Deformation Fabrics and Rheological Features of Early Permian Fanjiatun Formation from Quannongshan Area, Southeastern Changchun
-
摘要: 劝农山地区位于长春市东南部,处于佳-伊断裂和西拉木伦河缝合带交汇处.详细野外调查发现,该区曾遭受强烈韧性剪切变形,剪切带内岩石普遍糜棱岩化,主要由下二叠统范家屯组(P1f)钙质糜棱岩与侵入其中的燕山期花岗质糜棱岩组成,变形程度处于初糜棱岩至糜棱岩之间,多具有糜棱结构.岩石应变类型主要为压扁型应变,偏一般压缩,为L=S型构造岩,指示其形成于挤压型剪切带的构造环境.多种宏微观韧性剪切变形标志,指示明显的左行剪切运动.电子探针方解石-白云石地质温度计、方解石和石英EBSD组构特征、方解石e双晶形态以及石英长石变形行为等均显示岩石具有低温塑性流变特点,变形环境不超过绿片岩相.剪切带内应变速率偏高,应变集中带应变速率最大,在10-6.95~10-8.89之间,远离强变形带应变速率在10-9.25~10-12.17之间,糜棱岩化作用过程中差异应力下限应大致为51.27~65.46 MPa,代表剪切带糜棱岩化作用为低温中等强度应变,在稍快的应变速率条件下形成.压溶扩散和双晶滑移为劝农山韧性剪切带变形初期的主要变形机制,随着递进变形,逐渐以双晶滑移和晶内滑移为主,递进变形晚期,局部强变形域内发生了粒间滑移.劝农山韧性剪切带形成与早白垩世中晚期伊泽纳崎板块NNW向高斜度斜向俯冲于欧亚大陆之下有关,是佳-伊断裂带左旋走滑事件的局部表现.Abstract: The Quannongshan area is located in the southeastern part of Changchun, at the junction of the Jiamusi-Yilan fault belt and Xar Moron suture zone. Detailed field observations indicate strong ductile deformation event which developed in these mylonites:Lower Permian Fanjiatun Formation (P1f) calc-mylonites and the intrusive Yanshanian granitic mylonites. Most rocks were deformed to protomylonites and mylonites macroscopically in a gneissic-like structure. The major strain type is plan-strain and marked by much compression, which is general compression. And the deformed rocks are characterized by L=S type tectonites demonstrating a strong tectonic condition of a compressive ductile shear zone. A variety of macro/micro-ductile deformation kinematic marks indicate a significant sinistral shearing. Based on detailed macro/microstructural analysis, quartz c-axis EBSD fabrics, calcite-dolomite geothermometer from electron probe, calcite < e > twin morphology and quartz/feldspar deformation behaviors, a low-temperature plastic flow characteristics and greenschist metamorphic environment were estimated. The ductile shear zone has a relatively high strain rate, which is between 10-6.95 and 10-8.89 in a highly strained zone and 10-9.25-10-12.17 away from the strong deformation zone. The lower limit of the differential stress during the mylonization process should be approximately 51.27-65.46 MPa, which represents that the mylonitization formed at a slightly faster strain rate with low deformation temperature and moderate strain strength. In the initial deformation period, the pressolution diffusion and the twin gliding are the main deformation mechanisms, then in the middle of the deformation they are dominated by the twin gliding and the grain boundary slip. In the late stage of the progressive deformation, the grain boundary sliding occurred in parts of strong stain zone. The formation of this ductile shear zone might be related to the Izanagi plate obliquely NNW subducting under the Eurasia plate during the middle and late Early Cretaceous, which is a local performance of the sinistral strike-slip Jia-Yi fault.
-
Key words:
- structural deformation /
- EBSD /
- deformation temperature /
- paleo-stress /
- strain rate /
- Jia-Yi fault /
- tectonics
-
图 4 韧性剪切带典型显微构造变形特征
a.长眼球状方解石扭折变形,指示左行剪切变形(795QN-1);b.钾长石旋转残斑,边部细粒化,形成核幔结构,具有左行剪切特征(852SJ-1);c.钾长石旋转残斑指示左行剪切,石英波状消光,可见膨凸式动态重结晶(852SJ-1);d.石英颗粒发生膨凸式动态重结晶(852SJ-1);e.残斑方解石机械双晶发育,解理弯曲现象明显(855QN-1);f.方解石残斑书斜式构造具有左行剪切特征(855QN-1);g.方解石旋转残斑指示左行剪切(857QN-1);h.缝合线(压溶面)构造,指示应力方向,SE-NW向挤压(857QN-1);Qtz.石英;Kf.钾长石;Cal.方解石
Fig. 4. Typical microscopic deformation characteristics
图 5 韧性剪切带内典型样品石英和方解石的有限应变Flinn参数图解
a.岩石有限应变Flinn判别图解;b.岩石变形强度Flinn图解;据郑亚东和常志忠(1985)
Fig. 5. Flinn parameters diagram of finite strain of quartz and calcite in the typical mylonites
图 8 方解石双晶纹密度、宽度与温度关系
Fig. 8. Relationship between density, width of calcite twin lamellae and temperature
表 1 韧性剪切带内典型样品显微构造特征
Table 1. Microtectonic features of oriented thin sections from Quannongshan ductile shear zone
样品号 岩性 采样位置 结构构造 微观变形特征 795QN-1 钙质糜棱岩 N:43°47′17.6″
E:125°41′37.0″鳞片变晶结构
片状构造糜棱岩化,方解石解理塑性弯曲变形,机械双晶与旋转残斑发育,多呈长眼球状,显示左旋特征.基质为细粒新晶方解石. 852SJ-1 花岗质糜棱岩 N:43°50′21.2″
E:125°43′37.5″糜棱结构
片状构造长石残斑环状消光,部分绢云母化,长石旋转残斑显示左旋剪切特征;细粒石英拉长成条带,部分石英残斑拉长呈眼球状且细粒化,发育膨凸式动态重结晶.云母片状定向排列. 855QN-1 钙质糜棱岩 N:43°47′30.7″
E:125°41′04.5″鳞片变晶结构
