• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广西某地花岗岩风化壳中稀土元素特征与iREE矿床成矿机制

    赵芝 王登红 潘华 屈文俊

    赵芝, 王登红, 潘华, 屈文俊, 2017. 广西某地花岗岩风化壳中稀土元素特征与iREE矿床成矿机制. 地球科学, 42(10): 1697-1706. doi: 10.3799/dqkx.2017.115
    引用本文: 赵芝, 王登红, 潘华, 屈文俊, 2017. 广西某地花岗岩风化壳中稀土元素特征与iREE矿床成矿机制. 地球科学, 42(10): 1697-1706. doi: 10.3799/dqkx.2017.115
    Zhao Zhi, Wang Denghong, Pan Hua, Qu Wenjun, 2017. REE Geochemistry of a Weathering Profile in Guangxi, Southern China, and Genesis of Ion-Adsorption Type REE Deposit. Earth Science, 42(10): 1697-1706. doi: 10.3799/dqkx.2017.115
    Citation: Zhao Zhi, Wang Denghong, Pan Hua, Qu Wenjun, 2017. REE Geochemistry of a Weathering Profile in Guangxi, Southern China, and Genesis of Ion-Adsorption Type REE Deposit. Earth Science, 42(10): 1697-1706. doi: 10.3799/dqkx.2017.115

    广西某地花岗岩风化壳中稀土元素特征与iREE矿床成矿机制

    doi: 10.3799/dqkx.2017.115
    基金项目: 

    中央级公益性科研院所基本科研业务费专项资金 K1506

    中国地质调查局地质大调查项目 DD20160056

    详细信息
      作者简介:

      赵芝(1984-),女,博士,主要从事离子吸附型稀土矿床成矿理论研究

      通讯作者:

      王登红

    • 中图分类号: P595

    REE Geochemistry of a Weathering Profile in Guangxi, Southern China, and Genesis of Ion-Adsorption Type REE Deposit

    • 摘要: 为了解风化壳中离子交换相稀土元素的特征,对广西某地花岗岩风化壳剖面样品进行了X射线衍射及主量、稀土元素地球化学特征的研究.剖面自上而下可划分为腐殖土层(A1)、亚粘土层(A2)、网纹状风化层(B1)和全风化层(B2);自A1至B2,粘土矿物的含量和化学风化蚀变指数快速降低;与母岩相比A1、A2、B1中全相Ce、Nd和HREE相对富集,B2中全相稀土与母岩特征相似,所有样品的离子交换相HREE亏损,Y相对富集;离子交换相轻、重稀土一起富集在B2中.据此推测,花岗岩中褐帘石、榍石等易风化的稀土矿物为离子交换相稀土提供了主要的物源,锆石、磷钇矿等难风化的稀土矿物的残留及表生稀土矿物的形成使全相HREE相对富集;离子交换相轻、重稀土元素的分馏程度随风化程度的增加而变化.

       

    • 图  1  研究区花岗岩体地质简图

      Fig.  1.  Simplified geological map of the studied granite in Guangxi Province

      图  2  花岗岩风化壳剖面(a)及样品分布示意(b)

      A1.腐殖土层;A2.亚粘土层;B1.网纹状风化层;B2.全风化层

      Fig.  2.  Photo of the studied weathering profile in Guangxi Province (a) and map showing the distribution of samples (b)

      图  3  风化壳剖面中代表性样品的照片及矿物组合

      Fig.  3.  Photo of the representative weathered granite samples and evolution of minerals within the studied samples

      图  4  风化壳剖面中CIA、REE、LREE及HREE变化特征

      A1.腐殖土层(DZ-1df);A2.亚粘土层(DZ-2S, 3S, 4样品稀土数据均值);B1.网纹状风化层(DZ-2Z, 3Z, 4Z样品稀土数据均值);B2.全风化层(DZ-3X, 4X, 5X样品稀土数据均值)

      Fig.  4.  Evolution of CIA, REE, LREE and HREE within the studied weathering profile

      图  5  风化壳样品的球粒陨石标准化稀土配分曲线

      左侧为全相稀土,右侧为离子交换相稀土;球粒陨石数据引自Taylor and McLennan(1985)

