• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大港探区上古生界沉积特征与控制因素

    侯中帅 陈世悦 鄢继华 付立新 李宏军 冯建园

    侯中帅, 陈世悦, 鄢继华, 付立新, 李宏军, 冯建园, 2017. 大港探区上古生界沉积特征与控制因素. 地球科学, 42(11): 2055-2068, 2104. doi: 10.3799/dqkx.2017.131
    引用本文: 侯中帅, 陈世悦, 鄢继华, 付立新, 李宏军, 冯建园, 2017. 大港探区上古生界沉积特征与控制因素. 地球科学, 42(11): 2055-2068, 2104. doi: 10.3799/dqkx.2017.131
    Hou Zhongshuai, Chen Shiyue, Yan Jihua, Fu Lixin, Li Hongjun, Feng Jianyuan, 2017. Sedimentary Characteristics and Control Factors of Upper Palaeozoic in Dagang Exploration Area. Earth Science, 42(11): 2055-2068, 2104. doi: 10.3799/dqkx.2017.131
    Citation: Hou Zhongshuai, Chen Shiyue, Yan Jihua, Fu Lixin, Li Hongjun, Feng Jianyuan, 2017. Sedimentary Characteristics and Control Factors of Upper Palaeozoic in Dagang Exploration Area. Earth Science, 42(11): 2055-2068, 2104. doi: 10.3799/dqkx.2017.131

    大港探区上古生界沉积特征与控制因素

    doi: 10.3799/dqkx.2017.131
    基金项目: 

    国家油气重大专项 2016ZX05006-007

    详细信息
      作者简介:

      侯中帅(1990-), 男, 博士研究生, 从事沉积学及层序地层学方面研究

      通讯作者:

      陈世悦

    • 中图分类号: P618

    Sedimentary Characteristics and Control Factors of Upper Palaeozoic in Dagang Exploration Area

    • 摘要: 大港探区上古生界近期取得一系列勘探突破,展现出良好的勘探前景,已成为重要的储量接替领域.但其勘探程度较低,对于沉积相类型与沉积演化认识上的欠缺制约着该层系勘探的深入和井位的部署.以沉积学理论为指导,在岩心、薄片、测井和录井等资料研究的基础上,明确了区内上古生界各组发育的沉积相类型与沉积演化过程,分析了沉积相发育的控制因素.研究表明,区内本溪组发育障壁海岸相和碳酸盐台地相,太原组发育障壁海岸相、碳酸盐台地相和湿地相,山西组发育浅水三角洲相,下石盒子组和上石盒子组发育河流相.本溪组至上石盒子组的沉积相类型反映了晚古生代海侵作用的肇始、发展、衰退的过程.构造作用、海平面变化和古气候共同控制着沉积相类型的发育.

       

    • 图  1  大港探区区域位置

      Fig.  1.  The position of Dagang exploration area

      图  2  大港探区上古生界典型沉积相类型

      a.台地与潟湖相,Z1501井,本溪组;b.潮坪相,KG4井,太原组;c.潮道相,HG1井,太原组;d.障壁岛相,CH1井,太原组;e.三角洲相,GG16101井,山西组;f.曲流河相,KG1601井,下石盒子组;g.辫状河相,ZH3X1井,下石盒子组;h.阵发性河相,GG1601井,上石盒子组

      Fig.  2.  Typical Upper Palaeozoic sedimentary facies in Dagang exploration area

      图  3  大港探区与周缘露头太原组岩性、沉积构造及露头特征

      a.脉状层理,砂坪,GG16102井,2 186.04 m;b.波状层理,混合坪,GG16102井,2 191.63 m;c.透镜状层理,泥坪,KG8井,2 815.39 m;d.砂岩底部泥砾,潮道,GG16102井,2 193.53 m;e.砂岩中泥质夹层,潮道,GG16102井,2 193.33 m;f.砂岩透镜体,潮道,淄博博山剖面;g.碳质泥岩,潟湖,JH1井,2 473.69 m;h.泥岩中动物化石,潟湖,GG16102井,2 184.9 m;i.楔状层理,障壁岛,JH1井,2 777.40 m;j.障壁岛相砂岩与岛后泥坪、泥炭坪,淄博博山剖面;k.生物碎屑灰岩,开阔台地,X7井,1 281.50 m;l.泥晶灰岩,局限台地,GG16102井,2 196.62 m;m.碳酸盐岩中生物钻孔,局限台地,GG16102井,2 206.65 m;n.泥岩中含大量植物残体化石,潜育湿地,淄博博山剖面;o.砂岩中含大量煤屑,碎屑湿地河,淄博博山剖面

