Provenance Analysis for Liushagang Formation of Wushi Depression, Beibuwan Basin, the South China Sea
-
摘要: 乌石凹陷是北部湾盆地继涠西南凹陷之后又一极具潜力的产能接替区,探讨其物源供给对掌握砂体展布规律及源-汇体系研究具有重要意义.基于地震资料、新钻井资料、岩心、测试分析等,试图从地震反射特征、岩矿特征、重矿物组合特征、水动力特征等方面探讨乌石凹陷无露头、无源-汇组分对比条件下沉积源区分布特征.研究表明:(1)乌石凹陷东洼流沙港组不同构造部位岩石组分存在明显差异,可以分为两种类型,其中源自企西隆起的北部WS17-2和中部WS16-1井区长石含量相对高,结构成熟度中等-差,以长石岩屑砂岩为主,源自流沙凸起的南部WS22-7和WS22-9井区岩屑含量高,结构成熟度差-中等,以岩屑砂岩为主;(2)北部和中部井区电气石、赤褐铁矿含量高、石榴子石含量低,南部井区赤褐铁矿、石榴石、锆石含量高,电气石含量低,反映该区域受到不同性质母岩碎屑影响;(3)水动力特征方面,北部井区与南部井区具有相似的最大碎屑粒径(-2~-1Φ)和最大悬浮粒径(2~3Φ),跳跃组分低含量呈低斜度,显示近源杂乱沉积特征;中部WS16-1井区最大碎屑粒径0~1Φ,最大悬浮粒径3.6~4.0Φ,跳跃组分呈高含量高斜度,显示较好分选的远离物源沉积特征;(4)研究区砂岩分选磨圆差,塑性岩屑颗粒与基质含量较高,体现了小型凹陷的沉积充填特征.乌石凹陷流沙港组物源是小型裂陷盆地近源快速供给的典型代表,储层抗机械压实强度低,储层物性主要受机械压实与粘土含量的影响.Abstract: The Eocene Liushagang Formation, the main hydrocarbon-bearing stratum in Wushi depression, is a promising replacement area in Beibuwan basin. Provenance analysis of the sandbody is significant for better understanding of its distribution and "Source-to-Sink system", which facilitates in turn the oil-gas exploration and development in this area. However, the study in this area, especially on the provenance is very limited. In this study, the provenance of sediments in Eocene Liushagang Formation is analyzed by integrating with the seismic, lithological and electric properties, core, components of the sandstones, assemblage styles of the heavy mineral, and probability cumulative grain size curves. Results show as follows:(1) There are two provenances, one from north and the other from south, in the study area. Northern sourced well WS17-2 and WS16-1 area is mainly feldspathic litharenite with high feldspar contents. However southern sourced well WS22-7-2 and WS22-9 area is mainly litharenite with high lithic contents. (2) The well WS17-2 and WS16-1 area exhibits high tourmaline, hematite contents and low garnet contents, while the well WS22-7-2 and WS22-9 area exhibits high hematite, garnet, zircon contents and low tourmaline contents. (3) A large number of probability cumulative grain size curves indicate that northern sourced well WS17-2 area and southern sourced well WS22-7-2 and WS22-9 area share equivalent largest particle diameter (-2 to -1Φ) as well as suspended particulate diameter (2-3Φ). However both measures in well WS16-1 area are 0-1Φ and 3.6-4.0Φ, with smaller scales implying characteristics of long distance transport. (4) The debris in study area shows poor sort and round, rich plastic debris and matrix, implying typical characteristics of sedimentary filling in small sag. It is concluded that the provenance of Liushagang Formation in Wushi depression is a typical example of small rift basin, with reservoir parameters mainly involved with compaction and matrix contents.
