• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖平面升降对浅水三角洲影响的沉积数值模拟实验

    曾灿 尹太举 宋亚开

    曾灿, 尹太举, 宋亚开, 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095-2104. doi: 10.3799/dqkx.2017.134
    引用本文: 曾灿, 尹太举, 宋亚开, 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095-2104. doi: 10.3799/dqkx.2017.134
    Zeng Can, Yin Taiju, Song Yakai, 2017. Experimental on Numerical Simulation of the Impact of Lake Level Plane Fluctuation on Shallow Water Delta. Earth Science, 42(11): 2095-2104. doi: 10.3799/dqkx.2017.134
    Citation: Zeng Can, Yin Taiju, Song Yakai, 2017. Experimental on Numerical Simulation of the Impact of Lake Level Plane Fluctuation on Shallow Water Delta. Earth Science, 42(11): 2095-2104. doi: 10.3799/dqkx.2017.134

    湖平面升降对浅水三角洲影响的沉积数值模拟实验

    doi: 10.3799/dqkx.2017.134
    基金项目: 

    国家重大专项 2016ZX05058-001-002

    国家自然科学基金项目 41672119

    国家重大专项 2016ZX05024-003-004

    详细信息
      作者简介:

      曾灿(1992-), 女, 正在攻读地质工程专业硕士, 主要从事沉积储层方面的研究

      通讯作者:

      尹太举

    • 中图分类号: P618.13

    Experimental on Numerical Simulation of the Impact of Lake Level Plane Fluctuation on Shallow Water Delta

    • 摘要: 湖平面升降对三角洲沉积体的发育具有重要影响,前人对此做了相关研究,但对于其形成过程缺乏定量分析.利用水动力数值模拟的方法正演模拟了湖平面变化情况下浅水三角洲的形成过程并精确分析了其演化规律.根据现代河流三角洲的水动力特征,设计了水动力及泥沙条件,采用Delft3D模拟了湖平面上升和湖平面下降两种沉积过程.通过对浅水三角洲的模拟分析得到湖平面的升降对沉积体的形成与分布、河道的演化具有重要影响,结合平面和剖面分析发现沉积体的多期叠置现象.研究结果表明湖平面控制着沉积体的进退及其沉积特征,且利用水动力数值模拟方法可较好地揭示湖平面变化下浅水三角洲的演化过程.

       

    • 图  1  模型主要部分的流程配置关系

      Fig.  1.  Process configuration relational of the main part of the model

      图  2  初始底型三维示意

      Fig.  2.  Initial bed level figure

      图  3  三角洲演化过程中典型时间切片地貌分布

      左侧为模型S1(-2~(3~8));右侧为模型S2((8~3)~-2)

      Fig.  3.  Typical time slice geomorphic distribution in delta evolution

      图  4  三角洲演化过程中典型时间切片沉积厚度

      左侧为模型S1(-2~(3~8));右侧为模型S2((8~3)~-2)

      Fig.  4.  Typical time slice deposition thickness in delta evolution

      图  5  河道改道演变过程

      a.T=500时刻河道位置;b.T=500时刻平均流速图上河道分布;c.T=600时刻河道位置;d.T=600时刻平均流速图上河道分布(流速大的地方表示河道的分布位置)

      Fig.  5.  River diversion evolution process

      图  6  三角洲形态演化

      a.T=1 000时刻地貌分布;b.T=1 450时刻地貌分布

      Fig.  6.  Delta morphology evolution figure

      图  7  模型典型时刻生长速率分布

      a.模型S1典型时刻生长速率;b.模型S2典型时刻生长速率

      Fig.  7.  Model typical time growth rate distribution figure

      图  8  模型典型时刻沉积体宽厚比分布

      蓝色为模型S1(-2~(3~8));红色为模型S2((8~3)~-2)

      Fig.  8.  Model typical time sedimentary body width thickness ratio distribution figure