      Fig.  3.  The lithology, sedimentary structure and outcropping characteristics of the Taiyuan Formation in Dagang exploration area and peripheral outcrop

      图  4  大港探区山西组岩性与沉积构造

      a.砂纹交错层理,分流河道,CC1井,1 590.78 m;b.砂岩底部含泥砾,分流河道,CC1井,1 626.75 m;c.砂岩底部冲刷面,分流河道,BG1井,1 257.52 m;d.灰色泥岩中夹红色斑块,分流河道间,GG16102井,1 971.19 m;e.泥岩中含植物炭屑,分流河道间,BG1井,1 317.55 m;f.小型砂纹交错层理,分流河道,GG16102井,1 981.30 m;g.泥质细砂岩发育波纹层理,分流河道,GG16102井,1 978.63 m;h.砂泥岩薄互层,天然堤,CC1井,1 584.50 m;i.绿灰色泥岩与深灰色泥岩突变接触,二者之间发育水进冲刷面,分流河道间,GG16102,1 974.05 m;j.细砂岩与泥质细砂岩呈突变接触,分流河道,GG16102,1 980.16 m;k.细砂岩中泥质薄夹层发育,水下分流河道,GD1井,3 388.87 m;l.泥岩中夹薄层粉砂岩,分流间湾,X14井,2 790.22 m

      Fig.  4.  The lithology and sedimentary structure of Shanxi Formation in Dagang exploration area

      图  5  大港探区下石盒子组岩性与沉积构造

      a.砂岩中含泥砾,边滩,GG16102井,1 923.39 m;b.板状交错层理,边滩,GG16102井,1 911.2 m;c.砂泥岩薄互层,天然堤,GG16102井,1 923.20 m;d.杂色泥岩,泛滥平原,BG1井,1 061.03 m;e.泥岩中夹炭屑,泛滥平原,GG16102井,1 906.91 m;f.泥岩中夹动物化石,泛滥平原,GG16102井,1 907.37 m;g.砾岩,滞留沉积,CC1井,1 236.65 m;h.块状砂岩,心滩,WS1井,4 857.70 m;i.板状交错层理,河道,GG1601井,3 690.77 m;j.粉砂岩与棕红色泥岩互层,天然堤,KG1601井,1 755.01 m;k.棕红色泥岩,泛滥平原,KG1601井,1 755.67 m;l.杂色泥岩夹铁质结核,泛滥平原,KG1601井,1 755.75 m

      Fig.  5.  The lithology and sedimentary structure of lower Shihezi Formation in Dagang exploration area

      图  6  邢台沙巴沟剖面上石盒子组河床沉积

      a.砂体垂向呈反序结构,邢台沙巴沟剖面;b.多期反序砂体叠置,邢台沙巴沟剖面

      Fig.  6.  Upper Shihezi Formation channel fill deposit of in Shabagou profile in Xingtai

      图  7  大港探区WG1井沉积综合柱状图

      Fig.  7.  Upper Palaeozoic sedimentary composite column of WG1 well in Dagang exploration area

      图  8  大港探区上古生届沉积演化连井剖面

      Fig.  8.  The well-tie evolutional of sedimentary system in Upper Paleozoic, Dagang exploration area