      Fig.  5.  Chondrite-normalized REE patterns of the weathered granite samples

      表  1  代表性风化壳样品的XRD分析结果

      Table  1.   XRD analysis of the representative weathered granite samples

      样号 层位 深度
      (m)
      矿物含量(%)
      粘土含量 石英 钾长石 斜长石 方解石 白云石 菱铁矿 黄铁矿 赤铁矿 菱锰矿 硬石膏 方沸石 辉石 角闪石
      DZ-3S 亚粘土层 3 84.1 15.9 / / / / / / / / / / / /
      DZ-3Z 网纹状风化层 6 50.5 21.1 28.4 / / / / / / / / / / /
      DZ-4X 全风化层 11 32.4 19.5 48.1 / / / / / / / / / / /
      下载: 导出CSV

      表  2  代表性样品的粘土矿物XRD分析结果

      Table  2.   XRD analysis of the representative clay samples

      样号 层位 深度
      (m)
      粘土矿物相对百分含量(%) 混层比
      蒙皂石 伊蒙混层 绿蒙混层 伊利石 高岭石 绿泥石
      DZ-3S 亚粘土层 3 / / / 2 98 / /
      DZ-3Z 网纹状风化层 6 / / / 8 92 / /
      DZ-4X 全风化层 11 / / / 4 96 / /
      下载: 导出CSV

      表  3  风化壳样品的主量元素测试结果(%)

      Table  3.   Major element compositions of the weathered granite samples (%)

      样号 层位 深度(m) SiO2 Al2O3 CaO Fe2O3 FeO K2O MgO MnO Na2O P2O5 TiO2 CO2 H2O+ LOI CIA
      DZ-1df A1 0.5 73.21 14.56 0.02 0.71 2.37 0.13 0.10 0.02 <0.01 0.02 0.23 0.35 6.13 8.41 98.9
      DZ-1S A1 78.32 13.00 0.02 2.03 1.08 0.15 0.09 0.03 <0.01 0.01 0.21 0.10 5.20 5.22 98.6
      DZ-2S A2 74.01 17.32 0.02 0.74 0.90 0.34 0.13 0.03 <0.01 0.01 0.28 0.10 6.74 6.45 97.8
      DZ-3S A2 3.0 74.24 16.33 0.02 1.35 1.08 0.31 0.11 0.03 <0.01 0.01 0.26 0.10 6.52 6.22 97.9
      DZ-4S A2 70.44 18.45 0.02 2.08 0.90 0.38 0.14 0.05 <0.01 0.01 0.32 0.10 7.48 7.07 97.7
      DZ-5S A1 69.70 18.12 0.02 2.44 1.04 0.25 0.14 0.03 <0.01 0.01 0.29 0.12 7.38 7.12 98.4
      DZ-1Z A2 73.95 16.54 0.02 1.15 1.37 0.29 0.11 0.03 <0.01 0.01 0.27 0.10 6.66 6.58 98.0
      DZ-2Z B1 77.68 14.31 0.02 0.29 1.62 0.30 0.11 0.10 <0.01 0.01 0.20 0.10 5.76 5.58 97.7
      DZ-3Z B1 6.0 72.79 16.22 0.03 1.30 1.76 1.68 0.13 0.07 <0.01 0.01 0.29 0.09 5.82 5.90 89.8
      DZ-4Z B1 73.60 16.28 0.02 1.04 1.69 0.63 0.16 0.23 <0.01 0.01 0.27 0.09 6.36 6.02 95.9
      DZ-5Z A2 73.80 15.96 0.02 2.45 0.68 0.21 0.10 0.04 <0.01 0.01 0.28 0.12 6.58 6.30 98.5
      DZ-1X A2 76.45 14.18 0.02 2.01 0.61 0.41 0.15 0.03 <0.01 0.01 0.23 0.10 5.94 5.60 96.9
      DZ-2X B1 75.49 16.43 0.02 0.37 0.61 0.44 0.13 0.02 <0.01 0.01 0.29 0.10 6.38 6.34 97.1
      DZ-3X B2 75.30 13.78 0.03 1.30 0.90 4.99 0.11 0.05 0.06 0.01 0.25 0.10 3.42 3.32 71.3
      DZ-4X B2 11.0 73.08 14.51 0.03 1.70 1.01 5.08 0.09 0.10 0.06 0.01 0.27 0.10 3.70 3.57 72.0
      DZ-5X B2 74.87 14.07 0.02 2.04 0.40 4.13 0.12 0.16 0.01 0.01 0.23 0.12 3.94 3.87 75.8
      DZ-6X A2 70.75 17.11 0.02 3.61 0.72 0.33 0.11 0.07 <0.01 0.02 0.28 0.15 7.14 7.18 97.9
      花岗岩 30.0 73.52 12.53 1.26 0.57 2.71 4.81 0.36 0.05 2.95 0.06 0.33 0.55
        注:花岗岩主量元素数据为21件样品的均值,岩石类型有粗粒、中粗粒及细粒黑云母花岗岩,引自前人保密文献.花岗岩的深度30 m是根据区域上风化壳厚度为20~30 m而假定的.
      下载: 导出CSV