片状构造残斑方解石呈长眼球状,机械双晶发育,解理有扭折和弯曲现象,部分边部产生亚颗粒式重结晶.新晶多呈小椭球状,无解理,构成核幔结构.部分方解石颗粒受剪切应力形成书斜式构造,与旋转残斑一致,都显示左旋剪切的特征. 857QN-1 钙质糜棱岩 鳞片变晶结构
片状构造方解石残斑长眼球状,旋转变形,指示左旋变形.残斑周边新晶方解石呈长条状或粒状,多呈定向排列. 表 2 韧性剪切带内典型样品石英和方解石的有限应变测量分析数据
Table 2. Finite strain measurement analysis data of quartz and calcite in the typical mylonites
样品号 测试颗粒 颗粒 长短轴法 X/Z Y/Z X/Y 菲林指数(k) 应变强度(γ) 852SJ-1 石英 石英 69 1.35 1.18 1.14 0.81 1.32 795QN-1 方解石 方解石残斑 75 1.79 1.44 1.24 0.60 1.68 855QN-1 方解石 变形鲕粒 35 1.77 1.39 1.27 0.73 1.66 855QN-1 方解石 方解石残斑 45 2.11 1.63 1.29 0.53 1.92 857QN-1 方解石 方解石残斑 39 1.98 1.56 1.27 0.54 1.83 表 3 韧性剪切带内矿物晶格优选方位EBSD测试结果
Table 3. EBSD-measured results of the typical mylonites
样品号 岩性 测试矿物 EBSD测点数量 组构类型 剪切指向 温度估算(℃) 795QN-1 钙质糜棱岩 方解石 961 e1双晶滑动(80~800 ℃),与r1平移滑动(300~400 ℃) 左旋剪切 80~400 855QN-1 钙质糜棱岩 方解石 409 e1双晶滑动(80~800 ℃),与r1平移滑动(300~400 ℃) 左旋剪切 80~400 852SJ-1 花岗质糜棱岩 石英 213 底面<a>滑移为主,局部表现菱面<a>组构 主体<400,局部400~550 表 4 韧性剪切带内钙质糜棱岩中方解石电子探针成分数据(%)及温度计算
Table 4. Electron probe composition (%) data and calculated temperature of calcite in calc-mylonites
样品号 测点 TiO2 CaO K2O Na2O MgO Al2O3 SiO2 FeO MnO Cr2O3 Total T(℃) 1 0 52.760 0 0.04 0.830 0.020 0 0.110 0.080 0.030 53.870 366 2 0 57.050 0 0.03 0.660 0.110 0.290 0.400 0.260 0.010 58.810 312 3 0 54.300 0.030 0.10 0.420 0.010 0.030 0.050 0.130 0.020 55.090 186 4 0 57.250 0.030 0.03 0.360 0 0 0.190 0.070 0.020 57.950 118 5 0.06 53.380 0.280 0.03 0.530 0 0 0.080 0.120 0 54.470 262 855QN-1 6 0 53.450 0 0.01 0.460 0.030 0 0.260 0.210 0 54.420 235 7 0 54.900 0.030 0.01 0.850 0 0 0.470 0.090 0 56.340 373 8 0.032 55.844 0.008 0.016 0.567 0 0.013 0.206 0.249 0.006 56.941 275 9 0 52.552 0.006 0 0.741 0.001 0 0.130 0.006 0.028 53.464 346 10 0.014 56.951 0.023 0.049 0.465 0 0 0.109 0.058 0.038 57.707 209 11 0 55.398 0.044 0.004 0.606 0.041 0 0.099 0.086 0 56.278 289 平均温度(℃) 270 12 0 56.025 0.020 0.047 0.380 0.031 0.024 0.206 0.201 0 56.934 147 857QN-1 13 0.005 55.453 0.020 0 0.308 0 0 0.031 0.018 0 55.835 44 14 0 55.468 0.031 0.034 0.327 0.013 0 0.127 0.014 0.038 56.052 81 平均温度(℃) 91 注:电子探针实验是在吉林大学东北亚矿产资源评价国土资源部重点实验室电子探针实验室完成,实验仪器为日本电子公司JXA 8230型电子探针仪,电子束流为1×10-8 A,加速电压15 kV,电子束斑为2 μm,修正方法为ZAF法. 表 5 韧性剪切带内钙质糜棱岩中方解石双晶统计
Table 5. Electron probe composition (%) data and calculated temperature of calcite in calc-mylonites
样品号 颗粒数 平均双晶宽度(μm) 平均双晶密度(条/mm) Ⅰ型 Ⅱ型 Ⅲ型 Ⅳ型 估算Tmax(℃) 795QN-1 37 1.43 51.6 16 21 0 0 170~200 855QN-1 57 2.57 32.9 18 23 15 1 >250 857QN-1 22 1.11 54.5 16 6 0 0 170~200 表 6 韧性剪切带内糜棱岩方解石古差应力及应变速率估算
Table 6. Estimation of Paleo-stress and strain rates
样品号 变形温度(℃) 统计颗粒数 动态重结晶颗粒平均粒度
粒径D(μm)应力计(MPa)
Twiss(1977)
σ=750D-0.68应变速率(s-1)
Heard and Raleich(1972)795QN-1 80 40 40.3 60.74 10-11.56 200 40 40.3 60.74 10-9.25 855QN-1 200 45 36.1 65.46 10-8.98 400 45 36.1 65.46 10-6.95 857QN-1 80 40 51.7 51.27 10-12.17 200 40 51.7 51.27 10-9.86 表 7 利用方解石e双晶发育程度估算古差异应力值
Table 7. Differential stress inferred by use of calcite e-twin lamellaes
样品号 具有双晶颗粒的数目 双晶化颗粒百分数(%) 分解剪切应力系数S1 古差异应力值σ(MPa) 一组双晶 两组双晶 不具双晶 颗粒总数 一组双晶 两组双晶 一组双晶 两组双晶 一组双晶 两组双晶 795QN-1 28 6 4 38 73.68 15.79 0.13 0.16 76.92 62.50 855QN-1 33 8 9 50 66.00 16.00 0.19 0.16 52.63 62.50 857QN-1 15 3 5 23 65.22 13.04 0.20 0.18 50.00 55.56 -
[1] Anovitz, L.M., Essene, E.J., 1987.Phase Equilibria in the System CaCO3-MgCO3-FeCO3.Journal of Petrology, 28(2):389-415.doi: 10.1093/petrology/28.2.389 [2] Bestmann, M., Prior, D.J., Grasemann, B., 2006.Characterisation of Deformation and Flow Mechanics around Porphyroclasts in a Calcite Marble Ultramylonite by Means of EBSD Analysis.Tectonophysics, 413(3-4):185-200.doi: 10.1016/j.tecto.2005.10.044 [3] Boutonnet, E., Leloup, P.H., Sassier, C., et al., 2013.Ductile Strain Rate Measurements Document Long-Term Strain Localization in the Continental Crust.Geology, 41(8):819-822.doi: 10.1130/g33723.1 [4] Brodie, K.H., Rutter, E.H., 1985.On the Relationship between Deformation and Metamorphism, with Special Reference to the Behavior of Basic Rocks.Advances in Physical Geochemistry, 8:138-179.doi: 10.1007/978-1-4612-5066-1_6 [5] Burkhard, M., 1993.Calcite Twins, Their Geometry, Appearance and Significance as Stress-Strain