      图  9  模型最后时刻(T=4 405)剖面位置

      左侧为模型S1(-2~(3~8));右侧为模型S2((8~3)~-2)

      Fig.  9.  Model last time (T=4 405) profile position figure

      图  10  模型S1三角洲沉积地貌

      时间1~时间4表示各期次的时间递进;左侧为纵剖面(垂直物源m=76);右侧为横剖面(顺物源n=118)

      Fig.  10.  Model S1 delta sedimentary topography figure

      图  11  模型S2三角洲沉积地貌

      说明同图 10

      Fig.  11.  Model S2 delta sedimentary topography figure

      表  1  模型类别

      Table  1.   Model category

      模型 流量
      (m3/s)
      沉积物浓度
      (kg/m3)
      出口水位
      (m)
      河道宽度
      (m)
      河床坡度
      (°)
      S1 2 000 0.4 -2~(3~8) 600 0.002
      S2 2 000 0.4 (8~3)~-2 600 0.002
      下载: 导出CSV

      表  2  模型参数

      Table  2.   Model parameters

      基本参数 模拟设定值
      网格分辨率 100 m×100 m
      网格规模 30 000
      模拟时长 360 d
      时间步长 30 s
      地貌演化系数 60
      地貌演化间隔时间 720 min
      泥沙输运方程 Van Rijn
      沉积物组分 3
      密度 2 650 kg/m3
      河流长度 6.5 km
      河流宽度 600 m
      河流深度 3 m
      河流流量 2 000 m3/s
      沉积物类型(组分一)——粗砂 Non-Cohesive
      中值粒径(组分一) 500 μm
      干容重(组分一) 1 600 kg/m3
      初始厚度(组分一) 15 m
      沉积物类型(组分二)——细砂 Non-Cohesive
      中值粒径(组分二) 200 μm
      干容重(组分二) 1 600 kg/m3
      初始厚度(组分二) 20 m
      沉积物类型(组分三)——泥 Cohesive
      干容重(组分三) 500 kg/m3
      沉降速率(组分三) 0.25 mm/s
      组分一的供给量(sand1) 0.15 kg/m3
      组分二的供给量(sand2) 0.2 kg/m3
      组分三的供给量(mud) 0.05 kg/m3
      下载: 导出CSV
    • [1] Cai, X.Y., Xin, R.C., 2004.Numerical Simulation on Filling Process of Faulted Basin in Response to Lake-Level Change.Earth Science, 29(5):539-542 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200405005.htm
      [2] China River Sediment Bulletin, 2015.Prepared by Water Resources Department of the People's Republic of China.China Water Conservancy and Hydropower Press, Beijing (in Chinese).
      [3] Donaldson, A.C., 1974.Pennsylvanian Sedimentation of Central Appalachians.Geological Society of America Special Papers, 148:47-48. doi: 10.1130/SPE148
      [4] Edmonds, D.A., Slingerland, R.L., 2009.Significant Effect of Sediment Cohesion on Delta Morphology.Nature Geoscience, 3(2):105-109.doi: 10.1038/NGEO730.
      [5] Fan, F.P., 2010.The Study of Hydrodynamic Simulation of Poyang Lake Based on Delft3D Model (Dissertation).Jiangxi Normal University, Nanchang (in Chinese with English abstract).
      [6] Fisk, H.N., Kolb, C.R., Mcfarlan, E., et al., 1954.Sedimentary Framework of the Modern Mississippi Delta.Journal of Sedimentary Petrology, 24(2):76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D
      [7] He, Y.B., Wang, G.W., 2007.Sedimentary Rocks and Sedimentary Facies.Petroleum Industry Press, Beijing (in Chinese).
      [8] He, Y.Z., Chen, H.D., Zhang, J.Q., 2002.Discussion on Sedimentation Mechanism of Two Kind Deltas from Permian-Carboniferous of Central Ordos Basin.Oil & Gas Geology, 22(1):68-71 (in Chinese with English abstract).
      [9] Hu, S.W., Zhai, S.L., 2013.Lake Plane Variation of Dongying Formation in Liaozhong Depression.Science of Surveying and Mapping, 38(2):56-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHKD201302017.htm