      表  4  风化壳样品中全相稀土元素分析测试结果(10-6)

      Table  4.   Rare earth element compositions of the weathered granite samples (10-6)

      样号 层位 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc REE LREE/HREE
      DZ-1df A1 5.71 62.7 1.09 5.80 0.98 0.17 0.98 0.27 2.26 0.60 2.21 0.34 2.33 0.35 16.3 7.84 102 3.0
      DZ-1S A1 4.56 129 0.77 6.83 0.67 0.16 0.88 0.24 2.11 0.56 2.08 0.33 2.35 0.37 15.2 9.46 166 5.9
      DZ-2S A2 7.34 86.9 1.33 8.39 1.10 0.24 0.94 0.21 1.73 0.46 1.89 0.32 2.35 0.37 13.4 6.57 127 4.9
      DZ-3S A2 5.55 109 0.97 7.03 0.87 0.22 0.81 0.22 1.80 0.48 1.88 0.31 2.32 0.36 13.6 6.16 145 5.7
      DZ-4S A2 6.60 174 1.30 10.8 1.18 0.24 1.25 0.32 2.71 0.73 2.92 0.48 3.58 0.55 20.4 9.76 227 5.9
      DZ-5S A1 7.27 191 1.28 12.1 0.99 0.19 1.08 0.32 2.69 0.71 2.62 0.42 2.94 0.44 20.1 8.88 244 6.8
      DZ-1Z A2 5.27 114 0.93 6.86 0.74 0.17 0.70 0.19 1.57 0.43 1.70 0.29 2.08 0.32 11.9 7.63 147 6.7
      DZ-2Z B1 9.53 285 2.21 22.5 1.87 0.25 1.36 0.35 2.83 0.67 2.46 0.42 3.12 0.48 17.0 5.82 350 11.2
      DZ-3Z B1 28.4 116 9.56 42.8 5.54 0.59 2.25 0.42 3.01 0.70 2.69 0.39 2.80 0.43 18.2 6.24 234 6.6
      DZ-4Z B1 13.0 426 3.90 36.7 3.24 0.46 2.11 0.51 3.68 0.90 3.34 0.54 3.93 0.61 24.5 9.42 523 12.0
      DZ-5Z A2 10.0 142 1.67 11.3 1.14 0.24 1.14 0.25 2.10 0.55 2.12 0.35 2.42 0.36 16.1 6.95 192 6.6
      DZ-1X A2 10.8 151 2.14 12.9 1.92 0.26 2.10 0.53 4.31 1.08 3.74 0.59 3.91 0.59 31.2 8.39 227 3.7
      DZ-2X B1 37.5 33.7 10.2 40.4 5.98 0.59 3.16 0.68 5.24 1.26 4.41 0.65 4.40 0.66 34.4 5.02 183 2.3
      DZ-3X B2 101 24.8 25.8 102 28.5 3.93 30.0 4.61 26.3 5.08 15.2 1.95 12.5 1.83 136 5.59 520 1.2
      DZ-4X B2 126 147 31.2 124 31.7 4.24 31.9 4.99 28.3 5.33 15.6 2.00 12.6 1.83 147 5.29 715 1.9
      DZ-5X B2 98.3 143 24.4 100 25.2 3.35 23.4 3.58 20.2 3.83 11.7 1.49 9.73 1.42 102 4.84 572 2.2
      DZ-6X A2 12.4 226 2.99 21.8 2.30 0.29 1.76 0.36 2.63 0.61 2.27 0.36 2.53 0.39 16.7 9.18 294 9.6
      LC-JY 花岗岩 56.1 93.1 13.2 41.7 12.1 1.1 8.3 1.5 7.8 1.8 6.4 0.7 6.2 0.6 48.7 299.4 3.0
        注:LC-JY为4件中粗粒花岗岩样品均值,数据引自前人保密文献.
      下载: 导出CSV