-
Key words:
- provenance /
- Source-to-Sink system /
- beibuwan basin /
- Liushagang Formation /
- sedimentary /
- petroleum geology
-
图 4 乌石凹陷流沙港组典型岩心
a.含砾石英细砂岩,WS17-2-2井,流三段2 420 m;b.含砾石英粗砂岩,WS17-2-9井,流三段2 778.4 m;c.长石石英砾状粗-极粗砂岩,WS17-2-8井,流二段2 362 m;d.石英含砾粗-极粗砂岩,WS17-2-9井,流二段2 719 m;e.含泥长石质石英细砂岩,WS16-1-1井,流二段2 461.76 m;f.含泥质石英细砂岩,WS16-1-2井,流二段2 656.9 m;g.石英粉砂岩,WS16-1-1井,流一段2 206.2 m;h.石英粗-极粗砂岩,WS22-7-4d井,流二段3 864.6 m;i.含砾石英粗-极粗砂岩,WS22-9-2井,流二段3 295 m;j.长石砾状粗-极粗砂岩,WS22-7-2井,流一段2 370 m
Fig. 4. Representative photography of Liushagang Formation in Wushi depression
图 8 流沙港组典型连井剖面重矿物稳定系数及ZTR指数变化趋势
n为样品数,井位见图 7
Fig. 8. The stability factor of the heavy minerals and ZTR index trends of the continuous drill section of Liushagang Formation
图 9 乌石凹陷流沙港组典型粒度概率累计曲线
a.WS17-2-2井,流三段;b.WS17-2-8井,流二段;c.WS17-2-9井,流三段;d.WS16-1-1井,流一段底部及流二段上部;e.WS16-1-2井,流二段;f.WS16-1-5井,流二段;g.WS22-9-2井,流二段;h.WS22-7-2井,流一段;i.WS22-7-4d井,流一段底部及流二段;样品分布见图 3
Fig. 9. Representative probability cumulative grain size curve in Liushagang Formation
表 1 乌石凹陷流沙港组砂岩组分
Table 1. The proportion of sandstone components of study area
构造
位置井号 层位 面孔率
(%)粒度中值
(μ m)碎屑组分 结构成熟度 成分成熟度 排驱压力
(MPa)中值压力
(MPa)平均孔喉半径
(μ m)岩石类型 石英 长石 岩屑 分选 磨圆 指数 成熟度 中部
井区WS16-1-1 E2l1+2 1.07 161 45.11 13.16 27.49 中 次棱-次圆 1.11 低 - - - 岩屑砂岩 WS16-1-2 E2l1+2 2.07 102 42.68 12.87 24.62 中 次棱 1.14 低 - - - 长石岩屑砂岩 WS16-1-5 E2l2 4.32 130 56.54 8.24 19.05 中 次棱-次圆 2.07 中 - - - 长石岩屑砂岩 北部
井区WS16-9-2 E2l2+3 20.65 116 49.00 7.60 15.40 中-好 次棱-次圆 2.13 中 0.07 2.10 5.30 长石岩屑砂岩 WS17-2-1 E2l2+3 12.75 193 39.03 6.30 32.66 差-中 次圆-次棱 1.00 低 0.18 9.91 0.86 长石岩屑砂岩 WS17-2-2 E2l3 9.41 137 22.88 4.32 50.89 差 次棱-次圆 0.41 低 0.54 3.90 0.65 岩屑砂岩 WS17-2-3sa E2l3 11.10 442 26.25 4.65 47.51 差-中 次棱-次圆 0.50 低 - - - 长石岩屑砂岩 WS17-2-4 E2l2+3 12.58 688 28.25 10.02 43.55 中 次棱-次圆 0.53 低 0.05 0.48 3.97 长石岩屑砂岩 WS17-2-7 E2l2+3 12.98 261 21.17 12.65 41.08 差-中 次棱-次圆 0.39 低 0.04 0.28 6.64 长石岩屑砂岩 WS17-2-8 E2l2+3 11.63 29 35.91 6.78 31.19 中-差 次棱-次圆 0.95 低 0.92 13.85 1.25 长石岩屑砂岩 WS17-2-9 E2l2+3 12.46 219 37.12 5.77 40.74 中-好 次棱-次圆 0.80 低 0.05 4.34 2.64 长石岩屑砂岩 WS17-2-11 E2l2+3 4.75 256 54.26 3.70 28.74 中-差 次棱-次圆 1.67 低 1.50 48.55 0.26 长石岩屑砂岩 WS17-2-14 E2l2+3 8.54 101 49.29 8.19 28.65 中 次棱-次圆 1.34 低 0.16 1.91 1.49 长石岩屑砂岩 WS17-5-1 E2l3 9.14 18 45.59 6.65 25.90 中-好 次棱-次圆 1.40 低 - - - 长石岩屑砂岩 WS17-5-3 E2l2 5.33 36 61.91 7.45 19.81 中-好 次棱-次圆 2.27 中 - - - 长石岩屑砂岩 WS17-6-1 E2l3 3.71 40 57.44 6.77 23.04 中-好 次棱-次圆 1.93 低 - - - 长石岩屑砂岩 南部
井区WS22-5-1 E2l1+2 11.70 284 28.86 12.31 40.73 差-中 次棱-次圆 0.54 低 0.42 4.19 1.07 岩屑砂岩 WS22-7-2 E2l1+2 11.61 39 36.17 10.91 35.11 差-中 次棱-次圆 0.79 低 0.85 10.50 1.05 岩屑砂岩 WS22-7-3 E2l1+2 7.79 86 31.38 10.12 44.93 差-中 次棱-次圆 0.57 低 0.09 0.76 2.46 岩屑砂岩 WS22-7-4d E2l1+2 5.46 24 22.52 9.13 55.80 中-差 次棱-次圆 0.35 低 0.23 3.04 0.83 岩屑砂岩 WS22-9-1 E2l2 6.42 17 47.21 6.76 31.90 中-好 次棱-次圆 1.22 低 0.92 44.24 0.20 岩屑砂岩 WS22-9-2 E2l1 7.08 173 19.87 9.38 61.43 中-差 次棱-次圆 0.28 低 0.24 4.23 0.72 岩屑砂岩 表 2 乌石凹陷流沙港组岩屑类型
Table 2. The proportion of lithic fragment types of Liushagang Formation in Wushi depression
物源区 井号 岩浆岩(%) 沉积岩(%) 变质岩(%) 岩浆岩/变质岩 岩屑组
合类型MIN MAX AVE MIN MAX AVE MIN MAX AVE AVE 企西
隆起WS16-1-1 1.0 5.0 2.60 0 0 0.3 1.0 7.0 3.84 0.68 变质
岩岩
屑区WS16-1-2 0 4.5 1.00 0 3.0 0.27 0.5 8.5 2.92 0.30 WS16-1-5 0.4 5.5 2.68 0 0.5 0.05 1.0 5.0 2.92 0.92 WS17-2-11 0 3.5 0.84 0 0 0 1.0 10.5 5.13 0.16 WS17-2-14 0.5 4.5 1.83 0 0 0 3.0 6.0 4.51 0.41 WS17-2-2 0 15.0 3.08 0 0 0 1.0 8.5 2.99 1.03 WS17-2-3sa 0.2 2.0 1.24 0 0 0 4.0 7.0 5.17 0.24 WS17-2-4 0.5 3.5 2.01 0 0 0 1.5 6.0 3.92 0.51 WS17-2-7 1.0 15.0 5.88 0 0 0 2.0 9.0 6.00 0.98 WS17-2-8 0 7.0 1.87 0 5.0 0.36 1.0 7.5 3.68 0.51 WS17-2-9 0 11.5 2.42 0 3.0 0.06 1.0 10.0 3.56 0.68 流沙
