Sedimentary Characteristics of Re-Transported Gravity Flow Deposits and Their Distribution:Influence of Deltaic Sedimentation in the Dongying Sag
-
摘要: 三角洲沉积为滑塌型重力流的形成提供了物质来源,它对前端滑塌型重力流的沉积分布特征具有重要影响.以东营凹陷洼陷带沙三中亚段三角洲-前端滑塌型重力流沉积为研究对象,综合利用钻井岩心、三维地震、测录井及分析测试等资料,总结不同类型滑塌型重力流沉积特征、识别标志和分布特征,分析三角洲作为物源对滑塌型重力流的形成、沉积类型、沉积特征和分布特征的影响.研究表明,研究区滑塌型重力流沉积主要发育滑动岩、滑塌岩、碎屑流沉积和浊积岩4种类型,不同类型其沉积构造、粒度特征、地球物理特征差异显著.研究区砂质碎屑流沉积最为发育,滑动滑塌沉积次之,浊流沉积和泥质碎屑流沉积少量发育.不同地区重力流沉积发育程度及常见垂向序列存在差异,博兴南坡与辛133区块重力流类型以砂质碎屑流沉积为主,常见多期次砂质碎屑流沉积相邻或相间垂向组合;牛庄南坡与中央隆起带地区类似,由近及远,重力流类型及垂向序列存在较大差异;营11区块以砂质碎屑流沉积和浊流沉积为主,浊流比例相对其他区块较高;丰14区块单井重力流类型整体较单一,为砂质碎屑流沉积或滑塌沉积.三角洲砂泥百分含量控制了滑塌型重力流的沉积类型和沉积特征;三角洲沉积物粒径控制原始前积角大小,前积角越大,滑塌型重力流越发育,但滑移距离相对越近;三角洲的坡折点控制下,滑动滑塌沉积主要分布在斜坡坡脚和同沉积断层附近,浊流沉积主要分布在深水平原,碎屑流沉积在斜坡坡脚-深水平原均有分布;三角洲高的堆积速率通过减小内摩擦力促使滑塌型重力流的形成,其堆积速率与构造沉降速率的差异对滑塌型重力流沉积的垂向叠置和侧向连续性也具有重要影响.Abstract: Deltaic sedimentation provides the material source for the formation of re-transported gravity flow, and it has a significant effect on the sedimentary characteristics and distribution of re-transported gravity flow deposits. The sedimentary characteristics of different types of gravity flow deposits and their distribution in the middle part of the third member of Shahejie Formation of the Dongying sag were investigated using core, granularity, seismic and well logging data. The influence of deltaic sedimentation on the re-transported gravity flow deposits was studied. It has been shown that four types of gravity flow deposits were developed in Es3z in the Dongying sag, including slide and slump deposits, debrites, and turbidites. There exist differences among different types of gravity flow deposits in terms of sedimentary structures, grain size characteristics, and geophysical responses. In the study area, sandy debrites were best developed, followed sequentially by slide and slump deposits, turbidites, and muddy debrites. There are differences in the abundance of the types and the vertical sequences of diffenent deposits among different locations in the study area. The sedimentary types are mainly composed of sandy debrites with vertical sequences characteristic of amalgamation of sandy debrites being common in the southern Boxing and Xin-133 blocks.There is a big difference among gravity flow deposits and vertical sequences from proximal to distal in the southern of Niuzhuang area and the western central uplift zone.Turbidites are better developed in the Ying-11 block. Sandy debrites and slump deposits are the dominated deposits in the Feng-14 block. The mud content of the delta front deposits appears to have a significant impact on the gravity flow types and their sedimentary characteristics. Deltaic sediments with different grain sizes have different slope angles which is closely related to the formation, types and distribution characteristics of the gravity flow deposits. Under the same conditions, the larger the progradation slope angle is, the better developed the re-transported gravity flow deposits would be, especially for the slide and slump deposits. On the contrary, the sliding distance is shorter. The slide and slump deposits are mainly distributed in the slope break and near the syn-sedimentary faults; turbidites are mainly in the basin floor; while debris flow deposits occur from the slope break to the basin floor.The high accumulation rate contributes to the formation of gravity flows by decreasing the internal friction, and the difference between the accumulation rate and subsidence rate is also of great importance to the vertical superimposed structures and lateral continuity of re-transported gravity flow deposits.