      图  9  大港探区本溪组-下石盒子组沉积相

      a.本溪组沉积相;b.太原组沉积相;c.山西组沉积相;d.下石盒子组沉积相

      Fig.  9.  Sedimentary facies of Benxi-Lower Shihezi Formation

      图  10  大港探区上石盒子组沉积相

      Fig.  10.  Sedimentary facies of Shanxi Formation in Dagang exploration area

    • [1] Boucot, A.J., Chen, X., Scotese, C.R., 2009.Phanerozoic Global Paleoclimate Reconstruction.Science Press, Beijing, 68-78 (in Chinese).
      [2] Chen, C., Zhu, Y.X., Shi, J.H., et al., 2016.The Forming Process and Development Pattern of Shallow Water Delta in Fault Depression Lacustrian Basin:A Case Study of AG Formation in the Jake Area in Fula Sag, Muglad Basin, Sudan.Acta Petrolei Sinica, 37(12):1508-1517 (in Chinese with English abstract).
      [3] Chen, S.Y., Xu, F.Y., Liu, H.J., 2000.Late Paleozoic Sequence Stratigraphy and Coal Accumulation in North China.Petroleum University Press, Dongying, 8-36 (in Chinese).
      [4] Crowley, T.J., Hyde, W.T., Short, D.A., 1989.Seasonal Cycle Variationson the Supercontinent of Pangaea.Geology, (175):457-460.doi:10.1130/0091-7613(1989)017 < 0457:SCVOTS > 2.3.CO; 2
      [5] Ding, X.J., Liu, G.D., Huang, Z.L., et al., 2011.Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks.Earth Science, 41(5):832-842 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/030442039500008F
      [6] Fu, L.X., Lou, D., Li, H.J., et al., 2016.Control Effect of Indosinian-Yanshan Movement on the Formation of Buried Hill in Dagang Exploration Area.Acta Petrolei Sinica, 37(Suppl.2):19-30 (in Chinese with English abstract). doi: 10.1007/s11631-016-0123-5
      [7] Jin, Z.K., Su, K., Zhang, Y.S., et al., 2011.Depositional Characteristics and Petroleum Geological Significance of Wetland.Journal of China University of Petroleum, 35(3):1-6 (in Chinese with English abstract). http://www.springerlink.com/index/g2968620p8412g25.pdf
      [8] Kutzbach, J.E., Gallimore, R.G., 1989.Pangaean Climates:Megamonsoons of the Megacontinent.Journal of Geophysical Research, 94(D3):3341-3357.doi: 10.1029/JD094iD03p03341
      [9] Li, J.H., Wang, H.H., Li, W.B., et al., 2014.Discussion on Global Tectonics Evolution from Plate Reconstruction in Phanerozoic.Acta Petrolei Sinica, 35(2):207-218 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2095383615300171
      [10] Li, W.B., Li, J.H., Wang, H.H., et al., 2015.Characteristics of the Reconstruction of Permian Paleoplate and Litho Facies Paleogeography.Geology in China, 42(2):685-694 (in Chinese with English abstract). doi: 10.1007%2Fs11430-010-0005-3.pdf
      [11] Li, Y.H., Shang, Y., Zhang, S., et al., 2016.Sedimentary Characteristics and Models of the Composite Shallow Water Delta with the Multiple Sources.Petroleum Geology and Oilfield Development in Daqing, 35(3):1-9 (in Chinese with English abstract). doi: 10.1086/314334
      [12] Li, Z.X., Wei, J.C., Yu, J.F., et al., 2010.Study on the Mechanism of Transgression and Transgressive Coal Formation.Geological Press, Beijing, 185-191 (in Chinese).
      [13] Liu, W., 2015.The Analysis of Sedimentary Facies of South Dagang Dilfield of the Upper Paleozoic in Huanghua Depression (Dissertation).Yangtze University, Wuhan (in Chinese with English abstract).
      [14] Ma, Y.S., Tian, H.Q., 2006.Study on the Deep Sequence Paleogeography and Petroleum Geology in the Northern Part of North China Basin.Geological Press, Beijing, 15 (in Chinese).
      [15] Macabe, P.J., 1984.Depositional Environments of Coal and Coal-Bearing Sequences.Special Publication of International Association of Sedimentologist, 7:13-42. http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3db07547f2decb504d3adc0ee7a20e07
      [16] Parrish, J.T., 1993.Climate of the Supercontinent Pangea.The Journal of Geology, 101(2):215-233. doi: 10.1086/648217