Markers and Indicators of Tectonic Regime:A Review.Journal of Structural Geology, 15(3-5):351-368.doi: 10.1016/0191-8141(93)90132-t [6] Cao, S.Y., Liu, J.L., 2006.Modern Techniques for the Analysis of Rock Microstructure:EBSD and Its Application.Advances in Earth Science, 21(10):1091-1096(in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract3594.shtml [7] Chen, P.J., 1988.Age and Pattern of Huge Parallel Move of the Tancheng-Lujiang Fault Zone.Chinese Science Bulletin, 33(4):289-293 (in Chinese). http://www.oalib.com/paper/4895424 [8] Craddock, J.P., McKiernan, A.W., de Wit, M.J.D., 2007.Calcite Twin Analysis in Syntectonic Calcite, Cape Fold Belt, South Africa:Implications for Fold and Cleavage Formation within a Shallow Thrust Front.Journal of Structural Geology, 29(7):1100-1113.doi: 10.1016/j.jsg.2007.03.013 [9] Dou, L.R., Song, J.G., Wang, Y., 1996.Chronology of the Formation of the Northern Tan-Lu Fault Zone and Its Implications.Geological Review, 42(6):508-512 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199606003.htm [10] Fan, H.P., Xie, M.Z., 2006.An Analysis of Microstructures in Handan-Fengfeng Mining Area.Coal Geology of China, 18(4):15-17, 65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT200604005.htm [11] Ferrill, D.A., 1991.Calcite Twin Widths and Intensities as Metamorphic Indicators in Natural Low-Temperature Deformation of Limestone.Journal of Structural Geology, 13(6):667-675.doi: 10.1016/0191-8141(91)90029-i [12] Ferrill, D.A., Morris, A.P., Evans, M.A., et al., 2004.Calcite Twin Morphology:A Low-Temperature Deformation Geothermometer.Journal of Structural Geology, 26(8):1521-1529.doi: 10.1016/j.jsg.2003.11.028 [13] Friedman, M., Higgs, N.G., 1981. Calcite Fabrics in Experimental Shear Zones, in Mechanical Behavior of Crustal Rocks:The Handin Volume.American Geophysical Union, Washington, D.C., 11-27.doi:10.1029/GM024p0011 [14] Hacker, B.R., Yin, A., Christie, J.M., et al., 1990.Differential Stress, Strain Rate, and Temperatures of Mylonitization in the Ruby Mountains, Nevada:Implications for the Rate and Duration of Uplift.Journal of Geophysical Research, 95(B6):8569.doi: 10.1029/jb095ib06p08569 [15] Han, G.Q., Liu, Y.J., Wen, Q.B., et al., 2011.LA-ICP-MS U-Pb Dating of Detrital Zircons from the Permian Sandstones in North Side of Xar Moron River Suture Belt and Its Tectonic Implications.Earth Science, 36(4):687-702(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201104008.htm [16] Heard, H.C., Raleigh, C.B., 1972.Steady-State Flow in Marble at 500℃ to 800℃.Geological Society of America Bulletin, 83(4):935.doi: 10.1130/0016-7606(1972)83[935:sfimat]2.0.co; 2 [17] Hu, D., Ren, S.L., Song, C.Z., et al., 2015.The Analysis on Metamorphic and Deformation Characteristics and Formation Environment of Carbonate Mylonite of Taowan Group in East Qinling.Geological Review, 61(5):1079-1088 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=... [18] Hu, L., Liu, J.L., Ji, M., et al., 2009.Deformation of Microscopic Structure Identification Manual.Geological Publishing House, Beijing (in Chinese). [19] Huang, W.F., 1989.An Investigation on the Microstructures within Flow Carbonates in West-Hills, Beijing.Geoscience, 3(2):223-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ198902008.htm [20] Jamison, W.R., Spang, J.H., 1976.Use of Calcite Twin Lamellae to Infer Differential Stress.Geological Society of America Bulletin, 87(6):868.doi:10.1130/0016-7606(1976)87<868:uoctlt>2.0.co;2 [21] Jiang, F.H., 1988.A Discussion on Principal Stress Orientation of Xiaoguan Thrust by Using of {011[TX-]2} Twin Lamellae and Host-Crystal Optic Axes of Calcite.Journal of Chengdu University of Technology:Science & Technology Edition, 15(2):48-56, 99 (in Chinese with English abstract). http://www.irm.umn.edu/referencelist/ref2jgr.doc [22] Kennedy, L.A., Logan, J.M., 1998.Microstructures of Cataclasites in a Limestone-on-Shale Thrust Fault:Implications for Low-Temperature Recrystallization of Calcite.Tectonophysics, 295(1-2):167-186.doi: 10.1016/s0040-1951(98)00119-x [23] Koch, P.S., Christie, J.M., Ord, A., et al., 1989.Effect of Water on the Rheology of Experimentally Deformed Quartzite.Journal of Geophysical Research:Solid Earth, 94(B10):13975-13996.doi: 10.1029/jb094ib10p13975 [24] Li, J.Y., 1986.A Preliminary Study on the Ancient Suture Zone between the North China Plate and the Siberia Plate in the East of Inner Mongolia.Chinese Science Bulletin, 31 (14):1093-1096 (in Chinese). [25] Li, X.B., Pei, X.Z., Liu, C.J., et al., 2014.Ductile Shearing in the Eastern Segment of Central Kunlun Tectonic Belt and Its Geological Significance.Geology in China, 41(2):419-436(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201402009.htm [26] Liang, C.Y., Liu, Y.J., Li, W.M., et al., 2016.Ductile Deformation and Rock Rheological Characteristics from Southern Yiwulüshan Metamorphic Core Complex.Acta Petrologica Sinica, 32(9):2656-2676 (in Chinese with English abstract). https://www.researchgate.net/publication/309044480_Ductile... [27] Liang, C.Y., Liu, Y.J., Meng, J.Y., et al., 2015.Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone.Earth Science, 40(1):115-129 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501008.htm [28] Liang, C., Liu, Y., Neubauer, F., et al., 2015.Structures, Kinematic Analysis, Rheological Parameters and Temperature-Pressure Estimate of the Mesozoic Xingcheng-Taili Ductile Shear Zone in the North China Craton.Journal of Structural Geology, 78:27-51.doi: 10.1016/j.jsg.2015.06.007 [29] Liu, J.L., 2004.Flow and Microstructural Evolution of Rocks in the Upper Crust:Evidence from Naturally and Experimentally Deformed Rocks.Earth Science Frontiers, 11(4):503-509(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404022.htm [30] Liu, J.L., Cao, S.Y., Zou, Y.X., et al., 2008.EBSD Analysis of Rock Fabrics and Its Application.Geological Bulletin of China, 27(10):1638-1645(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810006.htm [31] Liu, J.L., Sun, F.Y., Lin, B.L., et al., 2015.Geochronology, Geochemistry and Zircon Hf Isotope of Miantian Granodiorite Intrusion in Yanbian Region, Southern Jinlin Province and its Geological Significance.Earth Science, 40(1):49-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501004.htm [32] Liu, J.L., Walter, J.M., Weber, K., 2002.Fluid-Enhanced Low-Temperature Plasticity of Calcite Marble:Microstructures and Mechanisms.Geology, 30(9):787.doi:10.1130/0091-7613(2002)030<0787:feltpo>2.0.co;2 [33] Liu, Y.J., Li, W.M., Feng, Z.Q., et al., 2017.A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt.Gondwana Research, 43:123-148.doi: 10.1016/j.gr.2016.03.013 [34] Liu, Y.J., Zhang, X.Z., Jin, W., et al., 2010.Late Paleozoic Tectonics Evolution in Northeast China.Geology in China, 37(4):943-951 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004012.htm [35] Ma, S.L., Ma, J., 1987.Experience of Quartz and Calcite on Deformation Fabric of Share Zone.Seismology and Geology, 9(4):1-12 (in Chinese). [36] Maruyama, S., Send, T., 1986.Orogeny and Relative Plate Motions:Example of the Japanese Islands.Tectonophysics, 127(3-4):305-329.doi: 10.1016/0040-1951(86)90067-3 [37] Meng, J.Y., Liu, Y.J., Liang, C.Y., et al., 2013.Characteristics of Ductile Deformation of Jiamusi-Yitong Fault.Global Geology, 32(4):800-807(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201304019.htm [38] Mercier, J.C.C., Anderson, D.A., Carter, N.L., 1977.Stress in the Lithosphere:Inferences from Steady State Flow of Rocks.Pure and Applied Geophysics PAGEOPH, 115(1-2):199-226.doi: 10.1007/bf01637104 [39] Pfiffner, O.A., Ramsay, J.G., 1982.Constraints on Geological Strain Rates:Arguments from Finite Strain States of Naturally Deformed Rocks.Journal of Geophysical Research:Solid Earth, 87(B1):311-321.doi: 10.1029/jb087ib01p00311 [40] Poirier, J.P., 1985.Creep of Crystals:High-Temperature Deformation Processes in Metals, Ceramics and Minerals.Cambridge University Press, New York. [41] Ramsay, J.G., 1980.Shear Zone Geometry:A Review.Journal of Structural Geology, 2(1-2):83-99.doi: 10.1016/0191-8141(80)90038-3 [42] Rice, J.M., 1977.Progressive