      表  5  风化壳样品中离子交换相稀土元素分析测试结果(10-6)

      Table  5.   Ion-exchangeable rare earth element compositions of the weathered granite samples (10-6)

      样号 层位 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc REE
      DZ-1df A1 0.32 6.11 0.04 0.07 0.02 -0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.14 0.46 7
      DZ-1S A1 0.34 14.34 0.04 0.10 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.09 0.30 15
      DZ-2S A2 1.53 17.27 0.24 0.78 0.16 0.02 0.13 0.02 0.09 0.02 0.05 0.01 0.03 0.01 0.52 0.43 21
      DZ-3S A2 0.83 22.27 0.12 0.34 0.07 0.01 0.10 0.01 0.05 0.01 0.03 0.00 0.01 0.00 0.34 0.39 24
      DZ-4S A2 0.93 15.77 0.14 0.51 0.10 0.01 0.10 0.01 0.06 0.01 0.03 0.00 0.02 0.00 0.35 0.40 18
      DZ-5S A1 1.13 45.15 0.19 0.78 0.11 0.01 0.16 0.02 0.07 0.01 0.03 0.00 0.02 0.00 0.36 0.49 48
      DZ-1Z A2 1.30 21.55 0.24 0.42 0.11 0.01 0.10 0.02 0.05 0.01 0.02 0.00 0.01 0.00 0.43 0.65 24
      DZ-2Z B1 1.51 11.02 0.35 1.13 0.17 0.02 0.16 0.02 0.11 0.02 0.07 0.01 0.03 0.01 0.71 0.42 15
      DZ-3Z B1 11.30 5.47 1.95 6.84 0.52 0.04 0.40 0.02 0.11 0.01 0.07 0.00 0.02 0.00 0.48 0.34 27
      DZ-4Z B1 3.35 18.77 0.85 3.21 0.46 0.05 0.40 0.05 0.21 0.04 0.14 0.02 0.08 0.01 1.14 0.28 29
      DZ-5Z A2 1.16 30.11 0.16 0.59 0.06 0.00 0.09 0.01 0.04 0.01 0.02 0.00 0.01 0.00 0.26 0.28 33
      DZ-1X A2 2.58 12.75 0.33 1.06 0.12 0.00 0.12 0.01 0.06 0.01 0.03 0.00 0.01 0.00 0.52 0.35 18
      DZ-2X B1 13.89 7.27 3.46 12.75 1.51 0.11 1.02 0.07 0.40 0.07 0.26 0.02 0.11 0.02 1.98 0.19 43
      DZ-3X B2 64.97 0.78 7.65 23.77 3.62 0.40 4.86 0.39 1.92 0.32 0.83 0.06 0.34 0.05 12.94 0.42 123
      DZ-4X B2 25.65 0.62 2.37 7.16 0.98 0.10 1.44 0.11 0.55 0.10 0.23 0.02 0.10 0.02 4.25 0.26 44
      DZ-5X B2 122.44 2.41 16.93 56.29 8.76 0.99 10.50 0.85 4.06 0.65 1.82 0.13 0.72 0.09 25.84 0.24 253
      DZ-6X A2 4.12 9.28 0.66 2.06 0.26 0.03 0.29 0.03 0.10 0.02 0.06 0.01 0.03 0.01 0.92 0.46 18
      CS1-a 监控样 204.30 2.81 28.79 91.88 20.11 5.26 34.85 5.10 30.66 6.54 18.51 2.10 11.37 2.09 368.80 0.01 464
      CS1-b 监控样 202.60 2.83 28.11 90.46 19.56 5.04 34.18 4.99 29.76 6.38 17.46 1.99 10.67 1.96 360.80 0.01 456
      CS2-a 监控样 30.80 15.27 7.43 25.22 4.76 0.73 2.63 0.30 1.64 0.32 0.97 0.12 0.77 0.11 7.87 0.06 91
      CS2-b 监控样 33.07 16.30 8.00 27.66 5.14 0.79 2.76 0.32 1.81 0.35 1.07 0.13 0.84 0.12 8.55 0.07 98
      FY1-a 重复样 96.25 16.72 22.07 80.37 17.62 3.30 25.11 4.39 26.88 5.12 13.50 1.73 9.48 1.42 211.20 0.01 324
      FY1-b 重复样 97.74 17.02 22.33 83.02 17.82 3.31 25.62 4.44 27.21 5.21 13.58 1.74 8.91 1.42 214.60 0.01 329
      FY2-a 重复样 393.10 43.27 86.38 302.20 62.41 9.57 60.41 8.73 53.24 10.83 31.21 4.01 25.04 3.65 514.80 0.04 1 094
      FY2-b 重复样 396.30 42.93 86.78 301.90 63.04 9.70 59.98 8.82 54.23 10.93 31.58 4.06 25.52 3.74 528.50 0.04 1 099
      下载: 导出CSV
    • [1] Bai, G., Wu, C.Y., Ding, X.S., et al., 1989.The Forming Condition and Distribution of Ion-Adsorption Type Rare Earth Element Deposit in Nanling Range.Institute of Ore Deposit Geology, Beijing, 1-95 (in Chinese).
      [2] Banfield, J.F., Eggleton, R.A., 1989.Apatite Replacement and Rare Earth Mobilization, Fractionation, and Fixation during Weathering.Clays and Clay Minerals, 37(2):113-127. doi: 10.1346/CCMN