      [10] Huang, X., Liu, K.Y., Zou, C.N., et al., 2013.Forward Stratigraphic Modelling of the Depositional Process and Evolution of Shallow Water Deltas in the Poyang Lake, Southern China.Earth Science, 38(5):1005-1013 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305012.htm
      [11] Li, J., Chen, H.D., Lin, L.B., et al., 2011.Genesis and Distribution Pattern of Shallow Water Delta Sandbodies in Menber 8 of Lower Shihezi Formation in the Northwest of Ordos Basin.Journal of Chengdu University of Technology (Science & Technology Edition), 38(2):132-139 (in Chinese with English abstract).
      [12] Liao, G.Q., 2013.Research on the Hydrodynamic and Sediment Numerical Simulation of Liuhe Based on Delft3D (Dissertation).Tsinghua University, Beijing (in Chinese with English abstract).
      [13] Lou, Z.H., 1999.Controls of the Topography, Climate and Lake Level Fluctuation on the Depositional Environment of a Shallow-Water Delta.Acta Geologica Sinica, 73(1):83-92 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1878522011000397
      [14] Ma, J.W., Liu, Z.B., Yin, T.J., et al., 2012.Sedimentary Simulation of Xujiahe Fomation and Depositional Mechanism of Large Area Sandstone.Acta Sedmentologica Sinica, 30(1):101-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201201011.htm
      [15] Porebski, S.J., Steel, R.J., 2006.Deltas and Sea-Level Change.Journal of Sedimentary Research, 76:390-403.doi: 10.2110/jsr.2006.034.
      [16] Postma, G., 1990.An Analysis of the Variation in Delta Architecture.Terra Nova, 2(2):124-130. doi: 10.1111/ter.1990.2.issue-2
      [17] Schuurman, F., Shimizu, Y., Iwasaki, T., et al., 2015.Dynamic Meandering in Response to Upstream Perturbations and Floodplain Formation.Geomorphology, 253(5):94-109. https://www.narcis.nl/publication/RecordID/oai%3Adspace.library.uu.nl%3A1874%2F330248
      [18] Shao, Z.Y., 2013.Two-Dimensional Hydrodynamic Numerical Simulation of Chengtong Reach of Yangtze River.J.of China Three Gorges Univ.(Natural Sciences), 35(1):22-25 (in Chinese with English abstract). doi: 10.1186/2193-2697-3-5
      [19] Shi, S.S., Ren, J.Y., Zhang, S., et al., 2012.Sequence Stratigraphic Framework and Its Foemation Mechanism of Post-Rift Inversion Successions in North of Songliao Basin, China.Earth Science, 37(3):545-555 (in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/949573?mode=full&submit_simple=Show+full+item+record
      [20] User Manual of Delft3D-Flow, 2013.Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments.Published and Printed by Deltares, Netherlands.
      [21] Wang, Y.J., Yin, T.J., Deng, Z.H., et al., 2016.Terminal Distributary Channels in Fluvial-Dominated Delta Systems from Numerical Simulation of Hydrodynamics.Geological Science and Technology Information, 35(1):44-52 (in Chinese with English abstract). doi: 10.1029/2006JF000574/full
      [22] Wang, Y.Q., 2009.Effect of Lake Level Fluctuations on Turbidite Fan Development in Wang 58 Block.Northwestern Geology, 42(1):51-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200901006.htm