Metamorphism of Impure Dolomitic Limestone in the Marysville Aureole, Montana.American Journal of Science, 277(1):1-24.doi: 10.2475/ajs.277.1.1 [43] Schmid, S.M., Paterson, M.S., Boland, J.N., 1980.High Temperature Flow and Dynamic Recrystallization in Carrara Marble.Tectonophysics, 65(3-4):245-280.doi: 10.1016/0040-1951(80)90077-3 [44] Sheppard, S.M.F., Schwarcz, H.P., 1970.Fractionation of Carbon and Oxygen Isotopes and Magnesium between Coexisting Metamorphic Calcite and Dolomite.Contributions to Mineralogy and Petrology, 26(3):161-198.doi: 10.1007/bf00373200 [45] Song, C.Z., Chai, N.X., Qian, D.L., 1995.The Regulation of Progressive Deformation on Calcite Fabric in Stretch State.Northwest Geoscience, (2):23-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBFK502.003.htm [46] Song, H.L., 1982.A Graphic Method for Calculatingt the Direction of the Principal Compressive Stress from E-Twinning in Calcite.Earth Science, 18(3):179-187, 341 (in Chinese with English abstract). [47] Spang, J.H., van der Lee, J.V.D., 1975.Numerical Dynamic Analysis of Quartz Deformation Lamellae and Calcite and Dolomite Twin Lamellae.Geological Society of America Bulletin, 86(9):1266.doi:10.1130/0016-7606(1975)86<1266:ndaoqd>2.0.co;2 [48] Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002.The Eastern Tonale Fault Zone:A "Natural Laboratory" for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700℃.Journal of Structural Geology, 24(12):1861-1884. doi: 10.1016/S0191-8141(02)00035-4 [49] Stipp, M., Tullis, J., Scherwath, M., et al., 2010.A New Perspective on Paleopiezometry:Dynamically Recrystallized Grain Size Distributions Indicate Mechanism Changes.Geology, 38(8):759-762.doi: 10.1130/g31162.1 [50] Sun, D.Y., Wu, F.Y., Zhang, Y.B., et al., 2004.The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone-Evidence from the Dayushan Granitic Pluton, Jilin Province.Journal of Jilin University(Earth Science Edition), 34(2):174-181(in Chinese with English abstract). http://www.docin.com/p-1185924952.html [51] Sun, X.M., Liu, Y.J., Sun, Q.C., et al., 2008.40Ar/39Ar Geochronology Evidence of Strike-Slip Movement in Dunhua-Mishan Fault Zone.Journal of Jilin University(Earth Science Edition), 38(6):965-972(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200806009.htm [52] Sun, X.M., Long, S.X., Zhang, M.S., et al., 2006.Discovery and Timing of Major Thrustbelt in Jiamusi-Yitong Fault Zone.Oil & Gas Geology, 27(5):637-643(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200605013.htm [53] Sun, X.M., Wang, S.Q., Wang, Y.D., et al., 2010.The Structural Feature and Evolutionary Series in the Northern Segment of Tancheng-Lujiang Fault Zone.Acta Petrologica Sinica, 26(1):165-176(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201001021.htm [54] Twiss, R.J., 1977.Theory and Applicability of a Recrystallized Grain Size Paleopiezometer.Pure and Applied Geophysics PAGEOPH, 115(1-2):227-244.doi: 10.1007/bf01637105 [55] Vernon, R.H., 1981.Optical Microstructure of Partly Recrystallized Calcite in Some Naturally Deformed Marbles.Tectonophysics, 78(1-4):601-612.doi: 10.1016/0040-1951(81)90031-7 [56] Vitale, S., Mazzoli, S., 2010.Strain Analysis of Heterogeneous Ductile Shear Zones Based on the Attitudes of Planar Markers.Journal of Structural Geology, 32(3):321-329.doi: 10.1016/j.jsg.2010.01.002 [57] Wan, T.F., Zhu, H., 1996.The Maximum Sinistral Strike-Slip and Its Forming Age of Tancheng-Lujiang Fault Zone.Geological Journal of Universities, 2(1):14-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX601.001.htm [58] Wan, T.F., Zhu, H., Zhao, L., et al., 1996.Formation and Evolution of Tancheng-Lujiang Fault Zone:A Review.Geoscience-Journal of Graduate School, China University of Geosciences, 10(2):159-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ602.002.htm [59] Wang, C.Y., Lang, J.B., Zhou, X.D., et al., 2014.Progress and Proplems in the Study of Conodont Biostratigraphy in Jilin Province.Journal of Stratigraphy, 38(3):299-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201403005.htm [60] Wang, C.Y., Zheng, C.Z., Peng, Y.J., et al., 2000.A Conodont Fauna of Permian Northern Temperate Zone from the Fanjiatun Formation at Lijiayao, Jilin.Acta Micropalaeontologica Sinica, 17(4):430-442 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WSGT200004009.htm [61] Wang, S.Q., Sun, X.M., Du, J.Y., et al., 2012.Analysis of Structural Styles in Northern Segment of Tancheng-Lujiang Fault Zone.Geological Review, 58(3):414-425(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201203003.htm [62] Wang, Y.J., Fan, Z.Y., 1997.Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River, Nei Monggol and Its Geological Significance.Acta Palaeontologica Sinica, 36(1):60-71(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gswx701.004.htm [63] Wang, Y.S., Xiang, B.W., Zhu, G., et al., 2011.Structural and Geochronological Evidence for Early Cretaceous Orogen-Parallel Extension of the Ductile Lithosphere in the Northern Dabie Orogenic Belt, East China.Journal of Structural Geology, 33(3):362-380.doi: 10.1016/j.jsg.2010.09.002 [64] Wei, B., Pei, X.Z., Liu, C.J., et al., 2015.Structural Deformation of Xinyang-Yuanlong Ductile Shear Zone in Tianshui Area, Western Qinling Mountains, and Its Geological Significance.Geology in China, 42(1):51-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201501004.htm [65] Wei, H., Qu, T.X., 1994.A Discussion Some Problems about Paleostress Analysis with e-Twin of Calcite.Shanxi Mining Institute Learned Journal, 12(4):329-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXKY199404010.htm [66] Xia, H.R., Liu, J.L., 2011.The Crystallographic Preferred Orientation of Quartz and Its Applications.Geological Bulletin of China, 30(1):58-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201101007.htm [67] Xiang, B.W., Zhu, G., Wang, Y.S., et al., 2007.Mineral Deformation Thermometer for Mylonitization.Advances in Earth Science, 22(2):126-135(in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract3650.shtml [68] Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction(EBSD).Geoscience, 21(2):213-225(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm [69] Xu, J.W., Ma, G.F., 2012.Review of Ten Years (1981-1991) of Research on the Tancheng-Lujiang Fault Zone.Geological Review, 38(4):316-324(in Chinese with English abstract). [70] Xu, Z.Q., Cai, Z.H., Zhang, Z.M., et al., 2008.Tectonics and Fabric Kinematics of the Namche Barwa Terrane, Eastern Himalayan Syntaxis.Acta Petrologica Sinica, 24(7):1463-1476(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200807005.htm [71] Xu, Z.Q., Wang, Q., Liang, F.H., et al., 2009.Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamics.Acta Petrologica Sinica, 25(7):1721-1736(in Chinese with English abstract). http://www.oalib.com/paper/1472350 [72] Yan, S.Y., Zhang, B., Zhang, J.J., et al., 2016.Calcite Twins as a Tool for the Estimation of Paleostress Orientation on the Basis of Electron Backscatter Diffraction(EBSD) Technique.Geological Science and Technology Information, 35(4):50-54 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201604008.htm [73] Yang, J.H., Li, J.S., Zhang, P., 1988.The Characteristics of the Deformation of Calcite from Central Nanling Mt.and Its Geological Significance.Bull.Yichang Inst.Geol.Mineral Resources, CAGS, 13:81-92 (in Chinese with English abstract). [74] Yang, X.Y., 2005.On the Studies of Ductile Shear Zones:Their Geological Significance.Advances in Earth Science, 20(7):765-771(in Chinese with English abstract). http://www.adearth.ac.cn/EN/Y2005/V20/I7/765 [75] Yang, Z.T., 1985.The Microstructures of the Deformed Minerals and Their Research Methods.Northwestern Geology, 6:28-42 (in Chinese with English abstract). [76] Yao, D.Q., Zhai, H.T., 2004.Experimental Research of Microcosmic Indicator of Temperature Reversion Zero of Calcite's Deformation and Discussion of Correlation Problem.Earthquake Research in China, 20(3):269-275(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200206009.htm [77] Zhan, N.C., Hu, D.Q., Sun, G.S., et al., 2016.The Genetic Criteria of Clay Minerals in the Middle Permian