      [3] Bao, Z.W., Zhao, Z.H., 2008.Geochemistry of Mineralization with Exchangeable REE in the Weathering Crusts of Granitic Rocks in South China.Ore Geology Reviews, 33:519-535. doi: 10.1016/j.oregeorev.2007.03.005
      [4] Bern, C.R., Yesavage, T., Foley, N.K., 2017.Ion-Adsorption REEs in Regolith of the Liberty Hill Pluton, South Carolina, USA:An Effect of Hydrothermal Alteration.Journal of Geochemical Exploration, 172:29-40. doi: 10.1016/j.gexplo.2016.09.009
      [5] Braun, J.J., Pagel, M., Muller, J.P., et al., 1990.Cerium Anomalies in Lateritic Profiles.Geochimica et Cosmochimica Acta, 54:781-795. doi: 10.1016/0016-7037(90)90373-S
      [6] Chen, D.Q., Wu, J.S., 1990.The Mineralization Mechanism of Ion-Adsorption REE Deposit.Journal of the Chinese Rare Earth Society, 8(2):175-179 (in Chinese).
      [7] Chi, R.A., Tian, J., Luo, X.P., et al., 2012.The Basic Research on the Weathered Crust Elution-Deposited Rare Earth Ores.Nonferrous Metals Science and Engineering, 3(4):1-13 (in Chinese with English abstract).
      [8] Condie, K.C., Dengate, J., Cullers, R.L., 1995.Behavior of Rare Earth Elements in a Paleoweathering Profile on Granodiorite in the Front Range, Colorado, USA.Geochimica et Cosmochimica Acta, 59(2):279-294. doi: 10.1016/0016-7037(94)00280-Y
      [9] Ding, J.Y., Deng, G.Q., 2013.Main Problems in the Current Ionic Adsorption Rare Earth Exploration Specifications and Their Amendment Proposals.Nonferrous Metals Science and Engineering, 4(4):96-102 (in Chinese with English abstract). http://data-gov.tw.rpi.edu/raw/1560/data-1560-00079.rdf
      [10] Duddy, I.R., 1980.Redistribution and Fractionation of Rare-Earth and Other Elements in a Weathering Profile.Chemical Geology, 30(4):363-381. doi: 10.1016/0009-2541(80)90102-3
      [11] Fu, W., Huang, X.R., Yang, M.L., et al., 2014.REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks:Comparative Study of Two Laterite Profiles under Different Climate Condition.Earth Science, 39(6):716-732 (in Chinese with English abstract). doi: 10.1007/978-3-642-31359-2_3
      [12] Ishihara, S., Hua, R.H., Hoshino, M., et al., 2008.REE Abundance and REE Minerals in Granitic Rocks in the Nanling Range, Jiangxi Province, Southern China, and Generation of the REE-Rich Weathered Crust Deposits.Resource Geology, 58(4):355-372. doi: 10.1111/rge.2008.58.issue-4
      [13] Li, X.C., Li, S.Q., 1982.Determination of Leaching Rare Earth Element, Light Rare Earth Element and High Rare Earth Element in Ion-Adsorption REE Deposit by Photometry.Journal of Jiangxi Normal University (Natural Science Edition), (1):1-6 (in Chinese). doi: 10.1007%2Fs11104-005-4888-2.pdf
      [14] Li, Z.L, Wu, C.L., Zhang, X.L., et al., 2015.Uncertainty Assessment for IDW Ore Grade Estimates.Earth Science, 40(11):1796-1801 (in Chinese with English abstract).
      [15] Marsh, J.S., 1991.REE Fractionation and Ce Anomalies in Weathered Karoo Dolerite.Chemical Geology, 90(3-4):189-194. doi: 10.1016/0009-2541(91)90099-D
      [16] Nesbitt, H.W., 1979.Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite.Nature, 279(5719):206-210.