-
图 1 东营凹陷沙三中亚段沉积相平面分布及研究区块分布
1.三角洲;2.扇三角洲;3.近岸水下扇;4.滑塌型重力流;5.洪水型重力流;6.滨浅湖;7.深湖半深湖;8.周围构造;9.断层;10.分流河道;11.岩心观察井号;12.研究区块范围;13.牛庄南坡;14.中央隆起带西坡;15.营11区块;16.丰14区块;17.辛133区块;18.博兴南坡;研究区块由各个地区沉积相图及砂体展布图等共同确定;据Yang et al.(2016)修改
Fig. 1. Distribution of sedimentary facies of Es3z and the study areas in Dongying sag
图 2 东营凹陷沙三中亚段三角洲前缘滑塌型重力流典型沉积构造
a.牛48,2 897.45 m同沉积滑动面, 可见砂质注入体;b.高898,2 620.60 m炭质层显平行层理;c.营11-48,3 234.63 m块状砂岩内炭质层揉皱变形;d.郝5,3 150.95 m砂泥混杂, 可见棕黄色泥砾;e.营11-48,3 197.15 m灰色和土黄色漂浮泥砾;f.官11,2 885.40 m块状砂岩内深灰色泥岩撕裂屑杂乱分布;g.樊115,3 021.55 m下部为块状砂岩,含漂浮碎屑,顶部为薄炭质层显平行层理;h.史127,3 219.40 m泥质粉砂岩内层状排列灰黑色泥岩撕裂屑发育;i.牛110,3 004.00 m泥质粉砂岩内含砂质团块和深灰色泥岩撕裂屑;j.官11井,2 887.65 m正粒序,冲刷面可见;k.牛110井,3 010.20 m ACE不完整的鲍马序列;l.牛116,3 115.10 m砂泥薄互层,多个AE序列
Fig. 2. Typical sedimentary structures of gravity flow deposits in the delta front of Es3z in the Dongying sag
图 8 东营三角洲和陈官庄三角洲-重力流体系各期次几何要素量化统计
*.胜利油田地质科学研究院;**.陈世悦等(2014);***.本文计算;单位:度
Fig. 8. Quantitative comparison of the geometric elements of different stages between the Dongying delta-gravity flow system and the Chenguanzhuang delta-gravity flow system
图 10 不同触发机制作用下滑塌型重力流分布规律
①.浪成浊积体;②.强水流成因的深水沟道浊积体;③.振动成因的液化浊积体;④.振动成因的次生叠置浊积体;⑤.强水流成因的舌形发散体;⑥.振动成因的二级滑塌浊积体;据鄢继华等(2008)
Fig. 10. Distribution patterns of re-transported gravity flow deposits originated from different triggering mechanisms
表 1 东营凹陷沙三中亚段不同地区不同类型重力流百分含量对比
Table 1. Percentage comparison of different types of gravity flow deposits in Es3z in different parts of the Dongying sag
不同类型含量 滑动滑塌沉积物百分比(%) 砂质碎屑流沉积物百分比(%) 泥质碎屑流沉积物百分比(%) 浊积岩百分比(%) 东营凹陷 23.97 56.02 2.38 17.64 牛庄南坡 19.23 55.19 1.09 24.49 辛133区块 17.55 66.44 1.40 14.60 营11区块 7.22 45.48 5.06 42.24 丰14区块 84.84 15.16 0.00 0.00 中央隆起带西坡 37.39 46.60 2.46 13.55 博兴南坡 6.64 80.49 3.68 9.24 注:东营凹陷沙三中用于统计的取心井为34口,共计736.98 m,其中牛庄南坡取心井为9口,共计176.92 m;辛133砂体取心井为5口,共计86.52 m;营11砂体取心井为4口,共计81.75 m;丰14砂体取心井为3口,共计39.41 m;中央隆起带西坡为9口,共计196.19 m;博兴南坡取心井为4口,共计156.19 m. -
[1] Amy, L.A., Talling, P.J., Edmonds, V.O., et al., 2006.An Experimental Investigation of Sand-Mud Suspension Settling Behaviour:Implications for Bimodal Mud Contents of Submarine Flow Deposits.Sedimentology, 53(6):1411-1434.doi: 10.1111/j.1365-3091.2006.00815.x [2] Baas, J.H., Best, J.L., Peakall, J., et al., 2009.A Phase Diagram for Turbulent, Transitional, and Laminar Clay Suspension Flows.Journal of Sedimentary Research, 79(3-4):162-183. http://archives.datapages.com/data/sepm/journals/079/079004/162_gsjsedres790162.htm?q=%2BabstractStrip%3Atime+abstractStrip%3Adepth+abstractStrip%3Avelocity+abstractStrip%3Amodel [3] Booth, J.S., O'leary, D.W., Popenoe, P., et al., 1993.US Atlantic Continental Slope Landslides:Their Distribution, General Attributes, and Implications.In:Schwab, W.C., Lee, H.J., Twichell, D.C., eds., Submarine Landslides:Selected Studies in the US Exclusive Economic Zone.US Geological Survey Bulletin, U.S.A., 14-22. [4] Cao, Y.C., Liu, H., 2007.Discussion on the Relationship of Fluxoturbidite and Depositional Slope of Delta in Lacustrine Basin.Geological Review, 