      [17] Sang, S.X., Liu, H.J., Shi, J., 1997.Compartive Sedimentology Reserach on Coal-forming Environments.China University of Mining and Technology Press, Xuzhou, 13-35 (in Chinese).
      [18] Shi, Z.W., 2010.Stability on the Lower Reaches of the Yellow River Main Channel of the Node.In:Li, Y.Y., ed., China Water Analysis Report.China Water Power Press, Beijing, 505-513 (in Chinese).
      [19] Tucker, M.E., Wright, V.P., 2015.Carbonate Sedimentology.Petroleum Industry Press, Beijing, 25-61 (in Chinese).
      [20] Wang, G.L., Ju, Y.W., Zheng, M.L., 2007.Energy Basins in Northern China.China University of Mining and Technology Press, Xuzhou, 227 (in Chinese).
      [21] Wright, V.P., Marriott, S.B., 1993.The Sequence Stratigraphy of Fluvial Depositional Systems:The Role of Floodplain Sediment Storage.Sedimentary Geology, 86(3):203-210.doi: 10.1016/0037-0738(93)90022-W
      [22] Yu, Z.H., Yang, C.Y., Liao, Q.J., et al., 1997.Gas Geology in Huanghua Depression.Petroleum Industry Press, Beijing, 69-81 (in Chinese).
      [23] Yue, S.F., Wang, H., Yan, D.T., et al., 2016.The Sedimentary Characteristics and Evolution Law of Trassic, Luoyi District.Earth Science, 41(10):1683-1695 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201002016.htm
      [24] Zhang, P.F., Shao, L.Y., Dai, S.F., 2001.Discussions on the Transgression Model of the Late Palaeozoic in the North China Platform.Journal of Palaeogeography, 3(1):15-24 (in Chinese with English abstract). doi: 10.5710/AMGH.05.08.2014.2752
      [25] Zhu, K.Z., 1981.China National Geographic Surface Water.Science Press, Beijing, 162-166 (in Chinese).
      [26] Boucot, A.J., 陈旭, Scotese, C.R., 2009.显生宙全球古气候重建.北京:科学出版社, 68-78.
      [27] 陈诚, 朱怡翔, 石军辉, 等, 2016.断陷湖盆浅水三角洲的形成过程与发育模式——以苏丹Muglad盆地Fula凹陷Jake地区AG组为例.石油学报, 37(12):1508-1517. doi: 10.7623/syxb201612006
      [28] 陈世悦, 徐凤银, 刘焕杰, 2000.华北晚古生代层序地层与聚煤规律.东营:石油大学出版社, 8-36.
      [29] 丁修建, 柳广弟, 黄志龙, 等, 2016.有机质供给和保存在烃源岩形成中的控制作用.地球科学, 41(5):832-842. http://www.earth-science.net/WebPage/Article.aspx?id=3291
      [30] 付立新, 楼达, 李宏军, 等, 2016.印支-燕山运动对大港探区古潜山形成的控制作用.石油学报, 37(增刊2):19-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=syxb2016s2003&dbname=CJFD&dbcode=CJFQ
      [31] 金振奎, 苏奎, 张永生, 等, 2011.湿地的沉积特征及石油地质意义.中国石油大学学报, 35(3):1-6. http://d.wanfangdata.com.cn/Periodical/sydxxb201103001
      [32] 李江海, 王洪浩, 李维波, 等, 2014.显生宙全球古板块再造及构造演化.石油学报, 35(2):207-218. doi: 10.7623/syxb201402001
      [33] 李维波, 李江海, 王洪浩, 等, 2015. 二叠纪古板块再造与岩相古地理特征分析. 中国地质, 42(2): 685-694. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201502026&dbname=CJFD&dbcode=CJFQ
      [34] 李一赫, 尚尧, 张顺, 等, 2016.多物源复合式浅水三角洲沉积特征与沉积模式.大庆石油地质与开发, 35(3):1-9. http://d.wanfangdata.com.cn/Periodical/dqsydzykf201603001
      [35] 李增学, 魏久传, 余继峰, 等, 2010.海侵事件与海侵成煤机制研究.北京:地质出版社, 185-191.
      [36] 刘为, 2015. 大港油田中南部上古生界沉积相分析(硕士学位论文). 武汉: 长江大学.
      [37] 马永生, 田海芹, 2006.华北盆地北部深层层序古地理与油气地质综合研究.北京:地质出版社, 15.
      [38] 桑树勋, 刘焕杰, 施健, 1997.成煤环境的比较沉积学研究.徐州:中国矿业大学出版社, 13-35.
      [39] 史宗伟, 2010. 黄河下游稳定主槽之节点整治. 见: 李原园编, 中国水情分析研究报告文集. 北京: 中国水利水电出版社, 505-513.
      [40] Tucker, M.E., Wright, V.P., 2015.碳酸盐岩沉积学.北京:石油工业出版社, 25-61.
      [41] 王桂梁, 琚宜文, 郑孟林, 2007.中国北部能源盆地构造.徐州:中国矿业大学出版社, 227.
      [42] 于志海, 杨池银, 廖前进, 等, 1997.黄骅坳陷天然气地质.北京, 石油工业出版社, 69-81.
      [43] 岳绍飞, 王华, 严德天, 等, 2016.洛伊地区三叠系沉积体系特征及演化规律.地球科学, 41(10):1683-1695. http://www.earth-science.net/WebPage/Article.aspx?id=3371
      [44] 张鹏飞, 邵龙义, 代世峰, 2001.华北地台晚古生代海侵模式雏议.沉积学报, 3(1):15-24. http://d.wanfangdata.com.cn/Periodical/gdlxb200101002
      [45] 竺可桢, 1981.中国国家地理地表水.北京:科学出版社, 162-166.
    • 加载中
    图(10)
    计量
    • 文章访问数:  3697
    • HTML全文浏览量:  1512
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-15
    • 刊出日期:  2017-11-15

    目录

      /

      返回文章
      返回