Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits
-
摘要: 锂辉石矿床是锂矿的重要类型,但曾经因为开采成本高于盐湖提锂而被停止勘查.近年来随着新兴产业快速发展对锂的需求成倍增长,对锂辉石的重新开采已经成为锂资源的重要来源.通过对国内外7个大型超大型锂辉石矿床一些成矿特点的归纳总结,认为大规模的锂辉石成矿作用总是伴有一定的特殊性,如:伟晶岩型的锂辉石矿床可以产出在基性岩而不局限于花岗岩、片麻岩、片岩等常见的围岩中;锂辉石在伟晶岩中可以是粗晶的,也可以是细晶的;含锂辉石的伟晶岩脉可以是分带性良好的,也可以是分带性很差的;矿脉的形态可以是简单的板状体也可以是极其复杂的;成矿时代可以老到太古宙也可以晚到新生代;成矿构造环境可以是稳定的地台区也可以是构造活跃的喜马拉雅造山带.从容矿围岩特殊性、成矿时代特殊性、构造背景特殊性、矿化分带特殊性等方面探讨了大型超大型锂辉石矿床的找矿方向,指出,在找矿的过程中不能局限于花岗岩体的周边,也不能只以古老地台区的西澳的格林布什或北美的坦科为唯一模板,更不能只想到新疆可可托海的复杂性而忽略还有四川甲基卡、可尔因这样规模可十倍于大型矿床但形态却十分简单的超大型矿床的存在,找矿过程中也不能只考虑传统地质方法而要结合实际情况建立适当的物探化探等勘查模型.只要具体问题具体分析,拓展找矿思路,恰当使用勘查技术手段,要取得新的找矿突破是完全可能的.Abstract: The spodumene deposit is an important type of lithium ore deposit, but it's prospecting has been discontinued because of its higher cost than salt lake in extracting lithium. Recently, the demand for lithium has multiplied due to the rapid development of emerging industries, and the recovery of spodumene has become an important source of lithium resources. This article summarizes some metallogenic characteristics of seven large and super-large spodumene deposits at home and abroad, and it is concluded that certain particularities are always associated with large-scale spodumene mineralization. For example, spodumene ore deposit of pegmatite type can be hosted within basic rocks instead of granite, gneiss, schist and other common host rocks. The size of spodumene grain can be either coarse or fine in the pegmatite. The zonality of pegmatite veins containing spodemene can be of good or not. The shape of the pegmatite veins can be simple or extremely complex. The metallogenic epoch can be old to the Archean or be new to the Cenozoic. The metallogenic tectonic environment can be a stable platform or an active Himalayan orogenic belt. In this paper, the prospecting direction of large and super-large spodumene deposits is discussed in terms of the particularity of the host rock, the mineralization epoch, the tectonic background and the mineralization zonality and so on. It points out that prospecting can neither be confined to the periphery of granite rock mass, nor taking the Greenbushes in Western Australian or the Tanco in North American located in old platform as the only case. It can't only think about the complexity of Xinjiang Koktokey, and oversight other super-large deposits whose size can be ten times in large deposits but in simple form such as the Jiajika and the Ke'eryin pegmatite fields in Sichuan. Also, it can not only consider the traditional geological method but also combine the actual situation to establish proper geophysical and geochemical prospecting models. As long as the specific problem is analyzed, the prospecting method is expanded, the exploration technique is used properly, it is completely possible to obtain a new prospecting breakthrough.
