• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海走滑断裂对古近系源-汇体系的控制作用

    徐长贵 加东辉 宛良伟

    徐长贵, 加东辉, 宛良伟, 2017. 渤海走滑断裂对古近系源-汇体系的控制作用. 地球科学, 42(11): 1871-1882. doi: 10.3799/dqkx.2017.118
    引用本文: 徐长贵, 加东辉, 宛良伟, 2017. 渤海走滑断裂对古近系源-汇体系的控制作用. 地球科学, 42(11): 1871-1882. doi: 10.3799/dqkx.2017.118
    Xu Changgui, Jia Donghui, Wan Liangwei, 2017. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1882. doi: 10.3799/dqkx.2017.118
    Citation: Xu Changgui, Jia Donghui, Wan Liangwei, 2017. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1882. doi: 10.3799/dqkx.2017.118

    渤海走滑断裂对古近系源-汇体系的控制作用

    doi: 10.3799/dqkx.2017.118
    基金项目: 

    国家科技"十三五"重大专项 2016ZX05024-003

    详细信息
      作者简介:

      徐长贵(1971-), 男, 教授级高级工程师, 博士, 中国海洋石油总公司勘探专家, 主要从事石油地质与综合勘探研究

    • 中图分类号: P618.13

    Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area

    • 摘要: 走滑断裂在渤海海域广泛分布,深刻影响着沉积盆地的形成与演化,同时也深刻影响着源-汇体系的形成和演化.在对渤海海域大量钻井资料和地震资料分析的基础上,认为走滑断裂对渤海古近系源-汇体系的控制作用主要表现在:走滑断裂压扭作用控制了局部物源体系的形成;走滑断裂的张扭作用控制了沟谷低地的形成;走滑断裂的水平运动控制源-汇体系的横向迁移.走滑断裂带源-汇体系发育模式十分复杂,渤海古近系常见的主要有S型走滑断裂带源-汇体系模式、叠覆型走滑断裂带源-汇体系模式、帚状走滑断裂带源-汇体系模式、共轭走滑带源-汇体系模式.开展走滑断裂带源-汇体系特征及其控砂模式的探讨,对含油气盆地的储层预测具有重要的意义.

       

    • 图  1  渤海海域区域地质图与走滑断裂分布

      Fig.  1.  Regional geological map of Bohai sea area and strike-slip faults distrubution map

      图  2  渤海海域走滑断裂带应力发育模式

      a.右旋S型走滑断裂;b.左旋S型走滑断裂;c.右旋帚状走滑断裂;d.左旋帚状走滑断裂;e.右旋叠覆型走滑断裂;f.左旋叠覆型走滑断裂;g.右旋双重型走滑断裂;h.左旋双重型走滑断裂;i.共轭型走滑断裂

      Fig.  2.  Stress mode of strike-slip fault zones in Bohai sea area

      图  3  锦州20-3地区右旋左阶S型走滑断裂控制的局部物源与近源辫状三角洲沉积

      Fig.  3.  The local provenance and proximal braided river delta controlled by dextral left step strike slip fault in JZ20-3 area

      图  4  渤中34-9油田右旋右阶叠覆型走滑断裂控制的沟谷低地与辫状河三角洲沉积

      Fig.  4.  Valley and proximal braided river delta controlled by dextral right step strike slip fault in BZ34-9 oilfield

      图  5  金县1-1地区走滑断裂水平位移与辫状河三角洲“鱼跃式”迁移

      Fig.  5.  Horizontal displacements of strike slip fault and braided river delta fish jumping migrate in JX1-1 area

      图  6  辽东凸起中北段S型走滑带源-汇体系发育模式

      Fig.  6.  type strike slip fault source sink system mode in the middle-north section of Liaodong uplift

      图  7  锦州25-1地区叠覆型走滑断裂带源-汇体系发育模式

      T4代表沙二段顶面;T5代表沙二段底面

      Fig.  7.  En echelon type strike slip fault source sink system mode in JZ25-1 area

      图  8  辽西低凸起北段锦州20-2北地区帚状走滑带源-汇体系发育模式

      Fig.  8.  Brush strike slip fault source sink system mode in JZ20-2N area of the north section of Liaoxi low uplift

      图  9  曹妃甸6-4油田共轭走滑带源-汇体系发育模式

      Fig.  9.  Conjugate strike slip fault source sink system mode in CFD6-4 oilfield

      图  10  走滑断裂带源-汇控砂模式在旅大16-3油田应用

      Fig.  10.  Application of the strike slip fault zone source sink system and its sand control pattern in the LD16-3 oilfield

