Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs
-
摘要: 在致密油藏水平井体积压裂开采过程中,压裂液通过缝网与基质接触并发生逆向渗吸作用,由于接触面积很大渗吸作用不可忽视;但目前关于表征致密储层的渗吸作用,从而研究渗吸对水平井体积压裂生产过程影响的研究尚未深入.为了解决以上问题,首先利用毛管束模型,通过考虑致密储层中边界层的特征,建立了解析的渗流参数计算表达式,用以计算致密储层的渗透率、毛管力、相渗曲线这3个关键渗流参数;同时,基于以上关键渗流参数和渗吸控制方程建立了适用于致密储层的渗吸速度计算模型;然后,将渗吸项作为源汇项加入到考虑缝网的双孔单渗模型中.最后,在真实水平井体积压裂开采过程中,耦合渗吸作用.研究表明,相比于不考虑边界层特征的致密油藏,边界层的存在将大幅度减弱储层的渗吸能力,同时也说明了在致密储层中,边界层的存在是不可忽视的,如果在渗吸计算中忽视致密储层的边界层特征会严重高估渗吸对致密储层产能的影响.Abstract: During the process of tight oil exploration, counter current imbibition effect is significantly different due to the presence of complex fracture network and flow characteristics in tight oil reservoirs. But at present, there is no proper model to simulate counter-current imbibition in fractured reservoir considering the characteristics of tight oil formation. In order to solve this problem, PEBI grids are used to match the complex fracture network, natural fractures and matrix are idealized as dual-porosity medium, rate of mass transfer of imbibition between matrix and fractures is treated as source or sink term in dual porosity model. A new semi analytical model for the calculation of mass transfer function of counter-current imbibition in the presence of complex fracture network is established by using radial integration boundary element method (RIBEM). In addition, to reflect the flow characteristics of tight oil, relative permeability and capillary pressure curve with the effect of boundary layer considered, and mixed wettability have also used in the mass transfer model. Besides, we show the capacity and practical application of the model with a field example from tight oil reservoir. From simulated results, it is concluded that counter-current imbibition plays an important role in improving the oil recovery and the existence of boundary layer reduces the contribution of imbibition to oil production dramatically.
-
表 1 岩心基本参数
Table 1. Basic parameters of imbibition experiment under different boundary conditions
岩心编号 岩心直径(mm) 岩心长度(mm) 孔隙度(%) 束缚水饱和度(%) 模拟油密度(kg/m3) 地层水密度(kg/m3) S102 24.96 52.6 9.3 41.1 807 1 058 表 2 油藏基本参数
Table 2. Basic parameters of reservoirs
参数名称 数值 初始油藏压力(10-1 MPa) 250 井底压力(10-1 MPa) 5 致密油藏基质渗透率(考虑边界层)(mD) 1.28 致密油藏基质渗透率(不考虑边界层)(mD) 7.56 油藏天然裂缝渗透率(mD) 100 水力压裂缝的渗透率(mD) 2 000 基质的孔隙度 0.093 裂缝介质的空隙度 0.001 水力压裂缝的孔隙度 0.5 水力压裂缝的平均半长(m) 150 -
[1] Aronofsky, J.S., Masse, L., Natanson, S.G., 1958.A Model for the Mechanism of Oil Recovery from the Porous Matrix due to Water Invasion in Fractured Reservoirs.Society of Petroleum Engineers, 213:17-19. http://www.onepetro.org/general/SPE-932-G [2] Bagherinezhad, A., Pishvaie, M.R., 2014.A New Approach to Counter-Current Spontaneous Imbibition Simulation Using Green Element Method.Journal of Petroleum Science and Engineering, 119:163-168.doi: 10.1016/j.petrol.2014.05.004 [3] Cai, J.C., Yu, B.M., 2012.Advances in Studies of Spontaneous Imbibition in Porous Media.Advances in Mechanics, 42(6):735-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201206006.htm [4] Cai, J.C., Guo, S.L., You, L.J., et al., 2013.Fractal Analysis of Spontaneous Imbibition Mechanism in Fractured-Porous Dual Media Reservoir.Acta Physica Sinica, 62(1):220-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201301035.htm [5] Fang, S.D., Cheng, L.S., Ayala, L.F., 2017.A Coupled Boundary Element and Finite Element Method for the Analysis of Flow through Fractured Porous Media.Journal of Petroleum Science and Engineering, 152:375-390.doi: 10.1016/j.petrol.2017.02.020 [6] Hassan, S., 2004.Analysis Scaling and Simulation of Counter-Current Imbibition (Dissertation).London Imperial College, London. [7] Jia, P., Cheng, L.S., Huang, S.J., et