Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures
-
摘要: 在深部煤层瓦斯抽采过程中,地温较高且孔隙压力逐渐降低,而目前综合考虑温度和孔隙压力对煤岩渗透特性耦合作用的研究较少.利用自主研发的出口端压力可调的三轴渗流装置,以贵州矿区原煤试件为研究对象,进行不同温度下改变孔隙压力的渗流试验,并建立了考虑温度的渗透率匹配模型.研究表明,煤岩渗透率随孔隙压力增大按指数函数减小;煤岩渗透率随压差的增大而减小,随温度的升高而降低,在不同的温度状态下,渗透率的下降速率和变化幅度有所不同.在模拟瓦斯开发的物理试验中,压差应尽量小,减少其误差,为建立不同边界条件的渗透率模型提供帮助;随温度的升高,温度突变系数呈增大的趋势;随孔隙压力的增大,温度突变系数呈减小的趋势.温度突变系数在整个阶段不为常数,且割理压缩系数可变,这两个特征更能真实地匹配模型,反映瓦斯的开发过程.Abstract: The ground temperature is higher and the pore pressure gradually decreases in the process of gas extraction in deep coal seams, however there are few studies on the coupling effect of temperature and pore pressure on the permeability of coal. Seepage experiments on the raw coal from Guizhou mining area are carried out by the self-developed triaxial seepage equipment with an adjustable outlet pressure to study the influence of pore pressure and temperature on the permeability. A permeability matching model with temperature effect is also developed in this study. An exponential relationship between the permeability and pore pressure is found and presented. The results show that the permeability decreases with increasing pore pressure, and it decreases as the differential pressure increases. Also, the permeability of coal seam decreases with increased temperature, and the decreasing rate and magnitude of permeability are different under different temperatures. Therefore, the differential pressure should be as small as possible to reduce the error and help develop the permeability model with different boundary conditions in the physical simulation experiments of coalbed methane (CBM) extraction. As the temperature increases, the mutation coefficient of temperature increases. While, the mutation coefficient of temperature decreases as pore pressure increases. It has been found these two characteristics that the mutation coefficient of temperature is not a constant in the whole stage and the realistic model matching with a variable cleat compressibility coefficient can reflect the development process of CBM.
-
Key words:
- coal and rock /
- permeability /
- pore pressure /
- effective stress /
- temperature /
- differential pressure
-
表 1 林华9号煤层原煤基本力学参数
Table 1. Basic mechanical parameters of raw coal in No.9 coal seam of Lin Hua
围压(MPa) 与层理面关系 σc(MPa) E(MPa) ν 3.0 ⊥ 38.28 1 905.04 0.125 9 // 39.55 2 114.45 0.114 5 表 2 煤岩数据匹配的模型参数
Table 2. Model parameters of coal about data matching
△p(MPa) T(℃) cf0(MPa-1) a(MPa-1) 0.1 30 -0.006 4 4.002 0 50 -0.004 2 3.994 2 70 -0.006 4 4.004 3 0.3 30 -0.006 2 4.002 1 50 -0.006 1 3.995 1 70 -0.007 5 4.023 5 0.5 30 -0.006 8 4.018 8 50 -0.008 4 3.995 1 70 -0.006 3 4.399 7 表 3 不同温度条件下的弹性模量
Table 3. Values of elastic modulus under different temperature conditions
温度(℃) 25 30 50 70 弹性模量(MPa) 181.46 178.88 168.72 160.00 -
[1] Cao, S.G., Li, Y., Guo, P., et al., 2010.Comparative Research on Permeability Characteristics in Complete Stress-Strain Process of Briquettes and Coal Samples.Chinese Journal of Rock Mechanics and Engineering, 29(5):899-906 (in Chinese with English abstract). http://www.rockmech.org/EN/abstract/abstract20031.shtml [2] Chen, Z.Q., Yu, B.Y., 2015.Research Progress of Seepage Mechanics in Rock Mass Affected by Mining.Journal of Southwest Petroleum University (Science & Technology Edition), 37(3):69-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201503010.htm [3] Connell, L.D., Mazumder, S., Sander, R., et al., 2016.Laboratory