    • [1] Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(17):274-276.doi: 10.1038/nature06586
      [2] Allen, P.A., Allen, J.R., 1990.Basin Analysis-Principles and Applications.Blackwell Scientific Publications, Oxford, 451. http://d.wanfangdata.com.cn/Periodical/nygcxb201520019
      [3] Chen, Z.L., Zhang, Y.Q., Chen, X.H., et al., 2001.Late Cenozoic Sedimentary Process and Its Response to the Slip History of the Central Altyn Tagh Fault, NW China.Science in China (Ser.D), 44(1):103-111. https://asu.pure.elsevier.com/en/publications/late-cenozoic-sedimentary-process-and-its-response-to-the-slip-hi
      [4] Christie-Blick, N., Biddle, K.T., 1985.Deformation and Basin Formation along Strike-Slip Faults.In:Biddle, K.T., Christie-Blick, N., eds., Strike-Slip Deformation, Basin Formation, and Sedimentation.SEPM Spec.Publ., 37:1-34.
      [5] Crowell, J.C., 1982a.The Tectonics of Ridge Basin, Southern California.In:Crowell, J.C., Link, M.H., eds., Geologic History of Ridge Basin, Southern California.Field Guide Book, Pacific Section:SEPM, 25-42.
      [6] Crowell, J.C., 1982b.The Violin Breccia, Ridge Basin, Southern California.In:Crowell, J.C., Link, M.H., eds., Geologic History of Ridge Basin, Southern California.Field Guide Book, Pacific Section:SEPM, 89-98.
      [7] Fan, Q.H., Lv, X.X., Li, B.H., 2008.Strike-Slip Fault and the Hydrocarbon Reservoir Formation.Journal of Southwest Petroleum University (Science & Technology Edition), 30(6):76-80 (in Chinese with English abstract).doi: 10.3863/j.issn.1000-2634.2008.06.018
      [8] Gao, D., Cheng, R.H., Shen, Y.J., et al., 2016.Southwestern Provenance-Sedimentary System and Provenance Tectonic Setting of Eastern Sag in the North Yellow Sea Basin.Earth Science, 41(7):1171-1187 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.095
      [9] Jiang, Z.W., Wang, S.M., Xu, C.G., et al., 2013.Sedimentary Response to the Strike-Slip Activities of Tan-Lu Fault in Central and Southern Parts of East Liaodong Bay Area in Bohai Sea.Geoscience, 27(5):1005-1012 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201305002.htm
      [10] Kim, S.B., Chough, S.K., Chun, S.S., 2003.Tectonic Controls on Spatio-Temporal Development of Depositional Systems and Generation of Fining-Upward Basin Fills in a Strike-Slip Setting:Kyokpori Formation (Cretaceous), South-West Korea.Sedimentology, 50:639-665.doi: 10.1046/j.1365-3091.2003.00568.x
      [11] Lee, S.H., Chough, S.K., 1999.Progressive Changes in Sedimentary Facies and Stratal Patterns along the Strike-Slip Margin, Northeastern Jinan Basin (Cretaceous), Southwest Korea:Implications for Differential Subsidence.Sedimentary Geology, 123:81-102. doi: 10.1016/S0037-0738(98)00087-6
      [12] Li, T.G., Cao, Q.Y., Li, A.C., et al., 2003.Source to Sink:Sedimentation in the Continental Margins.Advance in Earth Sciences, 18(5):713-721 (in Chinese with English abstract). http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5ff56e9a88bdb43e903115e738f773c5
      [13] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, Source to Sink System and Basin Analysis.Earth Science Frontiers, 22(1):9-20 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201501002
      [14] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016.Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift.Earth Science, 41(11):1935-1947 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.134
      [15] Miall, A.D., 1984.Principles of Sedimentary Basin Analysis.Springer, New York, 490. http://d.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fa9d2c5fe760d355f149d1f9bf654a40
      [16] Nilsen, T.H., McLaughlin, R.J., 1985.Comparison of Tectonic Framework and Depositional Patterns of the Hornelen Strike-Slip Basin of Norway and the Ridge and Little Sulpher Creek Strike-Slip Basins of California.In:Biddle, K.T., Christie-Blick, N., eds., Strike-Slip Deformation, Basin Formation, and Sedimentation.SEPM Spec.Publ., 37:79-104.
      [17] Nilsen, T.H., Sylvester, A.G., 1995.Strike-Slip Basins.In:Busby, C.J., Ingersoll, R.V., eds., Tectonics of Sedimentary Basins.Blackwell Science, Cambridge, 425-457.
      [18] Qi, J.F., Zhou, X.H., Wang, Q.S., 2010.Structural Model and Cenozoic Kinematics of Tan-Lu Deep Fracture Zone in Bohai Sea Area.Geology in China, 37(5):1231-1239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201005004.htm