      [17] Oelkers, E.H., Poitrasson, F., 2002.An Experimental Study of the Dissolution Stoichiometry and Rates of a Natural Monazite as a Function of Temperature from 50 to 230 ℃ and pH from 1.5 to 10.Chemical Geology, 191(1-3):73-87. doi: 10.1016/S0009-2541(02)00149-3
      [18] Price, R.C., Gray, C.M., Wilson, R.E., et al., 1991.The Effects of Weathering on Rare-Earth Element, Y and Ba Abundance in Tertiary Basalts from Southeastern Australia.Chemical Geology, 93(3-4):245-265. doi: 10.1016/0009-2541(91)90117-A
      [19] Sanematsu, K., Kon, Y., Imai, A., 2015.Influence of Phosphate on Mobility and Adsorption of REEs during Weathering of Granites in Thailand.Journal of Asian Earth Sciences, 111(1):14-30. http://adsabs.harvard.edu/abs/2015JAESc.111...14S
      [20] Sanematsu, K., Kon, Y., Imai, A., et al., 2013.Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand.Mineralium Deposita, 48(4):437-451. doi: 10.1007/s00126-011-0380-5
      [21] Shi, Y.H., Qiu, L., Tang, B.Y., et al., 2014.Determination of Total Ionic-Phase Rare Earth and Component in Ion-Adsorption Rare Earth Ore by Inductively Coupled Plasma Mass Spectrometry.Metallurgical Analysis, 34(9):14-19 (in Chinese with English abstract).
      [22] Song, Y.H., Shen, L.P., 1986.REE Geochemistry of the Weathered Crust of Acid Volcanic Rocks—An Experimental Study.Geochimica, (3):225-234 (in Chinese with English abstract). doi: 10.1007/BF02872217
      [23] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell, London, 57-72.
      [24] Tian, J., Tang, X.K., Yin, J.Q., et al., 2013.Process Optimization on Leaching of a Lean Weathered Crust Elution-Deposited Rare Earth Ores.International Journal of Mineral Processing, 119:83-88. doi: 10.1016/j.minpro.2013.01.004
      [25] Topp, S.E., Salbu, B., Roaldset, E., et al., 1984.Vertical Distribution of Trace Elements in Laterite Soil (Suriname).Chemical Geology, 47(1-2):159-174. doi: 10.1016/0009-2541(84)90104-9
      [26] Wang, D.H., Zhao, Z., Yu, Y., et al., 2013.Progress, Problems and Research Orientation of Ion-Adsorpotion Type Rare Rarth Resources.Rock and Mineral Analysis, 32(5):796-802 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0168127316300010
      [27] Wang, D.H., Zhao, Z., Yu, Y., et al., 2017.A Review of the Achievements in the Survey and Study of Ion-Absorption Type REE Deposit in China.Acta Geoscientica Sinica, 38(3):317-325 (in Chinese with English abstract).
      [28] Wu, C.Y., 1988.The Study of Ion-Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces (Dissertation).Chinese Academy of Geological Sciences, Beijing, 1-132 (in Chinese with English abstract).
      [29] Wu, C.Y., Huang, D.H., Guo, Z.X., 1990.REE Geochemistry in the Weathered Crust of Granites, Longnan Area, Jiangxi Province.Acta Geologica Sinica, 3(2):193-210. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXW199002005.htm
      [30] Wu, C.Y., Lu, H.L., Xu, L.M., et al., 1993.A Preliminary Study on Modes of Occurrence of Rare Earth Elements in the Tropical-Subtropical Weathering Crust of Nanling Range.Mineral Deposits, 12(4):297-307 (in Chinese with English abstract). doi: 10.1007/s12665-014-3385-4
