.1016/s0009-2541(01)00355-2 [62] Sen, S., 1981.Proterozoic Palaeotectonics in the Evolution of Crust and Location of Metalliferous Deposits, Rajasthan.Quart.J.Geol.Min.Metall.Soc.India, 53:162-185. doi: 10.1007/BF00240560 [63] Shah, S.M.I., 1977.Stratigraphy of Pakistan.Memoirs of the Geological Survey of Pakistan, 12, 138. [64] Singh, S.P., 1988.Sedimentation Patterns of the Proterozoic Delhi Supergroup, Northeastern Rajasthan, India, and their Tectonic Implications.Sedimentary Geology, 58(1):79-94.doi: 10.1016/0037-0738(88)90007-3 [65] Sinha-Roy, S., 2000.Precambrian Metallotects and Mineralization Types in Rajasthan:Their Relation to Crustal Evolution.In:Deb, M., ed., Crustal Evolution and Metallogeny in the Northwestern Indian Shield.Narosa Publishing House, New Delhi, 217-239. [66] Sivaraman, T.V., Raval, U., 1995.U-Pb Isotopic Study of Zircons from a Few Granitoids of Delhi-Aravalli Belt.Journal of Geological Society of India, 46(5):461-475. doi: 10.1186/BF03352508 [67] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19 [68] Tack, L., 2001.Early Neoproterozoic Magmatism (1000â% C2% 80"910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo):Onset of Rodinia Rifting at the Western Edge of the Congo Craton.Precambrian Research, 110(1-4):277-306.doi: 10.1016/s0301-9268(01)00192-9 [69] Torsvik, T., Smethurst, M., Meert, J., et al., 1996.Continental Break-Up and Collision in the Neoproterozoic and Palaeozoic-A Tale of Baltica and Laurentia.Earth-Science Reviews, 40(3-4):229-258.doi: 10.1016/0012-8252(96)00008-6 [70] Unrug, R., 1998.Rodinia to Gondwana:The Geodynamic Map of Gondwana Supercontinent Assembly.Journal of African Earth Sciences, 26(2):Ⅸ.doi: 10.1016/s0899-5362(97)83550-6 [71] Vijaya Rao, V., Rajendra Prasad, B., Reddy, P.R., et al., 2000.Evolution of Proterozoic Aravalli Delhi Fold Belt in the Northwestern Indian Shield from Seismic Studies.Tectonophysics, 327(1-2):109-130.doi: 10.1016/s0040-1951(00)00156-6 [72] Wang, C., Zhang, J.H., Li, M., et al., 2015.Generation of Ca.900-870 Ma Bimodal Rifting Volcanism along the Southwestern Margin of the Tarim Craton and its Implications for the Tarim-North China Connection in the Early Neoproterozoic.Journal of Asian Earth Sciences, 113:610-625.doi: 10.1016/j.jseaes.2015.08.002 [73] Wang, X.L., Jiang, S.Y., Dai, B.Z., et al., 2011.Age, Geochemistry and Tectonic Setting of the Neoproterozoic (ca 830 Ma) Gabbros on the Southern Margin of the North China Craton.Precambrian Research, 190(1-4):35-47.doi: 10.1016/j.precamres.2011.08.004 [74] Wendorff, M., Key, R.M., 2009.The Relevance of the Sedimentary History of the Grand Conglomerat Formation (Central Africa) to the Interpretation of the Climate during a Major Cryogenian Glacial Event.Precambrian Research, 172(1-2):127-142.doi: 10.1016/j.precamres.2009.03.013 [75] Woodhead, J., Hergt, J., Shelley, M., et al., 2004.Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation.Chemical Geology, 209(1-2):121-135.doi: 10.1016/j.chemgeo.2004.04.026 [76] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Application in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm [77] Wu, L.S., 2010.Tectonics and Regional Mineralization of the Islamic Republic of Pakistan.Mineral Deposits, 29(1):192-194 (in Chinese). [78] Zhang, S.H., Zhao, Y., Ye, H., et al., 2016.Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton.Precambrian Research, 272:203-225.doi: 10.1016/j.precamres.2015.11.005 [79] 林传仙, 1984.巴基斯坦地质和矿产简介.地质地球化学, 1:61-63. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzdq198401018&dbname=CJFD&dbcode=CJFQ [80] 吕鹏瑞, 姚文光, 张海迪, 等, 2016.巴基斯坦成矿地质背景、主要金属矿产类型及其特征.地质科技情报, 35(4):150-157. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201604024&dbname=CJFD&dbcode=CJFQ [81] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200702002&dbname=CJFD&dbcode=CJFQ [82] 吴良士, 2010.巴基斯坦伊斯兰共和国地质构造与区域成矿.矿床地质, 29(1):192-194. http://www.docin.com/p-504314390.html