Experimental on Numerical Simulation of the Impact of Lake Level Plane Fluctuation on Shallow Water Delta
-
摘要: 湖平面升降对三角洲沉积体的发育具有重要影响,前人对此做了相关研究,但对于其形成过程缺乏定量分析.利用水动力数值模拟的方法正演模拟了湖平面变化情况下浅水三角洲的形成过程并精确分析了其演化规律.根据现代河流三角洲的水动力特征,设计了水动力及泥沙条件,采用Delft3D模拟了湖平面上升和湖平面下降两种沉积过程.通过对浅水三角洲的模拟分析得到湖平面的升降对沉积体的形成与分布、河道的演化具有重要影响,结合平面和剖面分析发现沉积体的多期叠置现象.研究结果表明湖平面控制着沉积体的进退及其沉积特征,且利用水动力数值模拟方法可较好地揭示湖平面变化下浅水三角洲的演化过程.Abstract: Lake level fluctuation has an important influence on the development of delta sediments. However, previous studies have not included any quantitative analysis of the formation process. In this paper, the hydrodynamic numerical simulation method is used to simulate the formation process of the shallow water delta in the case of lake level fluctuation and to analyze its evolution law. According to the hydrodynamic characteristics of modern river delta, the hydrodynamic and sedimentary conditions were designed. Two sedementation processes of lake level fluctuation were simulated by Delft3D. The simulation analysis show that lake level fluctuation exerts great impact on the formation and distribution of the sediments, and the evolution of the river channel. Combined with plane and profile analysis, the multi-period superposition of sedimentary body was found. The results show that the lake level controls the advance and retreat of the sedimentary body and its sedimentary characteristics, and the hydrodynamic numerical simulation method can better reveal the evolution process of the shallow water delta in the case of lake levelfluctuation.
-
表 1 模型类别
Table 1. Model category
模型 流量
(m3/s)沉积物浓度
(kg/m3)出口水位
(m)河道宽度
(m)河床坡度
(°)S1 2 000 0.4 -2~(3~8) 600 0.002 S2 2 000 0.4 (8~3)~-2 600 0.002 表 2 模型参数
Table 2. Model parameters
基本参数 模拟设定值 网格分辨率 100 m×100 m 网格规模 30 000 模拟时长 360 d 时间步长 30 s 地貌演化系数 60 地貌演化间隔时间 720 min 泥沙输运方程 Van Rijn 沉积物组分 3 密度 2 650 kg/m3 河流长度 6.5 km 河流宽度 600 m 河流深度 3 m 河流流量 2 000 m3/s 沉积物类型(组分一)——粗砂 Non-Cohesive 中值粒径(组分一) 500 μm 干容重(组分一) 1 600 kg/m3 初始厚度(组分一) 15 m 沉积物类型(组分二)——细砂 Non-Cohesive 中值粒径(组分二) 200 μm 干容重(组分二) 1 600 kg/m3 初始厚度(组分二) 20 m 沉积物类型(组分三)——泥 Cohesive 干容重(组分三) 500 kg/m3 沉降速率(组分三) 0.25 mm/s 组分一的供给量(sand1) 0.15 kg/m3 组分二的供给量(sand2) 0.2 kg/m3 组分三的供给量(mud) 0.05 kg/m3 -
[1] Cai, X.Y., Xin, R.C., 2004.Numerical Simulation on Filling Process of Faulted Basin in Response to Lake-Level Change.Earth Science, 29(5):539-542 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200405005.htm [2] China River Sediment Bulletin, 2015.Prepared by Water Resources Department of the People's Republic of China.China Water Conservancy and Hydropower Press, Beijing (in Chinese). [3] Donaldson, A.C., 1974.Pennsylvanian Sedimentation of Central Appalachians.Geological Society of America Special Papers, 148:47-48. doi: 10.1130/SPE148 [4] Edmonds, D.A., Slingerland, R.L., 2009.Significant Effect of Sediment Cohesion on Delta Morphology.Nature Geoscience, 3(2):105-109.doi: 10.1038/NGEO730. [5] Fan, F.P., 2010.The Study of Hydrodynamic Simulation of Poyang Lake Based on Delft3D Model (Dissertation).Jiangxi Normal University, Nanchang (in Chinese with English