Fanjiatun Formation, Eastern Changchun.2016 National Symposium on Mineral Science and Engineering, 56 (in Chinese). [78] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015.New Division of Tectonic-Strata Superregion in China.Earth Science, 40(2):206-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201502003.htm [79] Zheng, B.R., Jin, S.Y., 1989.Petrotectonics:Preferred Orientation in Deformed Rocks.China University of Geosciences Press, Wuhan, 98-180 (in Chinese). [80] Zheng, Y.D., Chang, Z.Z., 1995.Finite Strain Measurement and Ductile Shear Zones.Geological Publishing House, Beijing, 103-174 (in Chinese). [81] Zhong, Z.Q., Guo, B.L., 1991.Tectonite and Microstructure.China University of Geosciences Press, Wnhan, 95-102 (in Chinese). [82] Zhou, J.B., Zhang, X.Z., Ma, Z.H., et al., 2009.Tectonic Framework and Basin Evolution in Northeast China.Oil & Gas Geology, 30(5):530-538(in Chinese with English abstract). [83] Zhu, G., Liu, G.S., Dunlap, W.J., et al., 2004a.40Ar/39Ar Geochronological Constraints on Syn-Orogenic Strike-Slip Movement of Tan-Lu Fault Zone.Chinese Science Bulletin, 49(5):499-508.doi: 10.1007/bf02900972 [84] Zhu, G., Wang, D.X., Liu, G.S., et al., 2004b.Evolution of the Tan-Lu Fault Zone and Its Responses to Plate Movements in West Pacific Basin.Chinese Journal of Geology, 39(1):36-49(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200401005.htm [85] Zhu, G., Xu, Y.D., Liu, G.S., et al., 2006.Structural and Deformational Characteristics of Strike-Slippings along the Middle-Southern Sector of the Tan-Lu Fault Zone.Chinese Journal of Geology, 41(2):226-241, 255(in Chinese with English abstract). https://www.researchgate.net/publication/289087247_Structural_and... [86] 曹淑云, 刘俊来, 2006.岩石显微构造分析现代技术——EBSD技术及应用.地球科学进展, 21(10):1091-1096. doi: 10.3321/j.issn:1001-8166.2006.10.014 [87] 陈丕基, 1988.郯庐断裂巨大平移的时代与格局.科学通报, 33(4):289-293. http://www.irgrid.ac.cn/handle/1471x/484671?mode=full [88] 窦立荣, 宋建国, 王瑜, 1996.郯庐断裂带北段形成的年代学及其意义.地质论评, 42(6):508-512. http://www.cqvip.com/qk/91067X/19964206/2246276.html [89] 范和平, 谢明忠, 2006.邯郸-峰峰矿区显微构造分析.中国煤田地质, 18(4):15-17, 65. http://d.wanfangdata.com.cn/Periodical/zgmtdz200604006 [90] 韩国卿, 刘永江, 温泉波, 等, 2011.西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MS U-Pb年代学及其构造意义.地球科学, 36(4):687-702. http://www.earth-science.net/WebPage/Article.aspx?id=2137 [91] 胡达, 任升莲, 宋传中, 等, 2015.东秦岭陶湾岩群碳酸盐质糜棱岩的变质-变形特征及形成环境分析.地质论评, 61(5):1079-1088. doi: 10.16509/j.georeview.2015.05.010.html [92] 胡玲, 刘俊来, 纪沫, 等, 2009.变形显微构造识别手册.北京:地质出版社, 1-83. [93] 黄万夫, 1989.北京西山流动变形碳酸盐岩的微构造分析.现代地质, 3(2):223-234. http://www.cqvip.com/QK/96868X/198902/3001453834.html [94] 江富华, 1988.从断层岩中方解石的{0112}双晶及主晶光轴探讨小关冲断层的主应力方位.成都地质学院学报, 15(2):48-56, 99. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ601.008.htm [95] 李锦轶, 1986.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究.科学通报, 31(14):1093-1096. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198614014.htm [96] 李小兵, 裴先治, 刘成军, 等, 2014.东昆仑东段东昆中构造带韧性剪切作用及其地质意义.中国地质, 41(2):419-436. http://d.wanfangdata.com.cn/Periodical/zgdizhi201402009 [97] 梁琛岳, 刘永江, 李伟民, 等, 2016.医巫闾山变质核杂岩南段韧性变形与流变特征.岩石学报, 32(9):2656-2676. http://d.wanfangdata.com.cn/Periodical/ysxb98201609005 [98] 梁琛岳, 刘永江, 孟婧瑶, 等, 2015.舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算.地球科学, 40(1):115-129. http://www.earth-science.net/WebPage/Article.aspx?id=3017 [99] 刘俊来, 2004.上部地壳岩石流动与显微构造演化——天然与实验岩石变形证据.地学前缘, 11(4):503-509. http://www.cqvip.com/QK/98600X/200404/10851929.html [100] 刘俊来, 曹淑云, 邹运鑫, 等, 2008.岩石电子背散射衍射(EBSD)组构分析及应用.地质通报, 27(10):1638-1645. doi: 10.3969/j.issn.1671-2552.2008.10.005 [101] 刘金龙, 孙丰月, 林博磊, 等, 2015.吉林延边地区棉田岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 40(1):49-60. http://www.earth-science.net/WebPage/Article.aspx?id=3020 [102] 刘永江, 张兴洲, 金巍, 等, 2010.东北地区晚古生代区域构造演化.中国地质, 37(4):943-951. http://d.wanfangdata.com.cn/periodical/zgdizhi201004010 [103] 马胜利, 马瑾, 1987.石英和方解石剪切带变形组构的实验研究.地震地质, 9(4):1-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzdz198704000&dbname=CJFD&dbcode=CJFQ [104] 孟婧瑶, 刘永江, 梁琛岳, 等, 2013.佳-伊断裂带韧性变形特征.