-
图 1 中国新疆可可托海3号伟晶岩脉的地质简图
1.第四系;2.十字石-黑云母-石英片岩;3.淡色花岗岩;4.微晶花岗岩;5.黑云母花岗岩;6.石英闪长岩;7.角闪辉长岩;8.辉长闪长岩;9.角闪岩;10.暗色岩墙;11.闪长玢岩脉;12.Be-Nb-Ta矿化伟晶岩脉;13.Li-Be-Nb-Ta-Cs矿化伟晶岩脉;14.地质界线;15.断层;16.深部缓倾斜岩脉范围;简编自栾世伟等(1995);邹天人和李庆昌(2006)
Fig. 1. Geological sketch map of Koktokay No.3 pegmatite vein in Xinjiang, China
图 2 四川甲基卡锂矿田地质简图
新三号脉X03未出露地表,图上标示的是矿体的投影;改编自唐国凡和吴盛先(1984)
Fig. 2. Geological Sketch map of the Jiajikaspodumeneore field, Sichuan
图 3 四川可尔因伟晶岩矿田党坝锂辉石矿床地质简图
据四川马尔康金鑫矿业公司内部资料简化;饶魁元(2016)
Fig. 3. Geological Sketch map of the Dangbaspodumene deposit in Ke'eryin pegmatite field, Sichuan
图 4 西澳大利亚格林布什伟晶岩矿床地质图(a)、伟晶岩内各带分布剖面图(b)
1.粒玄岩岩墙;2.伟晶岩;3.花岗变晶岩;4.细粒和粗粒角闪岩;5.角闪岩、超镁铁质片岩;6.糜棱岩;据Partington et al.(1995)改绘
Fig. 4. Geological plan (a) and sectional drawing (b) of Greenbushes pegmatite deposit in Western Australia
图 5 津巴布韦卡玛提维锂辉石矿床地质及剖面地质简图
Fig. 5. Geological plan and section of Kamativi spodumene deposit in Zimbabwe
图 6 阿富汗尼拉维-库兰伟晶岩田地质图
改编自Rossovskiy et al.(1977);British Geological Survey(2016)
Fig. 6. Geological map of Nilawe-Kulan pegmatite field, Afghanistan
图 7 美国北卡罗来纳金斯山伟晶岩带的区域地质剖面示意图
1.二叠系Yorkville石英二长岩;2.二叠系(?)Cherryville石英二长岩;3.薄层角闪岩;4.含硅质夹层的变质泥质岩;5.结晶灰岩;6.具片理的火山碎屑岩;7.片岩和片麻岩;转袁忠信等(2016)
Fig. 7. Regional geological section of Kings Mountain pegmatite belt in North Carolina, America
图 8 北卡罗来纳金斯山伟晶岩田地质简图
Fig. 8. Simple geological map of Kings Mountain pegmatite field in North Carolina
表 1 国内外重要锂辉石矿床
Table 1. Simple list of important spodumene deposits at home and abroad
矿床所在洲 国家 锂矿床/项目 矿产 Li金属(104 t) Li品位(%) 地质特征简介 参考文献 亚洲 俄罗斯 Vishnyakovskoe 锂 21.00 0.49 3组缓倾斜伟晶岩,矿化体宽1~3 km厚500 m;伟晶岩群之间隔以40~120 m宽的无矿地带;单个伟晶岩体厚达12 m,单个伟晶岩体和伟晶岩群都具有分带性;锂辉石和透锂长石出现在最深部的伟晶岩群中. Kesler et al.(2012) 亚洲 阿富汗 Pasgushta Pass 锂 49.00 0.92 围岩可以是片麻岩也可以是辉长岩;矿体形态复杂,产状变化大;成矿于渐新世. Rossovskiy and Chmyrev(1977);施俊法等(2006) 亚洲 阿富汗 Jamanak 锂 21.00 0.72 锂辉石伟晶岩岩墙状侵入到三叠系变质岩中,4个带,长1 km,宽10~20 m. Rossovskiy and Chmyrev(1977);施俊法等(2006) 亚洲 阿富汗 Taghawlor 锂 68.8 0.03~1.30 含锂辉石岩墙侵入上三叠统钙质石英黑云母片岩,单个岩墙0.6~1.0 km长,3~7 m厚. British Geological Survey(2016) 亚洲 阿富汗 Drumgal 锂 12.00 0.65~0.74 3个含锂辉石伟晶岩岩墙侵入上三叠统板岩,单个岩墙1~2 km长,7~30 m厚. British Geological Survey(2016) 亚洲 中国 甲基卡 锂、铍 30.00 0.71 产于三叠系堇青石、红柱石片岩中;板状复合矿脉;缓倾斜;锂占绝对优势. 王登红和付小方(2013);付小方等(2014) 亚洲 中国 可可托海 铍、锂、钽、铯等 7.30 产于海西期中基性岩中,形态呈草帽状,形成于中生代;锂为大型,铍为超大型. 王登红等(2002) 欧洲 捷克 Cinovec 锂、锡、钨等 130.00 0.20 除了锂之外还有锡、钨大量共伴生,锂可能主要呈锂云母形式出现,尚在勘查. 国土资源部(2015, 2017) 澳洲 澳大利亚 Greenbushes 锂、钽 56.00 0.74 产于片麻岩、角闪岩、角闪片岩等,被辉绿岩脉和花岗岩脉穿切,形成于太古宙. 何金祥(2015);Kesler et al.(2012) 澳洲 澳大利亚 Pilgangoora 锂、钽 72.17 0.56 埋深浅,矿体厚,高品位,产于绿岩带;伴生丰富的钽资源. Pilbara Minerals Ltd.(2016) 澳洲 澳大利亚 Wodgina East 锂 - 0.74 位于Pilgangoora西15 km处,锂辉石为主. Altura Mining Ltd.(2016). 