53(4):454-459 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/OA000004768 [5] Cao, Y.C., Wang, S.J., Wang, Y.Z., et al., 2017.Sedimentary Characteristics and Depositional Model of Slumping Deep-Water Gravity Flow Deposits:A Case Study from the Middle Member 3 of Paleogene Shahejie Formation in Linnan Subsag, Bohai Bay Basin.Journal of Paleogeography, 19(3):419-432 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gdlxb201703003 [6] Chen, S.Y., Bi, M.W., Liu, H.M., et al., 2014.Quantitative Prediction Model for the Dongying Delta-Fluxoturbidite Depositional System in the Middle Es3 Period.Acta Sedimentologica Sinica, 32(5):921-929 (in Chinese with English abstract). https://es.scribd.com/document/35642322/Core-Mantle-Change-Impact-Gas-Oil-Field [7] Chen, X.Y., Shi, J., Xu, J., 2010.Types and Oil Potential of Gravity Flow Sandbodies in the Middle Es3 of Dongxin Oilfield, the Bohai Bay Basin.Oil and Gas Geology, 31(5):594-601 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200705001.htm [8] Cheng, N., Zhao, K., 2017.Difference between Static and Dynamic Angle of Repose of Uniform Sediment Grains.International Journal of Sediment Research, 32:149-154.doi: 10.1016/j.ijsrc.2016.09.001 [9] Duncan, J.M., Wright, S.G., 2005.Soil Strength and Slope Stability.John Wiley & Sons, New Jersey. [10] Gao, H.C., Zheng, R.C., Wei, Q.L., et al., 2012.Reviews on Fluid Properties and Sedimentary Characteristics of Debris Flow and Turbidity Currents.Advances in Earth Science, 27(8):815-827 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkxjz201208001 [11] Guo, H.J., 2007.Geometry Analysis and the Control of the Fault He 125 on the Sedimentation of Es3z in Dongying Sag (Dissertation).Zhejiang University, Hangzhou, 17-19 (in Chinese with English abstract). [12] Huang, X., Dyt, C., Griffiths, C., et al., 2012.Numerical Forward Modelling of "Fluxoturbidite" Flume Experiments Using Sedsim.Marine and Petroleum Geology, 35(1):190-200.doi: 10.1016/j.marpetgeo.2012.02.012 [13] Huang, Y.T., Yao, G.Q., Zhou, F.D., 2016.Provenance Analysis and Petroleum Geological Significance of Shallow Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea.Earth Science, 41(9):1526-1538 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0025322715000092 [14] Ilstad, T., Elverhøi, A., Issler, D., et al., 2004.Subaqueous Debris Flow Behaviour and Its Dependence on the Sand/Clay Ratio:A Laboratory Study Using Particle Tracking.Marine Geology, 213(1):415-438.doi: 10.1016/j.margeo.2004.10.017 [15] Lastras, G., Canals, M., Urgeles, R., et al., 2004.Characterisation of the Recent Big'95 Debris Flow Deposit on the Ebro Margin, Western Mediterranean Sea, after a Variety of Seismic Reflection Data.Marine Geology, 213(1-4):235-255.doi: 10.1016/j.margeo.2004.10.008 [16] Li, C.L., Ren, W.W., Tang, M.M., 2012.Preliminary Study on Gravity Flow Depositional System Based on Properties Conversion Theory.Geological Review, 58(2):285-296 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/OA000003542 [17] Li, C.Y., 