al., 2015.Transient Behavior of Complex Fracture Networks.Journal of Petroleum Science and Engineering, 132:1-17.doi: 10.1016/j.petrol.2015.04.041 [8] Kashchiev, D., Firoozabadi, A., 2003.Analytical Solutions for 1D Countercurrent Imbibition in Water-Wet Media.SPE Journal, 8(4):401-408.doi: 10.2118/87333-pa [9] Li, Y., Lei, Q., Liu, X.G., 2011.Characteristics of Micro Scale Nonlinear Filtration.Petroleum Exploration & Development, 38(3):336-340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201103018.htm [10] Ma, S.X., Morrow, N.R., Zhang, X.Y., 1997.Generalized Scaling of Spontaneous Imbibition Data for Strongly Water-Wet Systems.Journal of Petroleum Science and Engineering, 18(3-4):165-178.doi: 10.1016/s0920-4105(97)00020-x [11] Meng, Q., Liu, H.Q., Wang, J., 2017.A Critical Review on Fundamental Mechanisms of Spontaneous Imbibition and the Impact of Boundary Condition, Fluid Viscosity and Wettability.Advances in Geo-Energy Research, 1(1):1-17. [12] Ren, D.Z., Sun, W., Huang, H., et al., 2016.Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin.Earth Science, 41(10):1735-1744 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610009.htm [13] Schechter, D.S., Zhou, D., Orr, F.M., 1994.Low IFT Drainage and Imbibition.Journal of Petroleum Science and Engineering, 11(4):283-300.doi: 10.1016/0920-4105(94)90047-7 [14] Tian, X.F., 2015.Non-Linear Flow Behavior and Application in Ultra-Low Permeability Reservoirs (Dissertation).China University of Petroleum, Beijing (in Chinese with English abstract). [15] Tian, X.F., Cheng, L.S., Cao, R.Y., et al., 2016.Characteristics of Boundary Layer in Micro and Nano Throats of Tight Sandstone Oil Reservoirs.Chinese Journal of Computational Physics, 33(6):717-725 (in Chinese with English abstract). [16] Wei, Q., Li, Z.P., Bai, R.T., et al., 2016.An Experimental Study on the Effect of Microscopic Pore Structure on Spontaneous Imbibition in Tight Sandstones.Petroleum Drilling Techniques, 44(5):109-116 (in Chinese with English abstract). [17] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 39(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm [18] Xu, Z.Y., Cheng, L.S., Cao, R.Y., et al., 2017.Simulation of Counter-Current Imbibition in Single Matrix and Field Scale Using Radical Integral Boundary Element Method.Journal of Petroleum Science and Engineering, 156:125-133.doi: 10.1016/j.petrol.2017.05.016 [19] Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012.Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance.Acta Petrolei Sinica, 33(2):173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203 [20] 蔡建超, 郭士礼, 游利军, 胡祥云, 2013.裂缝-孔隙型双重介质油藏渗吸机理的分形分析.物理学报, 62(1): 220-224. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201301035.htm [21] 蔡建超, 郁伯铭, 2012.多孔介质自发渗吸研究进展.力学进展, 42(6): 735-754. doi: 10.6052/1000-0992-11-096 [22] 李洋, 雷群, 刘先贵, 2011.微尺度下的非线性渗流特征.石油勘探与开发, 38(3): 336-340. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201103018.htm [23] 任大忠, 孙卫, 黄海, 等, 2016.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理.地球科学, 41(10): 1735-1744. http://earth-science.net/WebPage/Article.aspx?id=3375 [24] 田虓丰, 2015. 超低渗透油藏非线性渗流特征与应用(博士学位论文). 北京: 中国石油大学. [25] 田虓丰, 程林松, 曹仁义, 等, 2016.致密油藏微纳米喉道中的边界层特征.计算物理, 33(6): 717-725. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201606011.htm [26] 韦青, 李治平, 白瑞婷, 等, 2016.微观孔隙结构对致密砂岩渗吸影响的试验研究.石油钻探技术, 5: 109-116. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201605024.htm [27] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 39(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188 [28] 邹才能, 朱如凯, 吴松涛, 等, 2012.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例.石油学报, 33(2): 173-187. doi: 10.7623/syxb201202001