凸起WS22-5-1 1.0 36.5 10.20 0 0 0 2.5 6.0 4.40 2.32 岩浆
岩岩
屑区WS22-7-2 9.5 27.5 22.26 0 0 0 2.0 6.5 4.30 5.17 WS22-7-3 2.5 27.5 8.40 0 0 0 2.0 7.0 4.54 1.85 WS22-7-4d 2.0 21.0 7.91 0 0.5 0.02 1.0 9.0 3.56 2.22 WS22-9-1 6.0 25.5 11.52 0 3.0 0.25 2.0 6.5 3.42 3.37 WS22-9-2 2.5 26.0 8.26 0 0 0 0.5 8.0 3.77 2.19 -
[1] Deng, H.W., Guo, J.Y., Wang, R.J., et al., 2008.Tectono-Sequence Stratigraphic Analysis in Continental Faulted Basins.Earth Science Frontiers, 15(2):1-7 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60024-X [2] Du, Z.C., 1997.Structural Features and Controlling Function of Sedimentary from Tertiary in Beibuwan Basin, the South China Sea.Journal of Hebei Mining and Civil Engineering Institute, (1):55-59 (in Chinese with English abstract). doi: 10.1007/s11771-016-3195-9 [3] Editorial Committee of Petroleum Geology of Coastal Continental Shelf and Adjacent Areas to the Oil and Gas Zone, 1990.Petroleum Geology of China Vol.16:Coastal Continental Shelf and Adjacent Areas to the Oil and Gas Zone.Pereoleum Industry Press, Beijing (in Chinese). [4] Editorial Committee of Petroleum Geology of Dian-Qian-Gui Oil and Gas Province, 1992.Petroleum Geology of China Vol.11:Dian-Qian-Gui Oil and Gas Province.Petroleum Industry Press, Beijing (in Chinese). [5] Folk, R.L., 1968.Petrology of Sedimentary Rocks.Hemphill, Austin, TX, 107. [6] Frihy, O.E., Askary, M.A.E., Deghidy, E.M., et al., 1998.Distinguishing Fluvio-Marine Environments in the Nile Delta Using Heavy Minerals.Journal of Coastal Research, 14(3):970-980. http://www.jstor.org/stable/4298849 [7] Fu, L., Guan, P., Zhao, W.Y., et al., 2013.Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin.Acta Petrologica Sinica, 29(8):2867-2875 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201308022 [8] Gao, D., Cheng, R.H., Shen, Y.J., et al., 2016.Southwestern Provenance-Sedimentary System and Provenance Tectonic Setting of Eastern Sag in the North Yellow Sea Basin.Earth Science, 41(7):1171-1187 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.095 [9] Gert, J.W., Hilmar, V.E., 2004.Quantitative Provenance Analysis of Sediments:Review and Outlook.Sedimentary Geology, 171(1-4):1-11. doi: 10.1016/j.sedgeo.2004.05.007 [10] Guo, P., Liu, C.Y., Wang, J.Q., et al., 2017.Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis.Acta Sedimentologica Sinica, 35(1):46-56 (in Chinese with English abstract).doi: 10.14027/j.cnki.cjxb.2017.01.005 [11] He, Z.J., Li, J.Y., Mo, S.G., et al., 2005.Geochemical Discriminations of Sandstones from the Mohe Foreland Basin, Northeastern China:Tectonic Setting and Provenance.Science China:Earth Sciences, 48(5):613-621. doi: 10.1360/02yd0376 [12] Hu, D.S., Deng, Y., Zhang, J.S., et al., 2016.Palaeogene Fault System and Hydrocarbon Accumulation in East Wushi Sag.Journal of Southwest Petroleum University (Science & Technology Edition), 38(4):27-36 (in Chinese with English abstract).doi:10.11885/j.issn.1674 5086.2014.11.07.01 [13] Hu, L., Yang, X.B., Xu, X.F., et al., 2016.Main Controlling Factors and Accumulation Models of Hydrocarbon in Wushi Sag, Beibu Gulf Basin, South China Sea.Marine Geology & Quaternary Geology, 36(2):121-127 (in Chinese with English abstract).doi: 10.16562/j.cnki.0256-1492.2016.02.014 [14] Hu, W.S., Wu, C., Liang, J.S., et al., 2011.Tectonic Transport Characteristics and Their Influences on Hydrocarbon Accumulation in Beibuwan Basin.Oil & Gas Geology, 32(54):920-927 (in Chinese with English abstract). http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1140.2012.06079 [15] Huang, C.Y., Wang, H., Zhou, L.H., et al., 2009.Provenance System Characters of the Third Member of Shahejie Formation in the Paleogene in Beitang Sag.Earth Science, 34(6):975-984 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200906012 [16] Huang, Y.T., Yao, G.Q., Zhou, F.D., 2016.Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea.Earth Science, 41(9):1526-1538 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.511 [17] J.P.Moral, C., J.M.Gutiérrez, M., A.Sánchez, B., et al., 2005.Surface Textures of Heavy-Mineral Grains:A New Contribution to Provenance Studies.Sedimentary Geology, 174(3-4):223-235. doi: 10.1016/j.sedgeo.2004.12.006 [18] Li, L., Sun, F.Y., Li, B.L., et al., 2017.Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance.Earth Science, 42(1):35-52 (in Chinese with English abstract).doi: 10.3799/dqkx.2017.003 [19] Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China.Earth Science, 40(9):1480-1496 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.133 [20] Li, M.B., Jin, X.L., 2006.Review of Research on the Formation, Evolution and Dynamic Mechanism of South China Sea.Bulletin of Science and Technology, 22(1):16-20 (in Chinese with English abstract).doi: 10.13774/j.cnki.kjtb.2006.01.004 [21] Li, S.T., Pan, Y.L., Lu, Y.C., et al., 2002.Key Technology of Prospecting and Exploration of Subtle Traps in Lacustrine Fault Basins:Sequence Stratigraphic Researches on the Basis of High Resolution Seismic Survey.Earth Science, 27(5):592-598 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205018.htm [22] Liao, W.L., Xiao, L., Zhang, L., et al., 2015.Provenance and Tectonic Settings of Early Carboniferous Sedimentary Strata in Western Junggar, Xinjiang.Earth Science, 43(3):485-503 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.039 [23] Lin, C.S., Zheng, H.R., Ren, J.R., et al., 2004.The Control of Syndepositional Faulting on the Eogene Sedimentary Basin Fills of the Dongying and Zhanhua Sags, Bohai Bay Basin.Science in China (Series.D), 47(9):769-782. doi: 10.1360/03yd0203 [24] Liu, H.L., Yang, T., Zhu, S.F., et al., 2004.Tectonic Evolution of Cenozoic Sedimentary Basements in the Northwestern South China Sea.Acta Oceanologica Sinica, 26(3):54-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200403007.htm [25] Liu, Q.H., Zhu, H.T., Shu, Y., et al., 2015.Provenance Systems and Their Control on the Beach-Bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin.Acta Petrolei Sinica, 36(3):286-299 (in Chinese with English abstract).doi: 10.7623/syxb201503004 [26] Liu, Y.J., Zhao, Z.G., Li, J.H., et al., 2008.Hydrocarbon Play Division and Major Control Analysis in Wushi Sag, Beibuwan Basin.China Offshore Oil and Gas, 20(2):82-86 (in Chinese with English abstract).doi: 10.3969/j.issn.1673-1506.2008.02.003 [27] Milda, K., Rodney, L.S., 2009.Quantitative Provenance of Silt and Clay within Sandy Deposits of the Lithuanian Coastal Zone (Baltic Sea).Marine Geology, 257(1-4):87-93. doi: 10.1016/j.margeo.2008.11.001 [28] Mitchum, R.M.J., Vail, P.R., Sangree, J.B., 1977.Seismic Stratigraphy and Global Changes of Sea-Level, Part 6:Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences.Geophysical Research Letters, 165(22):117-133. http://archives.datapages.com/data/specpubs/seismic1/data/a165/a165/0001/0100/0117.htm?q=%2BtextStrip%3Avertical+textStrip%3Alateral+textStrip%3Aseismic+textStrip%3Aresolution+textStrip%3Aattenuation [29] Morton, A.C., 1987.Influences of Provenance and Diagenesis on Detrital Garnet Suites in the Paleocene Forties Sandstone, Central North Sea.Journal of Sedimentary Research, 57(6):1027-1032. http://archives.datapages.com/data/sepm/journals/v55-58/data/057/057006/1027.htm?q=%2BtextStrip%3Acompositional+textStrip%3Achanges+textStrip%3Aduring+textStrip%3Apostprimary+textStrip%3Amigration [30] Morton, A.C., Whitham, A.G., Fanning, C.M., 2005.Provenance of Late Cretaceous to Paleocene Submarine Fan Sandstones in the Norwegian Sea:Integration of Heavy Mineral, Mineral Chemical and Zircon Age Data.Sedimentary Geology, 182(1-4):3-28. doi: 10.1016/j.sedgeo.2005.08.007 [31] Ren, Y.J., Xu, Z.Y., Li, F.L., et al., 2016.Palynofacies of Source Rocks of Liushagang Formation in East Wushi Depression, Beibuwan Basin and Its Significance.Journal of China University of Petroleum (Edition of Natural Science), 40(2):34-42 (in Chinese with English abstract).doi: 10.3969/j.issn.1673-5005.2016.02.004 [32] Sun, W., Fan, T.L., Zhao, Z.G., et al., 2008.Basin Filling Features and Evolution of Sequence Stratigraphy of Paleogene in Wushi Sag.Journal of Jilin University (Earth Science Edition), 38(2):233-239 (in Chinese with English abstract).doi: 10.13278/j.cnki.jjuese.2008.02.008 [33] Tang, L.M., 2010.Triassic Neutral and Basic Rocks in Hainan Island, Geochemistry and Their Geological Signinficance (Dissertation).Zhejiang University, Hangzhou, 15-33 (in Chinese). [34] Tao, Q.Q., Li, D., Lin, S.C., et al., 2016.Applocation of Seismic-Geology Intergrative Reservoir Prediction in Sesimentary Microfacies of Wushi a Structure.Geological Science and Technology Information, 35(6):131-137 (in Chinese with English abstract). http://www.academia.edu/13898821/Namibia_A_Forgotten_Giant_Oil_Province [35] Visher, G.S., 1969.Grain Size Distributions and Depositional Processes.Journal of Sedimentary Research, 39(3):1074-1106. http://d.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226056781/ [36] Wan, L., Yao, B.C., Wu, N.Y., et al., 2005.Cenozoic Geological Characteristics in the West of the South China Sea.Marine Geology & Quaternary Geology, 25(2):45-52 (in Chinese with English abstract).doi: 10.16562/j.cnki.0256-1492.2005.02.008 [37] Wang, C., Liang, X.Q., Foster, D.A., et al., 2016.Zircon U-Pb Geochronology and Heavy Mineral Composition Constraints on the Provenance of the Middle Miocene Deep-water Reservoir Sedimentary Rocks in the Yinggehai-Song Hong Basin, South China Sea.Marine and Petroleum Geology, 77:819-834. doi: 10.1016/j.marpetgeo.2016.05.009 [38] Wang, Q.L., Hu, S.H., Li, C.A., 2009.Heavy Mineral Characteristics of Gravel Layers in the Zhoulao Town Borehole.Geology in China, 36(4):878-884 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI200904016.htm [39] Wang, W., Ye, J.R., Yang, X.H., et al., 2015.Sediment Provenance and Depositional Response to Multistage Rifting, Paleogene, Huizhou Depression, Pearl River Mouth Basin.Earth Science, 40(6):1061-1071 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.088 [40] Wu, C.D., Lin, C.S., Shen, Y.P., et al., 2005.Characteristics and Heavy Mineral Assemblage and Their Provenance Attributes of Jurassic Sandstones in Kuche Depression.Progress in Natural Science, 15(3):291-297 (in Chinese). http://www.sciencedirect.com/science/article/pii/S0037073804003021 [41] Xia, B., Lv, B.F., Wu, G.G., et al., 2007.The Cenozoic Tectonic Transport and Its Control on the Source Rock in the Northern Sourth China Sea.Natural Gas Geoscience, 