2005.Study on the Forming Mechanism of the Slumped Turbidite and the Controlling Sandbody Model of High Frequency Base-Level Cycle of Dongying Delta (Dissertation).China University of Geosciences, Beijing, 24-25 (in Chinese with English abstract). [18] Liao, J.J., Zhu, X.M., Deng, X.Q., et al., 2013.Sedimentary Characteristics and Model of Gravity Flow in Triassic Yanchang Formation of Longdong Area in Ordos Basin.Earth Science Frontiers, 20(2):29-39 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201302004 [19] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016.Pre-Palaeogenen Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift.Earth Science, 41(11):1935-1949 (in Chinese with English abstract). [20] Liu, X.J., Liu, H.M., Song, G.Q., et al., 2016.Sedimentary Characteristics and Distribution Pattern of the Slope-Shifting Fan in the Low-Lying Slope Zone of Dongying Sag.Petroleum Geology and Recovery Efficiency, 23(4):1-10 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/0264817291900486 [21] Marr, J.G., Harff, P.A., Shanmugam, G., et al., 2001.Experiments on Subaqueous Sandy Gravity Flows:The Role of Clay and Water Content in Flow Dynamics and Depositional Structures.Geological Society of America Bulletin, 113(11):1377-1386.doi:10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2 [22] Mohrig, D., Ellis, C., Parker, G., et al., 1998.Hydroplaning of Subaqueous Debris Flows.Geological Society of America Bulletin, 110(3):387-394.doi:10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2 [23] Pan, S.X., Zheng, R.C., Wei, P.S., et al., 2013.Deposition Characteristics, Recognition Mark and Form Mechanism of Mass Transport Deposits in Terrestrial Lake Basin.Lithologic Reservoirs, 25(2):9-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201302004.htm [24] Pei, Y., He, Y.B., Li, H., et al., 2015.Discussion about Relationship between High-Density Turbidity Current and Sandy Debris Flow.Geological Review, 61(6):1281-1292 (in Chinese with English abstract). [25] Qiu, G.Q., Wang, J.F., Zhang, X., et al., 2001.Preliminary Study on Stratigraphic Architecture of Middle-Es3 Dongying Delta and Its Significance to Hydrocarbon Exploration.Acta Sedimentologica Sinica, 19(4):569-574 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201106009.htm [26] Shanmugam, G., 1996.High-Density Turbidity Currents:Are They Sandy Debris Flows? Journal of Sedimentary Research, 66:2-10. http://d.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028433134/ [27] Shanmugam, G., 2000.50 Years of the Turbidite Paradigm (1950s-1999s); Deep-Water Processes and Facies Models-A Critical Perspective.Marine and Petroleum Geology, 17:174-231.doi: 10.1016/S0264-8172(99)00011-2 [28] Shanmugam, G., 2006.Deep-Water Processes and Facies Models:Implications for Sandstone Petroleum Reservoirs.Elsevier, Amsterdam. [29] Shanmugam, G., 2012.New Perspectives on Deep-Water Sandstones:Origin, Recognition, Initiation, and Reservoir Quality.Elsevier, Amsterdam. [30] Shanmugam, G., 2013.New