澳洲 澳大利亚 Lynas Find North 锂 - 1.23 产于绿岩带,距离Pilgangoora仅8 km. Metalicity Ltd.(2016) 非洲 津巴布韦 Bikita 锂、钽、锡、铍等 15.00 1.40 伟晶岩产于由火山岩变质而成的绿岩带角闪岩和角闪石片岩中,锂云母和透锂长石大量发育;分带性复杂(可分10个带). Symons (1961);Kesler et al.(2012) 非洲 津巴布韦 Kamativi 锂、锡 28.00 0.28 产于穹隆变质岩中;伟晶岩常见电气石;锡与锂“反相关”;产状平缓,分带不明显. Kesler et al.(2012) 非洲 马里 Goulamina 锂 49.00 0.58 尚未公开地质资料. Birimian Ltd.(2017) 非洲 扎伊尔 Manono-Kitotolo 锂 72.00 0.60 伟晶岩脉长可达5 km,宽约400 m;开采锂辉石、绿柱石和锡石,锡渣中回收铌钽. Kesler et al.(2012) 北美洲 加拿大 Whabouchi 锂 12.00 0.71 可能是北美品位最高规模最大的锂辉石矿床,产于加拿大地盾的绿岩带,伟晶岩脉群宽90 m,长1.3 km,锂辉石为主. Nemaska Lithium Inc.(2016) 北美洲 美国 Bessemer City 锂 42.00 0.67 美国最大的锂矿山之一,矿化均匀. Kesler et al.(2012) 北美洲 美国 Kings Mountain 锂 32.00 0.70 围岩、矿脉产状、形态及矿化分带均多样性、复杂化,内带锂外带铍,产黑钨矿. Kesler et al.(2012) 北美洲 加拿大 Tanco 锂、钽、铯 14.00 0.64 近平坦的板状伟晶岩产于绿岩带褶皱中. Kesler et al.(2012) 注:“-”待补充或核实相关数据资料;表中锂金属量数据由参考文献原始资源储量数据换算成金属锂当量. -
[1] 《Discovery History of Chinese Deposits·Xinjiang Volume》Editorial Committee, 1996.Discovery History of Chinese Deposits·Xinjiang Volume.Geological Publishing House, Beijing, 105-109 (in Chinese). [2] Altura Mining Ltd, 2016.Kairos Minerals forms Joint Venture with Altura Mining for Wodgina East Lithium Project.http://www.mining-technology.com/news/newskairos-minerals-forms-joint-venture-with-altura-mining-for-wodgina-east-lithium-project-5681482/ [3] Birimian Ltd, 2017.Birimian to sell Mali's Bougouni Lithium Project.http://www.mining-technology.com/news/newsbirimian-to-sell-bougouni-lithium-project-5709235/ [4] British Geological Survey.Minerals in Afghanistan.http://www.bgs.ac.uk/afghanMineals/docs/RareMetals_A4.pdf. [5] Dai, J.J., Wang, D.H., Dai, H.Z., et al., 2017.Geological Mapping and Ore-Prospecting Study Using Remote Sensing Technology in Jiajika Area of Western Sichuan Province.Geology in China, 44(2):389-398 (in Chinese with English abstract). doi: 10.1080/08120099.2017.1328705 [6] Fei, G.C., Yuan, T.J., Tang, W.C., et al., 2014.Simple Division on Pegmatite-Type rare Metal Deposits Ore-Bearing Pegmatites in Keeryin, Sichuan.Mineral Deposits, 33(Suppl.):187-188 (in Chinese). https://ar.scribd.com/document/132846054/Giant-Ore-Deposits [7] Fu, X.F., Hou, L.W., Wang, D.H., et al., 2014.Achievements in the Investigation and Evaluation of Spodumene Resources at Jiajika in Sichuan, China.Geological Survey of China, 1(3):37-43 (in Chinese with English abstract). https://www.hindawi.com/journals/geofluids/2017/9252913 [8] Gu, C.H., 2014.Metallogenic Regularity of Spodumene Deposits in the Closely Spaced Pegmatite Area in the Southeastern Keeryin Pegmatite Field, Sichuan Province.Contributions to Geology and Mineral Resources Research, (1):59-65 (in Chinese with English abstract). [9] He, J.X., 