Evalution on High Pobabilistic Seismic-Led Heavy Metal Non-Point Source Pollution
-
摘要: 地震的不易预见性易导致突发性环境污染,目前的相关研究多侧重于地灾发生后的调研评价,对高概率地震灾害区域潜在重金属面源污染风险预评价的研究尚有限,而预风险评价能为制定有效措施以降低灾害污染程度提供重要参考信息.为初探地震所致突发性重金属面源污染的风险预评估方法,基于地震峰值加速度因素结合建筑破损因素、潜在重金属污染物负荷值以四川省和重庆市为例构建潜在重金属面源污染及人口暴露风险评价模型.结果表明,研究区域的11个子流域受到潜在重金属面源污染风险,其中六价铬涉及子流域最多.不考虑人口暴露时,六价铬引发风险主要分布于研究区域东北角、中部及中南部,其他9种重金属污染物的潜在面源污染区主要分布于四川中南部.考虑人口暴露因素时,则六价铬引发风险主要分布于子流域W1和W2的东南部,其他重金属污染物则集中于子流域W4的北部.以四川省和重庆市为例初探性地建立了基于地震峰值加速度因素的地震引发潜在重金属污染及人口暴露预风险模型.Abstract: To minimize the unexpected seismic damage, it is significant to evaluate the potantial seismic risk in the high probabilisitic seismic hazard zones and take effective precautionary measures. This paper aims to evaluate the risk of heavy metal non-point source pollution caused by seismic-led industrial building collapse. It is based on the seismic hazard of 10-percent probability of exceedance in 50 years, and the minimum value of the water quality standard in Sichuan, China. The method of Soil Conservation Service (SCS) curve number (CN) was used to compute the daily runoff depth, and to estimate the potential risk state of non-point source heavy metal pollution combined with the seismic damage index and population index. The results indicate: (1) eleven sub-basins are under the potential risk of seismic-led non-point source heavy metal pollution; (2) Compared to other heavy metal pollutants, more sub-basins are under the risk of Cr6+ pollution, and are mainly distributed in the northeast, central and south central of Sichuan province, whereas high risk subbasins of other heavy metal pollutants are most located in the south central areas of Sichuan province; (3) considering the population index, the high risk areas of Cr6+ pollution are mainly in the southeast of sub-basins W1 and W2, while those subjected to pollution of other heavy metals are mostly in the north of sub-basin W4.
-
Key words:
- earthquake /
- non-point /
- heavy metal /
- Sichuan /
- Chongqing /
- engineering geology
-
表 1 抗震设防烈度和基本设计地震加速度的对应关系
Table 1. The relationship between seismic intensity and PGA
抗震设设防烈度 6 7 8 9 设计基本地震加速度 0.05 g 0.10(0.15) g 0.20(0.30) g 0.40 g 表 2 建筑物破坏损失比
Table 2. The damage ration of buildings in five damage states
结构类别 破坏等级(%) 基本完好 轻微破坏 中等破坏 严重破坏 毁坏 钢筋混凝土、砌体房屋 0~5 6~15 16~45 46~80 81~100 工业厂房 0~4 5~16 17~45 46~80 81~100 城镇平房、农村建筑 0~5 6~15 16~40 41~70 71~100 表 3 研究区域土地利用方式的CN值
Table 3. The CN of four hydrologic soil groups in different types of land use
土地利用 A B C D 旱地 61 72 79 82 田地 55 69 78 83 林地 36 60 73 79 草地 45 65 75 80 居民区 62 75 83 87 水域(如冰川等) 98 98 98 98 湿地 77 86 91 94 表 4 AMC等级划分
Table 4. Grade division of AMC
AMC 土壤湿度状态 近5日降水量(mm) 休眠期 生长期 Ⅰ 干 <13 <36 Ⅱ 中 13~28 36~53 Ⅲ 湿 >28 >53 表 5 相关工厂站点所在的11个子流域的面积、污染物种类个数、承载度以及涉及的县市个数
Table 5. Area size, pollutant categories, density index and number of corresponding counties in each sub-basin
研究区子流域 潜在受灾县(个) 子流域序号 面积(m2) 污染物(个) 承载度(%) W1 1 446 800 1 0.7 14 W2 968 800 1 1.0 11 W3 2 269 600 1 0.4 23 W4 960 900 10 10.4 11 W5 1 186 200 10 8.4 10 W6 451 200 6 13.3 5 W7 1 972 900 6 3.0 27 W8 1 029 800 10 9.7 12 W9 3 226 200 10 3.1 24 W10 2 470 100 8 3.2 40 W11 981 200 5 3.1 18 -
[1] Gotoh, T., Nishimura, T., Nakata, M., et al., 2002.Air Pollution by Concrete Dust from the Great Hanshin Earthquake.Journal of Environmental Quality, 31(3):718-723. doi: 10.2134/jeq2002.7180 [2] Hu, B.R., Yang, W.N., Liu, H.H., et al., 2009.Method of Remote Sensing Evaluation on Eco-Environment before and after Wenchuan Earthquake.Soil and Water Conservation in China, 2009(3):52-54 (in Chinese). [3] Li, S.C., Cui, J.W., Yang, R.H., et al., 2003.A Primary Research on Seimo-Geological Disaster and the Resource-Environment Effect Caused by the Historical Earthquakes of Yunnan.Yunnan Geographic Environment Research, 15(2):9-18 (in Chinese with English abstract). [4] Liu, D., Zhou, G.B., Zhang, Y.P., et al., 2010.Seismic-Led Meteorological Emergency Security.Meteorology Soft Sciences, (6):148-161 (in Chinese). [5] Lu, G.P., Liu, R.F., 2015.Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China.Journal of Earth Science, 26(1): 60-72. doi: 10.1007/s12583-015-0498-y [6] Morkoc, E., Tarzan, L., Okay, O., et al., 2007.Changes of Oceanographic Characteristics and the State of Pollution in the Izmit Bay Following the Earthquake of 1999.Environmental Geology, 53(1):103-112. doi: 10.1007/s00254-006-0622-5 [7] Ni, L.T., Zhong, J.H., Shao, Z.F., et al., 2015.Characteristics, Genesis, and Sedimentary Environment of Duplex-Like Structures in the Jurassic Sediments of Western Qaidam Basin, China.Journal of Earth Science, 26(5):677-689. doi: 10.1007/s12583-015-0578-2 [8] Shi, Z.H., Cai, C.F., Ding, S.W., 2002.Research on Nitrogen and Phosphorus Load of Agricultural Non-Point Sources in Middle and Lower Reaches of Hanjiang River Based on GIS.Acta Scientiae Circumstantiate, 22(4):473-477. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX200204011.htm [9] Wang, L., Tian, B.W., Masoud, A., et al., 2013.Relationship between Remotely Sensed Vegetation Change and Fracture Zones Induced by the 2008 Wenchuan Earthquake, China.Journal of Earth Science, 24(2):282-296. doi: 10.1007/s12583-013-0329-y [10] Wu, J.H., 2000.Preliminary Analysis on the Relationship between Earthquakes and Ecologic Environment.Earthquake Research in Shanxi, (4):32-34 (in Chinese with English abstract). [11] Wu, J.B., Guo, A.H., 2001.A Discussion on Catastrophic Disaster Chains in the North China and Its Vicinty.Journal of Natural Disasters, 10(1):12-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH200101002.htm [12] Xu, X.L., Jiang, D., Zhuang, D.F., et al., 2008.Assessment about the Impact of Wenchuan Earthquake on Ecological Environment.Acta Ecologica Sinica, 28(12):5899-5908 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXB200812018.htm [13] Xu, X.N., Wang, L.S., 2002.Mountain Hazard Caused by Earthquake in Songping River Upper Minjiang and Its Controlling.The Chinese Journal of Geological Hazard and Control, 13(2):31-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH200202006.htm [14] Yamazaki, E., Yamashita, N., Taniyasu, S., et al., 2015.Emission, Dynamics and Transport of Perfluoroalkyl Substances from Land to Ocean by the Great East Japan Earthquake in 2011.Environmental Science & Technology, 49(19):11421-11428. http://www.ncbi.nlm.nih.gov/pubmed/26321264 [15] Yin, D.Y., Liu, Q., 2016.Estimation of High-Frequency Wave Radiation Areas of Wenchuan Earthquake by the Envelope Inversion of Acceleration Seismograms and Synthesis of Near-Field Accelerograms.Earth Science, 41(10):1781-1793 (in Chinese with English abstract). [16] Yuan, Y.F., 2007.Post-Earthquake Field Works—Part 4:Assessment of Direct Loss.Seismological Press, Beijing, 1-24 (in Chinese). [17] 胡宝荣, 杨武年, 刘汉湖, 等, 2009.汶川地震前后震区生态环境遥感评价方法研究.中国水土保持, (3): 52-54. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200903023.htm [18] 李世成, 崔建文, 杨润海, 等, 2003.云南地震地质灾害与资源环境效应问题的初步研究.云南地理环境研究, 15(2): 9-18. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDL200302001.htm [19] 刘德, 周国兵, 张亚萍, 等, 2010.地震引起的大气污染的应急气象保障.气象软科学, (6): 148-161. [20] 吴建华, 2000.地震与生态环境关系初探.山西地震, (4): 32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200004006.htm [21] 吴瑾冰, 郭安红, 2001.华北及邻近地区的巨灾链.自然灾害学报, 10(1): 12-16. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200101002.htm [22] 徐新良, 江东, 庄大方, 等, 2008.汶川地震灾害核心区生态环境影响评估.生态学报, 28(12): 5899-5908. doi: 10.3321/j.issn:1000-0933.2008.12.016 [23] 许向宁, 王兰生, 2002.岷江上游松坪沟地震山地灾害与生态环境保护.中国地质灾害与防治学报, 13(2): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200202006.htm [24] 尹得余, 刘启, 2016.基于包络的汶川大地震高频地震波辐射区域反演及近场加速度合成.地球科学, 41(10): 1781-1793. http://www.earth-science.net/WebPage/Article.aspx?id=3379 [25] 袁一凡, 2007.地震现场工作第4部分灾害直接损失评估(GB/T18208.4-2005).北京:地震出版社, 1-24.