Perspectives on Deep-Water Sandstones:Implications.Petroleum Exploration and Development, 40(3):294-301.doi: 10.1016/S1876-3804(13)60038-5 [31] Shanmugam, G., 2015.The Landslide Problem.Journal of Palaeogeography, 4(2):109-166.doi: 10.3724/SP.J.1261.2015.00071 [32] Song, J.Y., 2005.High-Resolution Sequence Stratigraphy and Reservoir Strata Prediction in the Boxing Sub-depression (Dissertation).Chinese Academy of Sciences, Qingdao, 47-48 (in Chinese with English abstract). [33] Sumner, E.J., Talling, P.J., Amy, L.A., 2009.Deposits of Flows Transitional between Turbidity Current and Debris Flow.Geology, 37(11):991-994.doi: 10.1130/G30059A.1 [34] Sun, N.L., Zhong, J.H., Wang, S.B., et al., 2017.Sedimentary Characteristics and Petroleum Geologic Significance of Deep-Water Gravity Flow of the Triassic Yanchang Formation in Southern Ordos Basin.Journal of Paleogeography, 19(2):299-314 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/gdlxb201702009 [35] Wang, D.P., 1991.The Sedimentation and Formation Mechanism of Lacustrine Endogenic Debris Flow.Acta Geologica Sinica, 65(4):299-316 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.1992.mp5002001.x/epdf [36] Xian, B.Z., Wan, J.F., Jiang, Z.X., et al., 2012.Sedimentary Characteristics and Model of Gravity Flow Deposition in the Depressed Belt of Rift Lacustrine Basin:A Case Study from Dongying Formation in Nanpu Depression.Earth Science Frontiers, 19(1):121-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201201015.htm [37] Xian, B.Z., Wang, L., Liu, J.P., et al., 2016.Sedimentary Characteristics and Model of Delta-Fed Turbidites in Eocene Eastern Dongying Depression.Journal of China University of Petroleum, 40(5):10-21 (in Chinese with English abstract). [38] Yan, J.H., Chen, S.Y., Jiang, Z.X., et al., 2007.Simulating Experiment on Genesis of Seismo-Turbidites in Rift Lacustrine Basin.Journal of Palaeogeography, 9(3):277-282 (in Chinese with English abstract). http://www.academia.edu/14294069/Identification_and_numerical_modelling_of_hydrocarbon_leakage_in_the_Lower_Congo_Basin_Implications_on_the_genesis_of_km-wide_seafloor_mounded_structures [39] Yan, J.H., Chen, S.Y., Jiang, Z.X., et al., 2008.Genesis and Distribution Regularity of the Turbidite Bodies in the Delta Front.Petroleum Geology & Experiment, 30(1):16-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200402017.htm [40] Yan, J.H., Chen, S.Y., Song, G.Q., et al., 2004.Preliminary Study on the Formation of Fluxoturbidite in Front of Delta.Acta Sedimentologica Sinica, 22(4):573-578 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200404003.htm [41] Yang, H., Niu, X.B., Luo, S.S., et al., 2015.Research of Simulated Experiment on Gravity Flow Deposits of Tight Sand Bodies of Chang 7 Formation in Longdong Area, Ordos Basin.Earth Science Frontiers, 22(3):322-332 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201503028 [42] Yang, T., Cao, Y.C., Wang, Y.Z., et al., 2015a.Types, Sedimentary Characteristics and Genetic Mechanisms of Deep-Water