2015.Lithium, Annual Review of World Mineral Resources.Geological Publishing House, Beijing (in Chinese with English abstract). [10] Kesler, S.E., Gruber, P.W., Medina, P.A., et al., 2012.Global Lithium Resources:Relative Importance of Pegmatite, Brine and other Deposits.Ore Geology Reviews, 48(5):55-69.doi: 10.1016/j.oregeorev.2012.05.006 [11] Li, J.K., Zou, T.R., Liu, X.F., et al., 2015.The Metallogenetic Regularities of Lithium Deposits in China.Acta Geologica Sinica-English Edition, 89(2):652-670.doi: 10.1111/1755-6724.12453 [12] Liu, L.J., Fu, X.F., Wang, D.H., et al., 2015.Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposts.Mineral Deposits, 34(6):1187-1198 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz201506008 [13] Liu, L.J., Wang, D.H., Yang, Y.Q., et al., 2016.MetallogenicChararteristics of X03 Rare Metal Vein in Jiajika of Sichuan.Journal of Guilin Univerisity of technology, 36(1):50-59 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz201506009 [14] Liu, L.J., Wang, D.H., Liu, X.F., et al., 2017a.The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine.Geology in China, 44(2):263-278 (in Chinese with English abstract). [15] Liu, L.J., Wang, D.H., Hou, K.J., et al., 2017b.Application of Lithium Isotope to Jiajika New No.3 Pegmatite Lithium Polymetallic Vein in Sichuan.Earth Science Frontiers, 24(5):167-171 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136816301780 [16] Luan, S.W., Mao, Y.Y., Fan, L.M., et al., 1995.Rare Metals Mineralization and Prospecting in Keketuohai.Chengdu university of science and technology Press, Chengdu (in Chinese). [17] Metalicity Ltd, 2016.MetalicityAcquires Fortescue's Lithium Portfolio in Pilbara Region.http://www.mining-technology.com/news/newsmetalicity-acquires-fortescues-lithium-portfolio-in-pilbara-region-5703012/ [18] Nemaska Lithium Inc, 2016.How to Profit From the Booming Lithium Markets, Available.http://www.nemaskalithium.com/assets/documents/docs/Nemaska%20Lithium%20Corporate%20Presentation%20April%2019%202016.pdf (accessed on 09.11.16). [19] Partington, G.A., McNaughton, N.J., Williams, I.S., 1995.A Review of the Geology, Mineralization, and Geochronology of the Greenbushes Pegmatite, Western Australia.Economic Geology, 90(3):616-635.doi: 10.2113/gsecongeo.90.3.616 [20] Pilbara Minerals Ltd., 2016.Pilgangoora Mineral Rresource Jumps 60% to 128.6 Mt Confirming World-class, Long-life, High Grade Lithium Project.http://investingnews.com/daily/resource-investing/critical-metals-investing/tantalum-investing/pilgangoora-mineral-resource-jumps-60-to-128-6mt-confirming-world-class-long-life-high-grade-lithium-project/ [21] Rao, K.Y., 2016.Geological Feature and