      [23] Yin, T.J., Li, X.Y., Zhang, C.M., et al., 2012.Sandbody Shaoe of Modern Shallow Lake Basin Delta Sediments-By Taking Dongting Lake and Poyang Lake for Example.Journal of Oil and Gas Technology, 34(10):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXW201501022.htm
      [24] Yue, S.F., Wang, H., Yan, D.T., et al., 2016.The Sedimentary Characteristics and Evolution Law of Trassic, Luoyi District.Earth Science, 41(10):1683-1695 (in Chinese with English abstract).
      [25] Zeng, Z.W., Yang, X.H., Zhu, H.T., et al., 2017.Development Characteristics and Significance of Large Delta of Upper Enping Formation, Baiyun Sag.Earth Science, 42(1):78-92 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201701006
      [26] Zhang, C.M., Yin, T.J., Zhu, Y.J., et al., 2010.Shallow-Water Deltas and Models.Acta Sedmentologica Sinica, 28(5):933-944 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/xddz200904011
      [27] Zhou, S.M., Xue, H.X., Tang, W.Y., et al., 2013.Numerical Simulation of Smoke Diffusion for the Generator Exhaust System of Semi-Submersible Platform.Ship & Ocean Engineering, 42(1):132-136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHZC201301037.htm
      [28] Zhu, W.L., Li, J.P., Zhou, X.H., et al., 2008.Neogene Shallow Water Deltaic System and Large Hydrocarbon Accumulations in Bohai Bay China.Acta Sedmentologica Sinica, 26(4):575-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200804007.htm
      [29] Zhu, X.M., Liu, Y., Fang, Q., et al., 2012.Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake.Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin.Earth Science Frontiers, 19(1):89-99 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201201013
      [30] Zhu, X.M., Pan, R., Zhao, D.N., et al., 2013.Formation and Development of Shallow-Water Deltas in Lacustrine Basin and Typical Case Analyses.Journal of China University of Petroleum, 37(5):7-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201305003.htm
      [31] Zhu, Y.J., Yin, T.J., Liu, L.L., 2011.Progress and Discussion on Shallow-Water Delta Sediment.Journal of Oil and Gas Technology, 33(3):22-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201103004.htm
      [32] Zou, C.N., Zhao, W.Z., Zhang, X.Y., et al., 2008.Formation and Distribution of Shallow-Water Deltas and Central-Basin Sandbodies in Large Open Depression Lake Basins.Acta Geologica Sinica, 82(6):813-825 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200806012.htm
      [33] 蔡希源, 辛仁臣, 2004.湖平面相对升降对断陷湖盆充填过程影响的数值模拟.地球科学, 29(5):539-542. http://www.earth-science.net/WebPage/Article.aspx?id=1483
      [34] 范翻平, 2010. 基于Delft3D模型的鄱阳湖水动力模拟研究(硕士学位论文). 南昌: 江西师范大学.
      [35] 何义中, 陈洪德, 张锦泉, 2002.鄂尔多斯盆地中部石炭-二叠系两类三角洲沉积机理探讨.石油与天然气地质, 22(1):68-71. http://d.wanfangdata.com.cn/Periodical/syytrqdz200101016
      [36] 何幼斌, 王文广, 2007.沉积岩与沉积相.北京:石油工业出版社.
      [37] 胡圣武, 翟书礼, 2013.辽中凹陷东营期湖平面变化研究.测绘科学, 38(2):56-58. http://d.wanfangdata.com.cn/Periodical/chkx201302018