      [19] Reading, H.G., 1980.Characteristics and Recognition of Strike Slip Fault Systems.In:Balance, P.F., Reading, H.G., eds., Sedimentation in Oblique-Slip Mobile Zones.Blackwell Scientific Publications, U.S.A., 7-26.
      [20] Ridgway, K.D., Decelles, P.G., 1993.Stream-Dominated Alluvial Fan and Lacustrine Depositional Systems in Cenozoic Strike-Slip Basins, Denali Fault System, Yukon Territory, Canada.Sedimentology, 40(4):645-666. doi: 10.1111/sed.1993.40.issue-4
      [21] Walton, M.A., Gulick, S.P., Reece, R.S., et al., 2014.Dynamic Response to Strike-Slip Tectonic Control on the Deposition and Evolution of the Baran of Fan, Gulf of Alaska.Geosphere, 10(4):680-691.doi: 10.1130/ges01034.1
      [22] Wei, S.L., 2016."Source-Transportation-Sink"Analysis Method and Application in Continental Lacustrine Basin Sedimentary System Based on 2D Seismic Data:An Example from Wenchang Formation of Long Axis Direction, Kaiping Sag, Pearl River Mouth Basin.Fault-Block Oil & Gas Field, 23(4):414-418 (in Chinese with English abstract).doi: 10.6056/dkyqt201604002
      [23] Wysocka, A., Swierczewska, A., 2003.Alluvial Deposits from the Strike-Slip Fault Lo River Basin (Oligocene/Miocene), Red River Fault Zone, North-Western Vietnam.Journal of Asian Earth Sciences, 21(10):1097-1112. doi: 10.1016/S1367-9120(02)00171-2
      [24] Xu, C.G., 2006.Genetic Types of Paleogene Slope-Break Zones and Their Controls on Depositional System in Bohai Offshore.China Offshore Oil and Gas, 18(6):365-371 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD200606001.htm
      [25] Xu, C.G., 2013.Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins:Basic Idea, Conceptual Systems and Controlling Sand Models.China Offshore Oil and Gas, 25(4):1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201304002.htm
      [26] Xu, C.G., 2016.Strike-Slip Transfer Zone and Its Controlon Formation of Medium and Large-Sized Oil Fields in Bohai Sea Area.Earth Science, 41(9):1548-1560 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.508
      [27] Xu, G.F., Lin, C.S., Liu, Y.F., et al., 2016.Evolution of Palaeo-Uplift and Its Controlling on Sedimentation of Kapushaliang Group of Early Cretaceous in Western Tabei Uplift.Earth Science, 41(4):620-630 (in Chinese with English abstract).doi: 10.3799/dqkx.2016.051
      [28] 范秋海, 吕修祥, 李伯华, 2008.走滑构造与油气成藏.西南石油大学学报(自然科学版), 30(6):76-80. http://d.wanfangdata.com.cn/Periodical/xnsyxyxb200806018
      [29] 高丹, 程日辉, 沈艳杰, 2016.北黄海盆地东部坳陷侏罗纪西南物源-沉积体系与源区构造背景.地球科学, 41(7):1171-1187. http://earth-science.net/WebPage/Article.aspx?id=3326
      [30] 蒋子文, 王嗣敏, 徐长贵, 等, 2013.渤海海域辽东带中南部郯庐断裂走滑活动的沉积响应.现代地质27(5):1005-1012. http://d.wanfangdata.com.cn/Periodical/xddz201305002
      [31] 李铁刚, 曹奇原, 李安春, 等, 2003.从源到汇:大陆边缘的沉积作用.地球科学进展, 18(5), 713-721. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz200305011&dbname=CJFD&dbcode=CJFQ
      [32] 林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. http://d.wanfangdata.com.cn/Thesis/D367359
      [33] 刘强虎, 朱筱敏, 李顺利, 等, 2016.沙垒田凸起前古近系基岩分布及源-汇过程.地球科学, 41(11):1935-1947. http://earth-science.net/WebPage/Article.aspx?id=3391
      [34] 漆家福, 周心怀, 王谦身, 2010.渤海海域中郯庐深断裂带的结构模型及新生代运动学.中国地质, 37(5):1231-1239. http://d.wanfangdata.com.cn/Periodical/zgdizhi201005001
      [35] 魏山力, 2016.基于地震资料的陆相湖盆"源-渠-汇"沉积体系分析——以珠江口盆地开平凹陷文昌组长轴沉积体系为例.断块油气田, 23(4):414-418. http://www.cqvip.com/QK/90020X/201604/669697944.html
      [36] 徐长贵, 2006.渤海古近系坡折带成因类型及其对沉积体系的控制作用.中国海上油气, 18(6):365-371. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc200606002
      [37] 徐长贵, 2013.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式.中国海上油气, 25(4):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhsd201304002&dbname=CJFD&dbcode=CJFQ
      [38] 徐长贵, 2016.渤海走滑转换带及其对大中型油气田形成的控制作用.地球科学, 41(9):1548-1560. http://earth-science.net/WebPage/Article.aspx?id=3360
      [39] 徐桂芬, 林畅松, 刘永福, 等, 2016.塔北西部早白垩世卡普沙良群沉积期古隆起演化及其对沉积的控制作用.地球科学, 41(4):620-630. http://earth-science.net/WebPage/Article.aspx?id=3279
    • 加载中
    图(10)
    计量
    • 文章访问数:  5432
    • HTML全文浏览量:  2053
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-06
    • 刊出日期:  2017-11-15

    目录

      /

      返回文章
      返回