Prospecting Direction of Dilaqiu Lithium Deposit, in Maerkang, Sichuan.Sichuan Nonferrous Metals, (1):54-58 (in Chinese). http://www.doc88.com/p-9049670914988.html [22] Rossovskiy, L.N., Chmyrev, V.M., 1977.Distribution Patterns of Rare-Metal Pegmatites in the Hindu Kush (Afghanistan).International Geology Review, 19(5):511-520.doi: 10.1080/00206817709471047 [23] Rossovskiy, L.N., 1977.First Find of Pollucite and Its Crystals in Afghanistan, Transactions (Doklady) of the U.S.S.R.Academy of Sciences:Earth Science Sections, 236(1-6):157-160. http://www.academia.edu/5272949/Structural_complexity_of_minerals_information_storage_and_processing_in_the_mineral_world [24] Shi, J.F., Li, Y.Z., Jin, Q.H., et al., 2006.The World Mining Situation (Asian Volume).Geological Publishing House, Beijing, 360-376 (in Chinese). [25] Sichuan Bureau of Geology & Mineral Resources, Maerkang Jinxin Mining Ltd., 2015.General Exploration and Resource Reserve Verification Report on Lithium Ores in Dangba Minging, Maerkang County, Sichuan.Sichuan Bureau of Geology & Mineral Resources, Chengdu (in Chinese). [26] Symons, R., 1961.Operation at Bikita Minerals Ltd.Southern Rhodesia.Bull.Instn.Mining and Metallurgy, 661:129-172. doi: 10.1007/978-94-011-6511-2_44.pdf [27] Tang, G.F., Wu, S.X., 1984.Geological Research Report on Jiajika Granitic Pegmatite Lithium Deposit in Kangding, Sichuan, 1-104 (in Chinese). [28] Vikström, H., Davidsson, S., Höök, M., 2013.Lithium Availability and Future Production Outlooks.Applied Energy, https://www.researchgate.net/publication/236734286_Lithium_Availability_and_Future_Production_Outlook. [29] Von Knorring, O., Condliffe, E., 1987.Mineralized Pegmatites in Africa.Geological Journal, 22(S2):253-270.doi: 10.1002/gj.3350220619 [30] Wang, D.H., Chen, Y.C., Xu, J., et al., 1999.Discussion on Associated Deposits_Example from Changkeng Au deposit and Fuwan Ag Deposit, Guangdong.Acta Geoscientia Sinica, 20 (suppl.):346-350 (in Chinese with English abstract). http://www.oalib.com/paper/4876045 [31] Wang, D.H., Chen, Y.C., Xu, Z.G., et al., 2002.Metallogenic Series and Regularity of Altay Metallogenic Province.Atomic Energy Press, Beijing (in Chinese). [32] Wang, D.H., Li, J.K., Fu, X.F., 2005.40Ar/39Ar Dating for the Jiajika Pegmatite-type Rare Metal Deposit in Western Sichuan and its Significance.Geochemica, 34(6):541-547. [33] Wang, D.H., Fu, X.F., 2013a.The Breakthrough of Lithium Prospecting in the Periphery of Jiajika Mining Area, Sichuan.Rock and Mineral Analysis, 32(6):987 (in Chinese). https://es.scribd.com/document/61758254/Lunar-Mining-Neg-UM7wk [34] Wang, D.H., Wang, R.J., Li, J.K., et al., 2013b.The Progress in the