      [38] 黄秀, 刘可禹, 邹才能, 等, 2013.鄱阳湖浅水三角洲沉积体系三维定量正演模拟.地球科学, 38(5):1005-1013. http://www.earth-science.net/WebPage/Article.aspx?id=2775
      [39] 李洁, 陈洪德, 林良彪, 等, 2011.鄂尔多斯盆地西北部盒8段浅水三角洲砂体成因及分布模式.成都理工大学学报(自然科学版), 38(2):132-139. http://d.wanfangdata.com.cn/Periodical/cdlgxyxb201102004
      [40] 廖庚强, 2013. 基于Delft3D的柳河水动力与泥沙数值模拟研究(硕士学位论文). 北京: 清华大学. http://cdmd.cnki.com.cn/Article/CDMD-10003-1014021207.htm
      [41] 楼章华, 1999.地形、气候与湖面波动对浅水三角洲沉积环境的控制作用:以松辽盆地北部东区葡萄花油层为例.地质学报, 73(1):83-92. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199901009&dbname=CJFD&dbcode=CJFQ
      [42] 马晋文, 刘忠保, 尹太举, 等, 2012.须家河组沉积模拟实验及大面积砂岩成因机理分析.沉积学报, 30(1):101-110. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201201011&dbname=CJFD&dbcode=CJFQ
      [43] 邵准远, 2013.长江澄通河段二维水动力数值模拟研究.三峡大学学报(自然科学版), 35(1):22-25. http://d.wanfangdata.com.cn/Periodical/whsldldxxb-yc201301005
      [44] 史双双, 任建业, 张顺, 等, 2012.松辽盆地北部裂后反转期层序地层格架及其形成机制.地球科学, 37(3):545-555. http://www.earth-science.net/WebPage/Article.aspx?id=2258
      [45] 王亚青, 2009.湖平面变化对王58地区浊积扇形成与演化的控制作用研究.西北地质, 42(1):51-56. http://d.wanfangdata.com.cn/Periodical/xbdz200901004
      [46] 王杨君, 尹太举, 邓智浩, 等, 2016.水动力数值模拟的河控三角洲分支河道演化研究.地质科技情报, 35(1):44-52. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201601007&dbname=CJFD&dbcode=CJFQ
      [47] 尹太举, 李宣玥, 张昌民, 等, 2012.现代浅水湖盆三角洲沉积砂体形态特征——以洞庭湖和鄱阳湖为例.石油天然气学报, 34(10):1-7. doi: 10.3969/j.issn.1000-9752.2012.10.001
      [48] 岳绍飞, 王华, 严德天, 等, 2016.洛伊地区三叠系沉积体系特征及演化规律.地球科学, 41(10):1683-1695. http://www.earth-science.net/WebPage/Article.aspx?id=3371
      [49] 张昌民, 尹太举, 朱永进, 等, 2010.浅水三角洲沉积模式.沉积学报, 28(5):933-944. http://d.wanfangdata.com.cn/Periodical/dizhixb201010011
      [50] 曾智伟, 杨香华, 朱红涛, 等, 2017.白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义.地球科学, 42(1):78-92. http://www.earth-science.net/WebPage/Article.aspx?id=3416
      [51] 中国河流泥沙公报, 2015.中华人民共和国水利部编.北京:中国水利水电出版社.
      [52] 周书敏, 薛鸿祥, 唐文勇, 等, 2013.半潜式平台发电机排气系统烟气扩散数值仿真研究.航海工程, 42(1):132-136. http://d.wanfangdata.com.cn/Periodical/whzc201301036
      [53] 朱伟林, 李建平, 周心怀, 等, 2008.渤海新近系浅水三角洲沉积体系与大型油气田勘探.沉积学报, 26(4):575-582. http://d.wanfangdata.com.cn/Periodical/cjxb200804005
      [54] 朱筱敏, 刘媛, 方庆, 等, 2012.大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例.地学前缘, 19(1):89-99. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201201012&dbname=CJFD&dbcode=CJFQ
      [55] 朱筱敏, 潘荣, 赵东娜, 等, 2013.湖盆浅水三角洲形成发育与实例分析.中国石油大学学报(自然科学版), 37(5):7-14. http://d.wanfangdata.com.cn/Periodical/sydxxb201305002
      [56] 朱永进, 尹太举, 刘玲利, 2011.浅水型三角洲沉积研究进展及问题讨论.石油天然气学报, 33(3):22-26. http://d.wanfangdata.com.cn/Periodical/jhsyxyxb201103005
      [57] 邹才能, 赵文智, 张兴阳, 等, 2008.大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布.地质学报, 82(6):813-825. http://d.wanfangdata.com.cn/Periodical/dizhixb200806011
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  5147
    • HTML全文浏览量:  1744
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-12
    • 刊出日期:  2017-11-15

    目录

      /

      返回文章
      返回