Characterisation of Coal Matrix Shrinkage, Cleat Compressibility and the Geomechanical Properties Determining Reservoir Permeability.Fuel, 165:499-512.doi: 10.1016/j.fuel.2015.10.055 [4] Fu, X.H., Li, D.H., Qin, Y., et al., 2002.Experimental Research of Influence of Coal Matrix Shrinkage on Permeability.Journal of China University of Mining & Technology, 31(2):129-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200202004.htm [5] Jasinge, D., Ranjith, P.G., Choi, X., et al., 2012.Investigation of the Influence of Coal Swelling on Permeability Characteristics Using Natural Brown Coal and Reconstituted Brown Coal Specimens.Energy, 39(1):303-309.doi: 10.1016/j.energy.2012.01.010 [6] Lemaitre, J., Desmorat, R., Sauzay, M., 2000.Anisotropic Damage Law of Evolution.European Journal of Mechanics-A/Solids, 19(2):187-208.doi: 10.1016/s0997-7538(00)00161-3 [7] Li, J., Liu, D., Yao, Y., et al., 2014.Control of CO2 Permeability Change in Different Rank Coals during Pressure Depletion:An Experimental Study.Energy Fuels, 28(2):987-996.doi: 10.1021/ef402285n [8] Li, Z.Q., Xian, X.F., Long, Q.M., et al., 2009.Experiment Study of Coal Permeability under Different Temperature and Stress.Journal of China University of Mining & Technology, 38(4):523-527 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200904011.htm [9] Lin, B.Q., Zhou, S.N., 1987.Experimental Investigation on the Permeability of the Coal Samples Containing Methane.Journal of China University of Mining & Technology, 16(1):21-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD198701002.htm [10] Liu, Q.S., Xu, X.C., 2000.Damage Analysis of Brittle Rock at High Temperature.Chinese Journal of Rock Mechanics and Engineering, 19(4):408-411 (in Chinese with English abstract). http://www.oalib.com/paper/1482174 [11] Liu, S.M., Harpalani, S., Pillalamarry, M., 2012.Laboratory Measurement and Modeling of Coal Permeability with Continued Methane Production:Part 2—Modeling Results.Fuel, 94:117-124.doi: 10.1016/j.fuel.2011.10.053 [12] Long, Q.M., Zhao, X.S., Mu, J.S., 2008.Experimental Study on Influence of Pore Gas Pressure upon Gas Permeability of Coal Seam.Mining Safety & Environmental Protection, 35(1):10-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ENER200801007.htm [13] McKee, C.R., Bumb, A.C., Koenig, R.A., 1988.Stress-Dependent Permeability and Porosity of Coal and Other Geologic Formations.SPE Formation Evaluation, 3(1):81-91.doi: 10.2118/12858-pa [14] Palmer, I., Mansoori, J., 1996.How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model.SPE Annual Technical Conference and Exhibition, Denver. [15] Pan, Z.J., Connell, L.D., Camilleri, M., 2010.Laboratory Characterisation of Coal Reservoir Permeability for Primary and Enhanced Coalbed Methane Recovery.International Journal of Coal Geology, 82(3-4):252-261.doi: 10.1016/j.coal.2009.10.019 [16] Peng, T., Wu, J.W., Ren, Z.Q., et al., 2015.Distribution Characteristics of Current Geothermal Field and Terrestrial Heat Flow in Huaibei Coalfield.Earth Science, 40(6):1083-1092 (in Chinese with English abstract). [17] Seidle, J.P., Jeansonne, M.W., Erickson, D.J., 1992.Application of Matchstick Geometry to Stress Dependent Permeability in Coals.SPE Rocky Mountain Regional Meeting, Casper.doi: 10.2118/24361-ms [18] Shi, J.Q., Durucan, S., 2004.Drawdown Induced Changes in Permeability of Coalbeds:A New Interpretation of the Reservoir Response to Primary Recovery.Transport in Porous