18(5):629-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200705000.htm [42] Xia, B., Zhang, Y., Cui, X.J., et al., 2006.Understanding of the Geological and Geodynamic Controls on the Formation of the South China Sea:A Numerical Modelling Approach.Journal of Geodynamics, 42(1-3):63-84. doi: 10.1016/j.jog.2006.06.001 [43] Xie, Y.H., Tong, C.X., Pei, J.X., et al., 2016.Detrital Zircon Ages and Reservoir Source of the Second Member of the Huangliu Formation in the Yinggehai Basin.Geotectonica et Metallogenia, 40(3):517-530 (in Chinese with English abstract).doi: 10.16539/j.ddgzyckx.2016.03.009 [44] Xu, C.G., 2013.Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins:Basic Idea, Conceptual Systems and Controlling Sand Models.China Offshore Oil and Gas, 25(4):1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201304002.htm [45] Xu, J.Y., Zhang, G.C., Liang, J.S., et al., 2011.Paleogene Activities of Episodic Rifting and Their Relationships with Hydrocarbon in Beibuwan Basin.China Offshore Oil and Gas, 23(6):362-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201106001.htm [46] Xu, X.D., Zhang, Y.Z., Huang, Y.W., et al., 2013.Major Controlling Factors for Development of Oil Shale in Liushagang Formation of Wushi Sag, Beibuwan Basin.Acta Petrolei Sinica, 34(S2):66-73 (in Chinese with English abstract).doi: 10.7623/syxb2013S2008 [47] Xu, X.F., Yang, X.B., Hu, L., et al., 2016.Characteristics of Fractures in Wushi Sag and Their Influence on Hydrocarbon Accumulation.Natural Gas Technology and Economy, 10(2):17-21 (in Chinese with English abstract).doi: 10.3969/j.issn.2095-1132.2016.02.005 [48] Yan, Y., Xia, B., Ge, L., et al., 2007.Geochemistry of the Sedimentary Rocks Fromthe Nanxiong Basin, South China and Implications for Provenance, Paleoenvironment and Paleoclimate at the K/T Boundary.Sedimentary Geology, 197(1-2):127-140. doi: 10.1016/j.sedgeo.2006.09.004 [49] Yang, R.C., Li, J.B., Fan, A.P., et al., 2013.Research Progress and Development Tendency of Provenance Analysis on Terrigenous Sedimentary Rocks.Acta Sedimentologica Sinica, 31(1):99-107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201301012.htm [50] Yang, S.Y., Wang, Z.B., Guo, Y., et al., 2009.Heavy Mineral Compositions of the Changjiang (Yangtze River) Sediments and Their Provenance-Tracing Implication.Journal of Asian Earth Sciences, 35(1):56-65. doi: 10.1016/j.jseaes.2008.12.002 [51] You, L., Zhao, Z.J., Li, C., et al., 2015.Reservoir Physical Properties and Favorable Reservoirs in Liushagang Formation in Wushi Sag.Journal of Northeast Petroleum University, 39(6):95-101 (in Chinese with English abstract).doi: 10.3969/j.issn.2095-4107.2015.06.011 [52] Yu, X.H., Li, S.L., Qiao, Y.R., et al., 2016.The Cenozoic Changes of Seas and Lands and Sedimentary Filling Responses of Different Basins in Northern South China Sea.Journal of Palaeogeography, 18(3):349-366 (in Chinese with English abstract).doi: 10.7605/gdlxb.2016.03.025 [53] Yun, P., Lei, Y.H., Lv, C.Y., 2005.Sr and Nd Isotopic Constraints on the Source Regions of the Triassic Granitoids in Central Northern Hainan Island and Their Significance.Geotectonica et Metallogenia, 29(2):234-241 (in Chinese with English abstract).doi: 10.3969/j.issn.1001-1552.2005.02.011 [54] Yun, P., Wu, Y.B., Xie, S.Z., 2004.Mineral Composition and Geological Significance of Typical Intrusive Rocks of Late Yanshan on Hainan Island.Guangdong Geology, 19(1):14-21 (in Chinese). doi: 10.1007%2Fs11434-006-2122-0.pdf [55] Zeng, X.M., Zou, M.S., Zhang, H., et al., 2016.Main Controls on the