abstract). [6] Fisk, H.N., Kolb, C.R., Mcfarlan, E., et al., 1954.Sedimentary Framework of the Modern Mississippi Delta.Journal of Sedimentary Petrology, 24(2):76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D [7] He, Y.B., Wang, G.W., 2007.Sedimentary Rocks and Sedimentary Facies.Petroleum Industry Press, Beijing (in Chinese). [8] He, Y.Z., Chen, H.D., Zhang, J.Q., 2002.Discussion on Sedimentation Mechanism of Two Kind Deltas from Permian-Carboniferous of Central Ordos Basin.Oil & Gas Geology, 22(1):68-71 (in Chinese with English abstract). [9] Hu, S.W., Zhai, S.L., 2013.Lake Plane Variation of Dongying Formation in Liaozhong Depression.Science of Surveying and Mapping, 38(2):56-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHKD201302017.htm [10] Huang, X., Liu, K.Y., Zou, C.N., et al., 2013.Forward Stratigraphic Modelling of the Depositional Process and Evolution of Shallow Water Deltas in the Poyang Lake, Southern China.Earth Science, 38(5):1005-1013 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305012.htm [11] Li, J., Chen, H.D., Lin, L.B., et al., 2011.Genesis and Distribution Pattern of Shallow Water Delta Sandbodies in Menber 8 of Lower Shihezi Formation in the Northwest of Ordos Basin.Journal of Chengdu University of Technology (Science & Technology Edition), 38(2):132-139 (in Chinese with English abstract). [12] Liao, G.Q., 2013.Research on the Hydrodynamic and Sediment Numerical Simulation of Liuhe Based on Delft3D (Dissertation).Tsinghua University, Beijing (in Chinese with English abstract). [13] Lou, Z.H., 1999.Controls of the Topography, Climate and Lake Level Fluctuation on the Depositional Environment of a Shallow-Water Delta.Acta Geologica Sinica, 73(1):83-92 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1878522011000397 [14] Ma, J.W., Liu, Z.B., Yin, T.J., et al., 2012.Sedimentary Simulation of Xujiahe Fomation and Depositional Mechanism of Large Area Sandstone.Acta Sedmentologica Sinica, 30(1):101-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201201011.htm [15] Porebski, S.J., Steel, R.J., 2006.Deltas and Sea-Level Change.Journal of Sedimentary Research, 76:390-403.doi: 10.2110/jsr.2006.034. [16] Postma, G., 1990.An Analysis of the Variation in Delta Architecture.Terra Nova, 2(2):124-130. doi: 10.1111/ter.1990.2.issue-2 [17] Schuurman, F., Shimizu, Y., Iwasaki, T., et al., 2015.Dynamic Meandering in Response to Upstream Perturbations and Floodplain Formation.Geomorphology, 253(5):94-109. https://www.narcis.nl/publication/RecordID/oai%3Adspace.library.uu.nl%3A1874%2F330248 [18] Shao, Z.Y., 2013.Two-Dimensional Hydrodynamic Numerical Simulation of Chengtong Reach of Yangtze River.J.of China Three Gorges Univ.(Natural Sciences), 35(1):22-25 (in Chinese with English abstract). doi: 10.1186/2193-2697-3-5 [19] Shi, S.S., Ren, J.Y., Zhang, S., et al., 2012.Sequence Stratigraphic Framework and Its Foemation Mechanism of Post-Rift Inversion Successions in North of Songliao Basin, China.Earth Science, 37(3):545-555 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/949573?mode=full&submit_simple=Show+full+item+record [20] User Manual of Delft3D-Flow, 2013.Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments.Published and Printed by Deltares, Netherlands. [21] Wang, Y.J., Yin, T.J., Deng, Z.H., et al., 2016.Terminal Distributary Channels in Fluvial-Dominated Delta Systems from Numerical Simulation of Hydrodynamics.Geological Science and Technology Information, 35(1):44-52 (in Chinese with English abstract). doi: 10.1029/2006JF000574/full [22] Wang, Y.Q., 2009.Effect of Lake Level Fluctuations on Turbidite Fan Development in Wang 58 Block.Northwestern Geology, 42(1):51-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200901006.htm [23] Yin, T.J., Li, X.Y., Zhang, C.M., et al., 2012.Sandbody Shaoe of Modern Shallow Lake Basin Delta Sediments-By Taking Dongting Lake and Poyang Lake for Example.Journal of Oil and Gas Technology, 34(10):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXW201501022.htm [24] Yue, S.F., Wang, H., Yan, D.T., et al., 2016.The Sedimentary Characteristics and Evolution Law of Trassic, Luoyi District.Earth Science, 41(10):1683-1695 (in Chinese with English abstract). [25] Zeng, Z.W., Yang, X.H., Zhu, H.T., et al., 2017.Development Characteristics and Significance of Large Delta of Upper Enping Formation, Baiyun Sag.Earth Science, 42(1):78-92 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201701006 [26] Zhang, C.M., Yin, T.J., Zhu, Y.J., et al., 2010.Shallow-Water Deltas and Models.Acta Sedmentologica Sinica, 28(5):933-944 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xddz200904011 [27] Zhou, S.M., Xue, H.X., Tang, W.Y., et al., 2013.Numerical Simulation of Smoke Diffusion for the Generator Exhaust System of Semi-Submersible Platform.Ship & Ocean Engineering, 42(1):132-136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHZC201301037.htm [28] Zhu, W.L., Li, J.P., Zhou, X.H., et al., 2008.Neogene Shallow Water Deltaic System and Large Hydrocarbon Accumulations in Bohai Bay China.Acta Sedmentologica Sinica, 26(4):575-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200804007.htm [29] Zhu, X.M., Liu, Y., Fang, Q., et al., 2012.Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake.Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin.Earth Science Frontiers, 19(1):89-99 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201201013 [30] Zhu, X.M., Pan, R., Zhao, D.N., et al., 2013.Formation and Development of Shallow-Water Deltas in Lacustrine Basin and Typical Case Analyses.Journal of China University of Petroleum, 37(5):7-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201305003.htm [31] Zhu, Y.J., Yin, T.J., Liu, L.L., 2011.Progress and Discussion on Shallow-Water Delta Sediment.Journal of Oil and Gas Technology, 33(3):22-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201103004.htm [32] Zou, C.N., Zhao, W.Z., Zhang, X.Y., et al., 2008.Formation and Distribution of Shallow-Water Deltas and Central-Basin Sandbodies in Large Open Depression Lake Basins.Acta Geologica Sinica, 82(6):813-825 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806012.htm [33] 蔡希源, 辛仁臣, 2004.