世界地质, 32(4):800-807. http://www.cnki.com.cn/Article/CJFDTotal-SJDZ201304019.htm [105] 宋传中, 柴乃序, 钱德玲, 1995.拉张状态下方解石组构的递进变形规律.西北地质科学, (2):23-28. http://www.cqvip.com/QK/95212A/199502/1917244.html [106] 宋鸿林, 1982.利用方解石的E双晶定主压应力轴方向的图解法.地球科学, 18(3):179-187, 341. http://www.cnki.com.cn/Article/CJFDTotal-DZGJ199201004.htm [107] 孙德有, 吴福元, 张艳斌, 等, 2004.西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据.吉林大学学报:地球科学版, 34(2):174-181. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm [108] 孙晓猛, 刘永江, 孙庆春, 等, 2008.敦密断裂带走滑运动的40Ar/39Ar年代学证据.吉林大学学报:地球科学版, 38(6):965-972. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200902024.htm [109] 孙晓猛, 龙胜祥, 张梅生, 等, 2006.佳木斯-伊通断裂带大型逆冲构造带的发现及形成时代.石油与天然气地质, 27(5):637-643. doi: 10.11743/ogg20060508 [110] 孙晓猛, 王书琴, 王英德, 等, 2010.郯庐断裂带北段构造特征及构造演化序列.岩石学报, 26(1):165-176. http://d.wanfangdata.com.cn/Periodical/ysxb98201001019 [111] 万天丰, 朱鸿, 1996.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报, 2(1):14-27. http://www.doc88.com/p-4963939089462.html [112] 万天丰, 朱鸿, 赵磊, 等, 1996.郯庐断裂带的形成与演化:综述.现代地质, 10(2):159-168. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz602.002&dbname=CJFD&dbcode=CJFQ [113] 王成源, 郎嘉彬, 周晓东, 等, 2014.吉林省牙形刺生物地层研究的进展与问题.地层学杂志, 38(3):299-304. http://www.cqvip.com/QK/92920X/201403/661876680.html [114] 王成源, 郑春子, 彭玉鲸, 等, 2000.吉林李家窑范家屯组中的二叠纪北温带牙形刺动物群.微体古生物学报, 17(4):430-442. http://www.cqvip.com/QK/90839X/200004/4740308.html [115] 王书琴, 孙晓猛, 杜继宇, 等, 2012.郯庐断裂带北段构造样式解析.地质论评, 58(3):414-425. http://www.doc88.com/p-4733401369353.html [116] 王玉净, 樊志勇, 1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报, 36(1):60-71. http://www.irgrid.ac.cn/handle/1471x/486560 [117] 魏博, 裴先治, 刘成军, 等, 2015.西秦岭天水地区新阳-元龙韧性剪切带构造变形特征及其地质意义.中国地质, 42(1):51-70. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201501004.htm [118] 卫宏, 渠天祥, 1994.方解石e双晶法求解古应力若干问题探讨.山西矿业学院学报, 12(4):329-334. http://www.cqvip.com/QK/96836X/199404/10992569.html [119] 夏浩然, 刘俊来, 2011.石英结晶学优选与应用.地质通报, 30(1):58-70. doi: 10.3969/j.issn.1671-2552.2011.01.006 [120] 向必伟, 朱光, 王勇生, 等, 2007.糜棱岩化过程中矿物变形温度计.地球科学进展, 22(2):126-135. http://d.wanfangdata.com.cn/Periodical/dqkxjz200702002 [121] 徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2):213-225. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ200702006.htm [122] 徐嘉炜, 马国锋, 1992.郯庐断裂带研究的十年回顾.地质论评, 38(4):316-324. http://www.cqvip.com/QK/91067X/199204/722738.html [123] 许志琴, 蔡志慧, 张泽明, 等, 2008.喜马拉雅东构造结——南迦巴瓦构造及组构运动学.岩石学报, 24(7):1463-1476. http://d.wanfangdata.com.cn/Periodical/ysxb98200807004 [124] 许志琴, 王勤, 梁凤华, 等, 2009.电子背散射衍射(EBSD)技术在大陆动力学研究中的应用.岩石学报, 25(7):1721-1736. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm [125] 闫淑玉, 张波, 张进江, 等, 2016.基于EBSD技术利用方解石双晶恢复古应力方向的研究.地质科技情报, 35(4):50-54. http://www.cqvip.com/QK/93477A/201604 [126] 杨杰华, 李劲松, 张萍, 1988.南岭中段方解石的变形特征及其意义.中国地质科学院宜昌地质矿产研究所所刊, 13:81-92. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198809002007.htm [127] 杨晓勇, 2005.论韧性剪切带研究及其地质意义.地球科学进展, 20(7):765-771. http://www.adearth.ac.cn/CN/Y2005/V20/I7/765 [128] 杨钟堂, 1985.变形矿物的显微构造及其研究方法.西北地质, 18(6):28-42. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xbdi198506005&dbname=CJFD&dbcode=CJFQ [129] 姚大全, 翟洪涛, 2004.方解石变形温度回零微观标志的实验研究和相关问题讨论.中国地震, 20(3):269-275. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG401.010.htm [130] 战乃臣, 胡大千, 孙国胜, 等, 2016. 长春东部中二叠统范家屯组黏土矿物成因标志. 2016年全国矿物科学与工程学术研讨会, 56. [131] 张克信, 潘桂棠, 何卫红, 等, 2015.中国构造-地层大区划分新方案.地球科学, 40(2):206-233. http://www.earth-science.net/WebPage/Article.aspx?id=3179 [132] 郑伯让, 金淑燕, 1989.构造岩岩组学:变形岩石的优选方位.武汉:中国地质大学出版社, 98-180. [133] 郑亚东, 常志忠, 1985.岩石有限应变测量及韧性剪切带.北京:地质出版社, 103-174. [134] 钟增球, 郭保罗, 1991.构造岩与显微构造.武汉:中国地质大学出版社, 95-102. [135] 周建波, 张兴洲, 马志红, 等, 2009.中国东北地区的构造格局与盆地演化.石油与天然气地质, 30(5):530-538. doi: 10.11743/ogg20090502 [136] 朱光, 刘国生, W.J.Dunlap, 等, 2004a.郯庐断裂带同造山走滑运动的40Ar/39Ar年代学证据.科学通报, 49(2):190-198. http://www.doc88.com/p-8505345118803.html [137] 朱光, 王道轩, 刘国生, 等, 2004b.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学, 39(1):36-49. http://www.cqvip.com/QK/94066X/2004001/9083783.html [138] 朱光, 徐佑德, 刘国生, 等, 2006.郯庐断裂带中-南段走滑构造特征与变形规律.地质科学, 41(2):226-241, 255. http://d.wanfangdata.com.cn/Periodical/dzkx200602006