      [31] Xiang, L., Cai, C.F., He, X.Y., et al., 2015.The Ocean Redox State Evolution and Its Controlling Factors during the Cambrian Terreneuvian Epoch:Evidence from the Lijiatuo Section, South China.Earth Science, 40(7):1197-1214 (in Chinese with English abstract). doi: 10.1007/978-94-017-9600-2_3/fulltext.html
      [32] Yang, Y.Q., Hu, Z.S., Luo, Z.M., 1981.Geological Characteristic of Mineralization of Rare Earth Deposit of the Ion-Absorption Type and Their Prospecting Direction.Bulletin of the Chinese Academy of Geological Sciences, 2(1):102-118 (in Chinese with English abstract).
      [33] Zhao, Z., Wang, D.H., Liu, X.X., et al., 2015.Geochemical Features of Rare Earth Elements in Different Weathering Stage of the Guangxi Huashan Granite and Its Influence Factors.Chinese Rare Earths, 36(3):14-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200201003.htm
      [34] 白鸽, 吴澄宇, 丁孝石, 等, 1989. 南岭地区离子型稀土矿床形成条件和分布规律. 北京: 地质矿产部矿床地质研究所, 1-95.
      [35] 陈德潜, 吴静淑, 1990.离子吸附型稀土矿床的成矿机制.中国稀土学报, 8(2): 175-179. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB199002019.htm
      [36] 池汝安, 田君, 罗仙平, 等, 2012.风化壳淋积型稀土矿的基础研究.有色金属科学与工程, 3(4): 1-13. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201204003.htm
      [37] 丁嘉榆, 邓国庆, 2013.现行离子吸附型稀土勘查规范存在的主要问题与修订建议.有色金属科学与工程, 4(4): 96-102. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201304018.htm
      [38] 付伟, 黄小荣, 杨梦力, 等, 2014.超基性岩红土风化壳中REE地球化学:不同气候风化壳剖面的对比.地球科学, 39(6): 716-732. http://earth-science.net/WebPage/Article.aspx?id=2878
      [39] 李先春, 李思群, 1982.矿石中离子吸附型稀土总量和轻重稀土分量的光度测定法.江西师范学院(自然科学版), (1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-CAPE198201000.htm
      [40] 李章林, 吴冲龙, 张夏林, 等, 2015.IDW矿石品位估值结果的不确定性评价.地球科学, 40(11): 1796-1801. http://earth-science.net/WebPage/Article.aspx?id=3186
      [41] 施意华, 邱丽, 唐碧玉, 等, 2014.电感耦合等离子体质谱法测定离子型稀土矿中离子相稀土总量及分量.冶金分析, 34(9): 14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201409004.htm
      [42] 宋云华, 沈丽璞, 1986.酸性火山岩类风化壳中稀土元素的地球化学实验研究.地球化学, (3): 225-234. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198603003.htm
      [43] 王登红, 赵芝, 于扬, 等, 2013.离子吸附型稀土资源研究进展、存在问题及今后研究方向.岩矿测试, 32(5): 796-802. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201305022.htm
      [44] 王登红, 赵芝, 于扬, 等, 2017.我国离子吸附型稀土矿产科学研究和调查评价新进展.地球学报, 38(3): 317-325. doi: 10.3975/cagsb.2017.03.02
      [45] 吴澄宇, 1988. 赣南粤北地区风化壳离子吸附型稀土矿床研究(博士学位论文). 北京: 中国地质科学院, 1-132. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213390.htm
      [46] 吴澄宇, 卢海龙, 徐磊明, 等, 1993.南岭热带-亚热带风化壳中稀土元素赋存形式的初步研究.矿床地质, 12(4): 297-307. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199304002.htm
      [47] 向雷, 蔡春芳, 贺训, 等, 2015.华南李家沱剖面寒武纪纽芬兰世海水氧化还原性质演化及其驱动因素.地球科学, 40(7): 1197-1214. http://earth-science.net/WebPage/Article.aspx?id=3122
      [48] 杨岳清, 胡淙声, 罗展明, 1981.离子吸附型稀土矿床成矿地质特征及找矿方向.中国地质科学院院报, 矿床地质研究所分刊, 2(1): 102-118. http://youxian.cnki.com.cn/yxdetail.aspx?filename=JSDZ201703017&dbname=CJFDPREP
      [49] 赵芝, 王登红, 刘新星, 等, 2015.广西花山岩体不同风化阶段稀土元素特征及影响因素.稀土, 36(3): 14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201503005.htm
    • 加载中
    图(5) / 表(5)
    计量
    • 文章访问数:  4589
    • HTML全文浏览量:  1780
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-30
    • 刊出日期:  2017-10-18

    目录

      /

      返回文章
      返回