Gravity Flows:A Case Study of the Middle Submember in Member 3 of Shahejie Formation in Jiyang Depression.Acta Petrolei Sinica, 36(9):1048-1059 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/B9780123971630000038 [43] Yang, T., Cao, Y.C., Wang, Y.Z., et al., 2015b.Sediment Dynamics Process and Sedimentary Characteristics of Hyperpycnal Flows.Geological Review, 61(1):23-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201501002.htm [44] Yang, T., Cao, Y.C., Wang, Y.Z., et al., 2016.The Coupling of Dynamics and Permeability in the Hydrocarbon Accumulation Period Controls the Oil-Bearing Potential of Low Permeability Reservoirs:A Case Study of the Low Permeability Turbidite Reservoirs in the Middle Part of the Third Member of Shahejie Formation in Dongying Sag.Petroleum Science, 13(2):204-224. doi: 10.1007/s12182-016-0099-0 [45] Yuan, J., Liang, H.Y., Liang, B., et al., 2016.Sedimentary Characteristics and Development Model of Lacustrine Gravity Flow:A Case Study of Dainan Formation in Deep Sag Belt of Gaoyou Depression, Northern Jiangsu Basin.Acta Petrolei Sinica, 37(3):348-359 (in Chinese with English abstract). doi: 10.1007/s12182-016-0115-4 [46] Zhang, Y.G., Xu, W.P., Wang, G.L., et al., 2006.Hydrocarbon Accumulation Assemblages of Continental Rift Basin in Eastern China.Petroleum Industry Press, Beijing, 127-170 (in Chinese). [47] Zhao, M.F., Xin, Q.L., Liu, Z.R., et al., 2001.Distribution Rules of Fluxoturbidite in the Linnan Sag of the Huimin Depression and Their Controlling Factors.Petroleum Geology & Experiment, 23(3):267-271 (in Chinese with English abstract). [48] Zhong, J.H., Li, Y., Shao, Z.F., et al., 2015.The Ultr-Water Lake of Middle Es3 Formation during Paleogene in Dongying Sag, NE China.Geological Journal of China Universities, 21(2):320-327 (in Chinese with English abstract). [49] Zou, C.N., Zhao, Z.Z., Yang, H., et al., 2009.Genetic Mechanism and Distribution of Sandy Debris Flows in Terrestrial Lacustrine Basin.Acta Sedimentologica Sinica, 27(6):1066-1075 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200906007.htm [50] 操应长, 刘晖, 2007.湖盆三角洲沉积坡度带特征及其与滑塌浊积岩分布关系的初步探讨.地质论评, 53(4):454-459. http://d.wanfangdata.com.cn/Periodical/dzlp200704004 [51] 操应长, 王思佳, 王艳忠, 等, 2017.滑塌型深水重力流沉积特征及沉积模式:以渤海湾盆地临南洼陷古近系沙三中亚段为例.古地理学报, 19(3):419-432. doi: 10.7605/gdlxb.2017.03.032 [52] 陈世悦, 毕明威, 刘惠民, 等, 2014.沙三中亚期东营三角洲-滑塌浊积体系预测模型研究.沉积学报, 32(5):921-929. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb201405015&dbname=CJFD&dbcode=CJFQ [53] 陈秀艳, 师晶, 徐杰, 2010.渤海湾盆地东辛油田沙三中亚段重力流沉积砂体类型及含油性.石油与天然气地质, 31(5):594-601. doi: 10.11743/ogg20100509 [54] 高红灿, 郑荣才, 魏钦廉, 等, 2012.碎屑流与浊流的流体性质及沉积特征研究进展.地球科学进展, 27(8):815-827. http://d.wanfangdata.com.cn/Periodical/dqkxjz201208001 [55] 郭洪金, 2007. 东营凹陷河125断层的几何学再造及其对沙三中砂体沉积的控制作用(博士学位论文). 杭州: 浙江大学, 17-19. http://cdmd.cnki.com.cn/Article/CDMD-10335-2007099069.htm [56] 黄银涛, 姚光庆, 周锋德, 2016.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义.地球科学, 41(9):1526-1538. http://www.earth-science.net/WebPage/Article.aspx?id=3358 [57] 李存磊, 任伟伟, 唐明明, 2012.