Strategic Research and Survey of Rare Earth, Rrare Metal and Rare-Scattered Elements Mineral Resources.Geology in China, 40(2):361-370 (in Chinese with English abstract). https://sservi.nasa.gov/articles/is-mining-rare-minerals-on-the-moon-vital-to-national-security/ [35] Wang, D.H., Xu, Z.G., Sheng, J.F., et al., 2014.Progress on the Study of Regularity of Major Mineral Resources and Regional Metallogenic Regularity in China:A Review.Acta Geologica Sinica, 88(12):2176-2191 (in Chinese with English abstract). [36] Wang, D.H., Liu, L.J., Liu, X.X., et al., 2016a.Main Types and Research Trends of Energy Metallic Resources in China.Journal of Guilin University of Technology, 36(1):21-28 (in Chinese with English Abstract). [37] Wang, D.H., Wang, R.J., Fu, X.F., et al., 2016b.A Discussion on the Major Problems Related to Geological Investigation and Assessment for Energy Metal Resources Base:A Case Study of the Jiajika Large Lithium Mineral Resource Base.Acta Geoscientica Sinica, 37(4):471-480 (in Chinese with English abstract). https://data-gov.tw.rpi.edu/raw/1560/data-1560-00038.rdf [38] Wang, D.H, Liu, L.J., Hou, J.L., et al., 2017.A Prime Review on Application of"Five Levels+Basement"Model for Jiajika-style Rare Metal Deposits.Earth Science Frontiers, 24(5):1-7.doi: 10.13745/j.esf.yx.2017-1-1 [39] Wang, R.J., Wang, D.H., Li, J.K., et al., 2015.Mineral Resources and Development of Rare Earth, Rare Metal and Rare-Scattered Elements Mineral Resources.Geological Publishing House, Beijing (in Chinese). [40] Wang, Z.P., Liu, S.B., Dai, H.Z., et al., 2017.The Metallogenic Regularity, Deep Ore-Prospecting and Exploitation of Dangba Super Large Spodumene Deposit in Aba, Sichuan Province (in Chinese with English abstract). [41] Xie, X.J., Cheng, Z.Z., Zhang, L.S., 2008.Geochemical Atlas of 76 elements in Southwest China.Geological Publishing House, Beijing (in Chinese). [42] Yuan, Z.X., He, H.H., Liu, L.J., et al., 2016.Rare-metal and Rare Earth Elements Deposits in Foreign Countries.Science Press, Beijing (in Chinese). [43] Zou, T.R., Li, Q.C., 2006.Rare and Rare Earth Deposits in Xinjiang, China.Geological Publishing House, Beijing (in Chinese). [44] 《中国矿床发现史·新疆卷》编委会, 1996.中国矿床发现史·新疆卷.北京:地质出版社, 105-109. [45] 代晶晶, 王登红, 代鸿章, 等, 2017.遥感技术在川西甲基卡大型锂矿基地找矿填图中的应用.中国地质, 44(2):389-398. http://industry.wanfangdata.com.cn/dl/Magazine?magazineId=zgdizhi [46] 费光春, 袁天晶, 唐文春, 等, 2014.川西可尔因伟晶岩型稀有金属矿床含矿伟晶岩分类浅析.矿床地质, 33(增刊):187-188. http://d.wanfangdata.com.cn/Conference/8450602 [47] 付小方, 侯立玮, 王登红, 等, 2014.四川甘孜甲基卡锂辉石矿矿产调查评价成果.中国地质调查, 1(3):37-43. http://www.wenkuxiazai.com/doc/a5fcc6316bec0975f565e266.html [48] 古城会, 2014.四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律.