Media, 56(1):1-16.doi: 10.1023/b:tipm.0000018398.19928.5a [19] Sun, G.Z., Wang, G.Z., Zhang, R.L., 2016.An Experimental Study on Response Law of Permeability of Tectonic Coal Samples to Temperature Variation.Rock and Soil Mechanics, 37(4):1042-1048 (in Chinese with English abstract). [20] Tan, Y.L., Pan, Z.J., Liu, J.S., et al., 2017.Experimental Study of Permeability and Its Anisotropy for Shale Fracture Supported with Proppant.Journal of Natural Gas Science and Engineering, 44:250-264.doi: 10.1016/j.jngse.2017.04.020 [21] Tang, J.P., Pan, Y.S., Li, C.Q., et al., 2006.Experimental Study of Desorption and Seepage of Coalbed Methane under Solid-Fluid Coupling.Journal of China University of Mining & Technology, 35(2):274-278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD200602027.htm [22] Vishal, V., Ranjith, P.G., Singh, T.N., 2013.CO2 Permeability of Indian Bituminous Coals:Implications for Carbon Sequestration.International Journal of Coal Geology, 105:36-47.doi: 10.1016/j.coal.2012.11.003 [23] Wang, G.D., Ren, T., Wang, K., et al., 2014.Improved Apparent Permeability Models of Gas Flow in Coal with Klinkenberg Effect.Fuel, 128:53-61.doi: 10.1016/j.fuel.2014.02.066 [24] Wei, J.P., Wang, D.K., Wei, L., 2013.Comparison of Permeability between Two Kinds of Loaded Coal Containing Gas Samples.Journal of China Coal Society, 38(Suppl.1):93-99 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB2013S1016.htm [25] Xu, J., Cao, J., Li, B.B., et al., 2013.Experimental Research on Response Law of Permeability of Coal to Pore Pressure.Chinese Journal of Rock Mechanics and Engineering, 32(2):225-230 (in Chinese with English abstract). http://www.rockmech.org/EN/abstract/abstract27984.shtml [26] Xu, J., Yuan, M., Li, B.B., et al., 2012.Experimental Study of Relationships between Metamorphic Grade, Pore Characteristics and Permeability of Coal.Chinese Journal of Rock Mechanics and Engineering, 31(4):681-687 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201204006.htm [27] Xu, J., Zhang, D.D., Peng, S.J., et al., 2011.Experimental Research on Impact of Temperature on Seepage Characteristics of Coal Containing Methane under Triaxial Stress.Chinese Journal of Rock Mechanics and Engineering, 30(9):1848-1854 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201109015.htm [28] Xue, H.Q., Xu, R.N., Jiang, P.X., et al., 2015.Characterization of Rock Microstructure Using 3D X-Ray Computed Tomography.Chinese Journal of Theoretical and Applied Mechanics, 47(6):1073-1078 (in Chinese with English abstract). [29] Yang, X.L., Zhang, Y.L., 2008.Experimental Study on Desorption of Effect of Temperature on Coal Gas Permeability under Gas-Solid Coupling.Journal of Geomechanics, 14(4):374-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200804007.htm [30] Yu, Y.J., Zhang, H., Zhang, C.H., et al., 2013.Effects of Temperature and Stress on Permeability of Standard Coal Briquette Specimen.Journal of China Coal Society, 38(6):936-941 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201306009.htm [31] Zhang, G.Y., Hu, Y.H., Jiang, D.Y., 1995.Study on the Factors Affecting Gas Permeability of Coal.Journal of Chongqing University, 18(3):27-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FIVE503.004.htm [32] Zhang, L., Luo, J., Cui, G.D., et al., 2016.Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases.Earth Science, 41(4):664-674 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604012.htm [33] Zhang, L., Zhang, C., Tu, S.H., et al., 2016.A Study of Directional Permeability and Gas Injection to Flush Coal Seam Gas Testing Apparatus and Method.Transport in Porous Media, 111(3):573-589.doi: 10.1007/s11242-015-0612-8 [34] Zhao, Y.S., Hu, Y.Q., 1995.Experimental Study on the Law of Effective Stress by Methane Pressure.Chinese Journal of Geotechnical Engineering, 17(3):26-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC503.003.htm [35] Zhao, Y.S., Hu, Y.Q., Yang, D., et al., 1999.The Experimental Study on the Gas Seepage Law of Rock Related to Adsorption under 3D Stresses.Chinese Journal of Rock Mechanics and Engineering, 18(6):651-653 (in Chinese with English abstract). [36] 曹树刚, 李勇, 郭平, 等, 2010.型煤与原煤全应力-应变过程渗流特性对比研究.岩石力学与工程学报, 29(5): 899-906. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005008.htm [37] 陈占清, 郁邦永, 2015.采动岩体渗流力学研究进展.西南石油大学学报, 37(3): 69-76. doi: 10.11885/j.issn.1674-5086.2015.03.05.06 [38] 傅雪海, 李大华, 秦勇, 等, 2002.煤基质收缩对渗透率影响的实验研究.中国矿业大学学报, 31(2): 129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200202004.htm [39] 李志强, 鲜学福, 隆晴明, 等, 2009.不同温度应力条件下煤体渗透率实验研究.中国矿业大学学报, 38(4): 523-527. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200904011.htm [40] 林柏泉, 周世宁, 1987.煤样瓦斯渗透率的实验研究.中国矿业大学学报, 16(1): 21-28. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198701002.htm [41] 刘泉声, 许锡昌, 2000.温度作用下脆性岩石的损伤分析.岩石力学与工程学报, 19(4): 408-411. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200004002.htm [42] 隆清明, 赵旭生, 牟景珊, 2008.孔隙气压对煤层气体渗透性影响的实验研究.矿业安全与环保, 35(1): 10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-ENER200801007.htm [43] 彭涛, 吴基文, 任自强, 等, 2015.淮北煤田现今地温场特征及大地热流分布.地球科学, 40(6): 1083-1092. http://earth-science.net/WebPage/Article.aspx?id=3102 [44] 孙光中, 王公忠, 张瑞林, 等, 2016.构造煤渗透率对温度变化响应规律的试验研究.岩土力学, 37(4): 1042-1048. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604017.htm [45] 唐巨鹏, 潘一山, 李成全, 等, 2006.固流耦合作用下煤层气解吸-渗流实验研究.中国矿业大学学报, 35(2): 274-278. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200602027.htm [46] 魏建平, 王登科, 位乐, 2013.两种典型受载含瓦斯煤样渗透特性的对比.煤炭学报, 38(增刊1): 93-99. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm [47] 许江, 曹偈, 李波波, 等, 2013.煤岩渗透率对孔隙压力变化响应规律的试验研究.岩石力学与工程学报, 32(2): 225-230. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302001.htm [48] 许江, 袁梅, 李波波, 等, 2012.煤的变质程度、孔隙特征与渗透率关系的试验研究.岩石力学与工程学报, 31(4): 681-687. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204006.htm [49] 许江, 张丹丹, 彭守建, 等, 2011.三轴应力条件下温度对原煤渗流特性影响的实验研究.岩石力学与工程学报, 30(9): 1848-1854. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109015.htm [50] 薛华庆, 胥蕊娜, 姜培学, 等, 2015.岩石微观结构CT扫描表征技术研究.力学学报, 47(6): 1073-1078. doi: 10.6052/0459-1879-15-102 [51] 杨新乐, 张永利, 2008.气固耦合作用下温度对煤瓦斯渗透率影响规律的实验研究.地质力学学报, 14(4): 374-379. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200804007.htm [52] 于永江, 张华, 张春会, 等, 2013.温度及应力对成型煤样渗透性的影响.煤炭学报, 38(6): 936-941. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306009.htm [53] 张广洋, 胡耀华, 姜德义, 1995.煤的瓦斯渗透性影响因素的探讨.重庆大学学报(自然科学版), 18(3): 27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-FIVE503.004.htm [54] 赵阳升, 胡耀青, 1995.孔隙瓦斯作用下煤体有效应力规律的实验研究.岩土工程学报, 17(3): 26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC503.003.htm [55] 赵阳升, 胡耀青, 杨栋, 等, 1999.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究.岩石力学与工程学报, 18(6): 651-653. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199906008.htm [56] 张亮, 罗炯, 崔国栋, 等, 2016.低温气体辅助煤层气压裂中的冷冲击机理.地球科学, 41(4): 664-674. http://earth-science.net/WebPage/Article.aspx?id=3283