流体性质转换机制在重力流沉积体系分析中应用初探.地质论评, 58(2):285-296. http://d.wanfangdata.com.cn/Periodical/dzlp201202010 [58] 李趁义, 2005. 东营三角洲滑塌浊积岩形成机制与高频基准面旋回控砂模式研究(博士学位论文). 北京: 中国地质大学, 24-25. http://cdmd.cnki.com.cn/Article/CDMD-11415-2005072004.htm [59] 廖纪佳, 朱筱敏, 邓秀芹, 等, 2013.鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式.地学前缘, 20(2):29-39. http://d.wanfangdata.com.cn/Periodical/dxqy201302004 [60] 刘强虎, 朱筱敏, 李顺利, 等, 2016.沙垒田凸起前古近系基岩分布及源-汇过程.地球科学, 41(11):1935-1949. http://www.earth-science.net/WebPage/Article.aspx?id=3391 [61] 刘鑫金, 刘惠民, 宋国奇, 等, 2016.东营凹陷洼陷斜坡带坡移扇沉积特征及展布模式.油气地质与采收率, 23(4):1-10. http://d.wanfangdata.com.cn/Periodical/yqdzycsl201604001 [62] 潘树新, 郑荣才, 卫平生, 等, 2013.陆相湖盆块体搬运体的沉积特征、识别标志与形成机制.岩性油气藏, 25(2):9-18. http://d.wanfangdata.com.cn/Periodical/yxyqc201302002 [63] 裴羽, 何幼斌, 李华, 等, 2015.高密度浊流和砂质碎屑流关系的探讨.地质论评, 61(6):1281-1292. http://d.wanfangdata.com.cn/Periodical/dzlp201506008 [64] 邱桂强, 王居峰, 张昕, 等, 2001.东营三角洲沙河街组三段中亚段地层格架初步研究及油气勘探意义.沉积学报, 19(4):569-574. http://d.wanfangdata.com.cn/Periodical/cjxb200104015 [65] 宋建勇, 2005. 博兴洼陷高分辨率层序地层研究与储层预测(博士学位论文). 青岛: 中国科学院, 47-48. http://cdmd.cnki.com.cn/Article/CDMD-80068-2006044881.htm [66] 孙宁亮, 钟建华, 王书宝, 等, 2017.鄂尔多斯盆地南部三叠系延长组深水重力流沉积特征及其石油地质意义.古地理学报, 19(2):299-314. doi: 10.7605/gdlxb.2017.02.023 [67] 王德坪, 1991.湖相内成碎屑流的沉积及形成机理.地质学报, 65(4):299-316. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199104000&dbname=CJFD&dbcode=CJFQ [68] 鲜本忠, 万锦峰, 姜在兴, 等, 2012.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例.地学前缘, 19(1):121-135. http://www.cqvip.com/QK/98600X/201201/40825988.html [69] 鲜本忠, 王璐, 刘建平, 等, 2016.东营凹陷东部始新世三角洲供给型重力流沉积特征与模式.中国石油大学学报(自然科学版), 40(5):10-21. http://d.wanfangdata.com.cn/Periodical/sydxxb201605002 [70] 鄢继华, 陈世悦, 姜在兴, 等, 2007.断陷湖盆震浊积岩成因模拟实验.古地理学报, 9(3):277-282. http://d.wanfangdata.com.cn/Periodical/gdlxb200703005 [71] 鄢继华, 陈世悦, 姜在兴, 等, 2008.三角洲前缘浊积体成因及分布规律研究.石油实验地质, 30(1):16-19. doi: 10.11781/sysydz200801016 [72] 鄢继华, 陈世悦, 宋国奇, 等, 2004.三角洲前缘滑塌浊积岩形成过程初探.沉积学报, 22(4):573-578. http://d.wanfangdata.com.cn/Periodical/cjxb200404004 [73] 杨华, 牛小兵, 罗顺社, 等, 2015.鄂尔多斯盆地陇东地区长7段致密砂体重力流沉积模拟实验研究.地学前缘, 22(3):322-332. http://d.wanfangdata.com.cn/Periodical/dxqy201503028 [74] 杨田, 操应长, 王艳忠, 等, 2015a.深水重力流类型、沉积特征及成因机制——以济阳坳陷沙河街组三段中亚段为例.石油学报, 36(9):1048-1059. http://d.wanfangdata.com.cn/Periodical/syxb201509003 [75] 杨田, 操应长, 王艳忠, 等, 2015b.异重流沉积动力学过程及沉积特征.地质论评, 61(1):23-33. http://d.wanfangdata.com.cn/Periodical/dzlp201501002 [76] 袁静, 梁绘媛, 梁兵, 等, 2016.湖相重力流沉积特征及发育模式——以苏北盆地高邮凹陷深凹带戴南组为例.石油学报, 37(3):348-359. doi: 10.7623/syxb201603007 [77] 张永刚, 许卫平, 王国力, 等, 2006.中国东部陆相断陷盆地油气成藏组合体.北京:石油工业出版社, 127-170. [78] 赵密福, 信荃麟, 刘泽容, 等, 2001.惠民凹陷临南洼陷滑塌浊积岩的分布规律及其控制因素.石油实验地质, 23(3):267-271. doi: 10.11781/sysydz200103267 [79] 钟建华, 李勇, 邵珠福, 等, 2015.东营凹陷古近纪沙三中期超深水湖泊的研究.高校地质学报, 21(2):320-327. http://d.wanfangdata.com.cn/Periodical/gxdzxb201502016 [80] 邹才能, 赵政璋, 杨华, 等, 2009.陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例.沉积学报, 27(6):1065-1075. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb200906007&dbname=CJFD&dbcode=CJFQ