地质找矿论丛, (1):59-65. doi: 10.6053/j.issn.1001-1412.2014.01.007 [49] 国土资源部, 2015. 捷克锡诺维克成为世界级锂矿. http://www.geoglobal.mlr.gov.cn/zx/kcykf/resources_update/201502/t20150213_4737270.Htm [50] 国土资源部, 2017. 捷克锡诺维克锂矿资源量上升11. 8%. http://www.geoglobal.mlr.gov.cn/zx/kcykf/resources_update/201702/t20170221_6239138.Htm [51] 何金祥, 2015.锂·世界矿产资源年评.北京:地质出版社. [52] 刘丽君, 付小方, 王登红, 等, 2015.甲基卡式稀有金属矿床的地质特征与成矿规律.矿床地质, 34(6):1187-1198. doi: 10.16111/j.0258-7106.2015.06.007.html [53] 刘丽君, 王登红, 杨岳清, 等, 2016.四川甲基卡新三号稀有金属矿脉成矿特征的初步研究.桂林理工大学学报, 36(1):50-59. doi: 10.16111/j.0258-7106.2015.06.006.html [54] 刘丽君, 王登红, 刘喜方, 等, 2017a.国内外锂矿主要类型、分布特点及勘查开发现状.中国地质, 44(2):263-278. http://d.wanfangdata.com.cn/Periodical/zgdizhi201702004 [55] 刘丽君, 王登红, 侯可军, 等, 2017b.锂同位素在四川甲基卡新三号矿脉研究中的应用.地学前缘, 24(5):167-171. https://www.cnki.com.cn/qikan-DXQY201705021.html [56] 饶魁元, 2016.四川马尔康地拉秋锂矿床地质特征及找矿方向.四川有色金属, (1):54-58. http://d.wanfangdata.com.cn/Periodical/scysjs201601014 [57] 栾世伟, 毛玉元, 范良明, 等, 1995.可可托海地区稀有金属成矿与找矿.成都:成都科技大学出版社. [58] 施俊法, 李友枝, 金庆花, 等, 2006.世界矿情(亚洲卷).北京:地质出版社, 360-376. [59] 四川省地质矿产勘查开发局化探队, 马尔康金鑫矿业有限公司, 2015. 四川省马尔康县党坝矿区锂矿补充详查及资源储量核实报告. 成都: 四川省地质矿产勘查局. [60] 唐国凡, 吴盛先, 1984. 四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告. [61] 王登红, 陈毓川, 徐珏, 等, 1999.试论伴生矿床——以长坑金矿与富湾银矿为例.地球学报, 20(增刊):346-350. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199910001060.htm [62] 王登红, 陈毓川, 徐志刚, 等, 2002.阿尔泰成矿省的成矿系列及成矿规律研究.北京:原子能出版社. [63] 王登红, 李建康, 付小方, 2005.四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义.地球化学, 34(6):541-547. http://d.wanfangdata.com.cn/Periodical/dqhx200506001 [64] 王登红, 付小方, 2013.四川甲基卡外围锂矿找矿取得突破.岩矿测试, 32(6):987. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ2014S1590.htm [65] 王登红, 王瑞江, 李建康, 等, 2013.中国三稀矿产资源战略调查研究进展综述.中国地质, 40(2):361-370. http://www.wenkuxiazai.com/doc/17d180bcbceb19e8b8f6ba47.html [66] 王登红, 徐志刚, 盛继福, 等, 2014.全国重要矿产和区域成矿规律研究进展综述.地质学报, 88(12):2176-2191. http://www.docin.com/p-1545612060.html [67] 王登红, 刘丽君, 刘新星, 等, 2016a.我国能源金属矿产的主要类型及发展趋势探讨.桂林理工大学学报, 36(1):21-29. http://d.wanfangdata.com.cn/Periodical/glgxy201601004 [68] 王登红, 王瑞江, 付小方, 等, 2016b.对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例.地球学报, 37(4):471-480. https://mall.cnki.net/qikan-GTYG201602004.html [69] 王登红, 刘丽君, 侯江龙, 等, 2017.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型.地学前缘, 24(5):1-7. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201705002&dbname=CJFD&dbcode=CJFQ [70] 王瑞江, 王登红, 李建康, 等, 2015.稀有稀土稀散矿产资源及其开发利用.北京:地质出版社. [71] 王子平, 刘善宝, 代鸿章, 等, 2017. 四川阿坝州党坝超大型锂辉石矿床的成矿规律、深部找矿与开发利用(待刊). [72] 谢学锦, 程志中, 张立生, 2008.中国西南地区76种元素地球化学图集.北京:地质出版社. [73] 袁忠信, 何晗晗, 刘丽君, 等, 2016.国外稀有稀土矿床.北京:中国科学出版社. [74] 邹天人, 李庆昌, 2006.中国新疆稀有稀土矿床.北京:地质出版社.