Distribution of the 3rd Member of Liushagang Formation in Eastern Wushi Sag, Beibu Gulf Basin.Petroleum Geology & Experiment, 38(6):757-764 (in Chinese with English abstract).doi: 10.11781/sysydz201606757 [56] Zhang, J.X., Hu, D.S., He, W.J., et al., 2015.Development Characteristics of Sedimentary System and Control Factors Analysis of the Third Member of Liushagang Formation in Eastern Wushi Depression, Beibuwan, Basin.Geological Science and Technology Information, 34(5):8-15 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0264817214000105 [57] Zhong, Z.H., Liu, J., Xu, W.X., et al., 2017.Palynofacies and Sedimentary Systems of the Delta and the Sublacustrine Fan in the 2nd Member of Liushagang Formation of Wushi Sag, Beibuwan Basin.Science Technology and Engineering, 17(3):7-15 (in Chinese with English abstract). [58] Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2013.Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3d Seismic Data:An Example from Dongying Formation of Western Slope of Bozhong Sag.Earth Science, 38(1):121-129 (in Chinese with English abstract).doi: 10.3799/dqkx.2013.012 [59] Zhu, W.L., Wu, G.X., Li, M.B., 2004.Palaeolimology and Hydrocarbon Potential in Beibu Gulf Basin of South China Sea.Oceanologia et Limnologia Sinica, 35(1):8-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ200401001.htm [60] 邓宏文, 郭建宇, 王瑞菊, 等, 2008.陆相断陷盆地的构造层序地层分析.地学前缘, 15(2):1-7. http://d.wanfangdata.com.cn/Periodical/dxqy200802001 [61] 杜振川, 1997.南海北部湾盆地构造特征及对沉积的控制作用.河北建筑科技学院学报, (1):55-59. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjxu199701010&dbname=CJFD&dbcode=CJFQ [62] 付玲, 关平, 赵为永, 等, 2013.柴达木盆地古近系路乐河组重矿物特征与物源分析.岩石学报, 29(8):2867-2875. http://d.wanfangdata.com.cn/Periodical/ysxb98201308022 [63] 高丹, 程日辉, 沈艳杰, 等, 2016.北黄海盆地东部坳陷侏罗纪西南物源-沉积体系与源区构造背景.地球科学, 41(7):1171-1187. http://www.earth-science.net/WebPage/Article.aspx?id=3326 [64] 郭佩, 刘池洋, 王建强, 等, 2017.碎屑锆石年代学在沉积物源研究中的应用及存在问题.沉积学报, 35(1):46-56. http://d.wanfangdata.com.cn/Periodical/cjxb201701005 [65] 胡德胜, 邓勇, 张建新, 等, 2016.乌石凹陷东区古近系断裂系统与油气成藏.西南石油大学学报(自然科学版), 38(4):27-36. doi: 10.11885/j.issn.1674-5086.2014.11.07.01 [66] 胡林, 杨希冰, 徐雪丰, 等, 2016. 南海北部湾盆地乌石凹陷成藏主控因素与成藏模式. 海洋地质与第四纪地质, 36(2): 121-127. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hydz201602020&dbname=CJFD&dbcode=CJFQ [67] 胡望水, 吴婵, 梁建设, 等, 2011.北部湾盆地构造迁移特征及对油气成藏的影响.石油与天然气地质, 32(54):920-927. http://d.wanfangdata.com.cn/Periodical/syytrqdz201106015 [68] 黄传炎, 王华, 周立宏, 等, 2009.北塘凹陷古近系沙河街组三段物源体系分析.地球科学, 34(6):975-984. http://www.earth-science.net/WebPage/Article.aspx?id=1913 [69] 黄银涛, 姚光庆, 周锋德, 2016.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义.地球科学, 41(9):1526-1538. http://www.earth-science.net/WebPage/Article.aspx?id=3358 [70] 李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9):1480-1496. http://www.earth-science.net/WebPage/Article.aspx?id=3152 [71] 李良, 孙丰月, 李碧乐, 等, 2017.漠河盆地二十二站组砂岩形成时代及物源区构造环境判别.地球科学, 42(1):35-52. http://www.earth-science.net/WebPage/Article.aspx?id=3412 [72] 黎明碧, 金翔龙, 2006.中国南海的形成演化及动力学机制研究综述.科技通报, 22(1):16-20. http://d.wanfangdata.com.cn/Periodical/kjtb200601004 [73] 李思田, 潘元林, 陆永潮, 等, 2002.断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究.地球科学, 27(5):592-598. http://www.earth-science.net/WebPage/Article.aspx?id=1170 [74] 廖婉琳, 肖龙, 张雷, 等, 2015.新疆西准噶尔早石炭世沉积地层的物源及构造环境.地球科学, 43(3):485-503. http://www.earth-science.net/WebPage/Article.aspx?id=3031 [75] 刘海龄, 杨恬, 朱淑芬, 等, 2004.南海西北部新生代沉积基底构造演化.海洋学报, 26(3):54-67. http://d.wanfangdata.com.cn/Periodical/hyxb200403007 [76] 刘强虎, 朱红涛, 舒誉, 等, 2015.珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制.石油学报, 36(3):286-299. doi: 10.7623/syxb201503004 [77] 柳永杰, 赵志刚, 李建红, 等, 2008.乌石凹陷成藏组合划分及主控因素分析.中国海上油气, 20(2):82-86. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc200802003 [78] 任拥军, 徐志尧, 李福来, 等, 2016.北部湾盆地乌石凹陷东部地区流沙港组烃源岩孢粉相特征及其意义.中国石油大学学报(自然科学版), 40(2):34-42. http://d.wanfangdata.com.cn/Periodical/sydxxb201602004 [79] 孙伟, 樊太亮, 赵志刚, 等, 2008.乌石凹陷古近系层序地层特征及充填演化.吉林大学学报(地球科学版), 38(2):233-239. http://d.wanfangdata.com.cn/Periodical/cckjdxxb200802008 [80] 唐立梅. 2010. 海南岛中生代两期构造伸展作用的岩浆记录及其大陆动力学意义(博士学位论文). 杭州: 浙江大学, 15-33. http://cdmd.cnki.com.cn/Article/CDMD-10335-2010235870.htm [81] 陶倩倩, 李达, 林水城, 等, 2016.地震-地质综合储层预测技术在乌石A构造沉积微相研究中的应用.地质科技情报, 35(6):131-137. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201606019&dbname=CJFD&dbcode=CJFQ [82] 万玲, 姚伯初, 吴能友, 等, 2005.南海西部海域新生代地质构造.海洋地质与第四纪地质.25(2):45-52. http://d.wanfangdata.com.cn/Periodical/hydzydsjdz200502007 [83] 王秋良, 胡思辉, 李长安, 2009.周老镇钻孔砾石层重矿物特征及地质意义.中国地质, 36(4):878-884. http://d.wanfangdata.com.cn/Periodical/zgdizhi200904015 [84] 王维, 叶加仁, 杨香华, 等, 2015.珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应.地球科学, 40(6):1061-1071. http://www.earth-science.net/WebPage/Article.aspx?id=3103 [85] 吴朝东, 林畅松, 申延平, 等, 2005.库车坳陷侏罗系砂岩组分和重矿物组合特征及其源区属性.自然科学进展, 15(3):291-297. http://d.wanfangdata.com.cn/Periodical/zrkxjz200503005 [86] 夏斌, 吕宝凤, 吴国干, 等, 2007.南海北部新生代盆地构造迁移及其对烃源岩的制约作用.天然气地球科学, 18(5):629-634. http://d.wanfangdata.com.cn/Periodical/trqdqkx200705001 [87] 谢玉洪, 童传新, 裴健翔, 等, 2016.莺歌海盆地黄流组二段碎屑锆石年龄与储层物源分析.大地构造与成矿学, 40(3):517-530. http://d.wanfangdata.com.cn/Periodical/ddgzyckx201603010 [88] 徐长贵, 2013.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式.中国海上油气, 25(4):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhsd201304002&dbname=CJFD&dbcode=CJFQ [89] 徐建永, 张功成, 梁建设, 等, 2011.北部湾盆地古近纪幕式断陷活动规律及其与油气的关系.中国海上油气, 23(6):362-368. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc201106002 [90] 徐新德, 张迎朝, 黄义文, 等, 2013.北部湾盆地乌石凹陷流沙港组油页岩发育的主控因素.石油学报, 34(S2):66-73. doi: 10.7623/syxb2013S2008 [91] 徐雪丰, 杨希冰, 胡林, 等, 2016.乌石凹陷断裂特征及其对油气成藏的影响.天然气技术与经济, 10(2):17-21. http://d.wanfangdata.com.cn/Periodical/trqjs201602007 [92] 沿海大陆架及毗邻油气区石油地质编辑委员会, 1990.中国石油地质志(卷十六):沿海大陆架及毗邻油气区.北京:石油工业出版社, 366-368. [93] 杨仁超, 李进步, 樊爱萍, 等, 2013.陆源沉积岩物源分析研究进展与发展趋势.沉积学报, 31(1):99-107. http://d.wanfangdata.com.cn/Periodical/cjxb201301011 [94] 尤丽, 招湛杰, 李才, 等, 2015.乌石凹陷流沙港组储层特征与有利储层分布.东北石油大学学报, 39(6):95-101. http://d.wanfangdata.com.cn/Periodical/dqsyxyxb201506011 [95] 于兴河, 李胜利, 乔亚蓉, 等, 2016.南海北部新生代海陆变迁与不同盆地的沉积充填响应.古地理学报, 18(3):349-366. doi: 10.7605/gdlxb.2016.03.025 [96] 云平, 雷裕红, 吕嫦艳, 2005.海南岛中北部三叠纪花岗岩源区的锶、钕同位素制约及其意义.大地构造与成矿学, 29(2):234-241. http://d.wanfangdata.com.cn/Periodical/ddgzyckx200502011 [97] 云平, 吴育波, 谢盛周, 2004.海南岛燕山晚期典型侵入岩矿物成分特征及其地质意义.广东地质, 19(1):14-21. http://d.wanfangdata.com.cn/Periodical/gddz200401002 [98] 曾小明, 邹明生, 张辉, 等, 2016.北部湾盆地乌石凹陷东区流沙港组三段储层物性主控因素及分布规律.石油实验地质, 38(6):757-764. doi: 10.11781/sysydz201606757 [99] 张建新, 胡德胜, 何卫军, 等, 2015.北部湾盆地乌石凹陷东区流三段沉积体系发育特征及控制因素分析.地质科技情报, 34(5):8-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq201505002&dbname=CJFD&dbcode=CJFQ [100] 滇黔桂石油地质志编写组, 1992.中国石油地质志(卷十一)滇黔桂油气区.北京:石油工业出版社, 50-56. [101] 钟泽红, 刘娟, 徐万兴, 等, 2017.北部湾盆地乌石凹陷流二段孢粉相与三角洲-湖底扇沉积体系.科学技术与工程, 17(3):7-15. http://d.wanfangdata.com.cn/Periodical/kxjsygc201703002 [102] 朱红涛, 杨香华, 周心怀, 等, 2013.基于地震资料的陆相湖盆物源通道特征分析:以渤中凹陷西斜坡东营组为例.地球科学, 38(1):121-129. http://www.earth-science.net/WebPage/Article.aspx?id=2349 [103] 朱伟林, 吴国瑄, 黎明碧, 2004.南海北部陆架北部湾盆地古湖泊与烃源条件.海洋与湖沼, 35(1):8-14. http://d.wanfangdata.com.cn/Periodical/hyyhz200401002