湖平面相对升降对断陷湖盆充填过程影响的数值模拟.地球科学, 29(5):539-542. http://www.earth-science.net/WebPage/Article.aspx?id=1483 [34] 范翻平, 2010. 基于Delft3D模型的鄱阳湖水动力模拟研究(硕士学位论文). 南昌: 江西师范大学. [35] 何义中, 陈洪德, 张锦泉, 2002.鄂尔多斯盆地中部石炭-二叠系两类三角洲沉积机理探讨.石油与天然气地质, 22(1):68-71. http://d.wanfangdata.com.cn/Periodical/syytrqdz200101016 [36] 何幼斌, 王文广, 2007.沉积岩与沉积相.北京:石油工业出版社. [37] 胡圣武, 翟书礼, 2013.辽中凹陷东营期湖平面变化研究.测绘科学, 38(2):56-58. http://d.wanfangdata.com.cn/Periodical/chkx201302018 [38] 黄秀, 刘可禹, 邹才能, 等, 2013.鄱阳湖浅水三角洲沉积体系三维定量正演模拟.地球科学, 38(5):1005-1013. http://www.earth-science.net/WebPage/Article.aspx?id=2775 [39] 李洁, 陈洪德, 林良彪, 等, 2011.鄂尔多斯盆地西北部盒8段浅水三角洲砂体成因及分布模式.成都理工大学学报(自然科学版), 38(2):132-139. http://d.wanfangdata.com.cn/Periodical/cdlgxyxb201102004 [40] 廖庚强, 2013. 基于Delft3D的柳河水动力与泥沙数值模拟研究(硕士学位论文). 北京: 清华大学. http://cdmd.cnki.com.cn/Article/CDMD-10003-1014021207.htm [41] 楼章华, 1999.地形、气候与湖面波动对浅水三角洲沉积环境的控制作用:以松辽盆地北部东区葡萄花油层为例.地质学报, 73(1):83-92. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199901009&dbname=CJFD&dbcode=CJFQ [42] 马晋文, 刘忠保, 尹太举, 等, 2012.须家河组沉积模拟实验及大面积砂岩成因机理分析.沉积学报, 30(1):101-110. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201201011&dbname=CJFD&dbcode=CJFQ [43] 邵准远, 2013.长江澄通河段二维水动力数值模拟研究.三峡大学学报(自然科学版), 35(1):22-25. http://d.wanfangdata.com.cn/Periodical/whsldldxxb-yc201301005 [44] 史双双, 任建业, 张顺, 等, 2012.松辽盆地北部裂后反转期层序地层格架及其形成机制.地球科学, 37(3):545-555. http://www.earth-science.net/WebPage/Article.aspx?id=2258 [45] 王亚青, 2009.湖平面变化对王58地区浊积扇形成与演化的控制作用研究.西北地质, 42(1):51-56. http://d.wanfangdata.com.cn/Periodical/xbdz200901004 [46] 王杨君, 尹太举, 邓智浩, 等, 2016.水动力数值模拟的河控三角洲分支河道演化研究.地质科技情报, 35(1):44-52. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201601007&dbname=CJFD&dbcode=CJFQ [47] 尹太举, 李宣玥, 张昌民, 等, 2012.现代浅水湖盆三角洲沉积砂体形态特征——以洞庭湖和鄱阳湖为例.石油天然气学报, 34(10):1-7. doi: 10.3969/j.issn.1000-9752.2012.10.001 [48] 岳绍飞, 王华, 严德天, 等, 2016.洛伊地区三叠系沉积体系特征及演化规律.地球科学, 41(10):1683-1695. http://www.earth-science.net/WebPage/Article.aspx?id=3371 [49] 张昌民, 尹太举, 朱永进, 等, 2010.浅水三角洲沉积模式.沉积学报, 28(5):933-944. http://d.wanfangdata.com.cn/Periodical/dizhixb201010011 [50] 曾智伟, 杨香华, 朱红涛, 等, 2017.白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义.地球科学, 42(1):78-92. http://www.earth-science.net/WebPage/Article.aspx?id=3416 [51] 中国河流泥沙公报, 2015.中华人民共和国水利部编.北京:中国水利水电出版社. [52] 周书敏, 薛鸿祥, 唐文勇, 等, 2013.半潜式平台发电机排气系统烟气扩散数值仿真研究.航海工程, 42(1):132-136. http://d.wanfangdata.com.cn/Periodical/whzc201301036 [53] 朱伟林, 李建平, 周心怀, 等, 2008.渤海新近系浅水三角洲沉积体系与大型油气田勘探.沉积学报, 26(4):575-582. http://d.wanfangdata.com.cn/Periodical/cjxb200804005 [54] 朱筱敏, 刘媛, 方庆, 等, 2012.大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例.地学前缘, 19(1):89-99. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201201012&dbname=CJFD&dbcode=CJFQ [55] 朱筱敏, 潘荣, 赵东娜, 等, 2013.湖盆浅水三角洲形成发育与实例分析.中国石油大学学报(自然科学版), 37(5):7-14. http://d.wanfangdata.com.cn/Periodical/sydxxb201305002 [56] 朱永进, 尹太举, 刘玲利, 2011.浅水型三角洲沉积研究进展及问题讨论.石油天然气学报, 33(3):22-26. http://d.wanfangdata.com.cn/Periodical/jhsyxyxb201103005 [57] 邹才能, 赵文智, 张兴阳, 等, 2008.大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布.地质学报, 82(6):813-825. http://d.wanfangdata.com.cn/Periodical/dizhixb200806011