Effect of Kerogen on the Methane Transport Mechanism in Shale Matrix
-
摘要: 微/纳米孔隙内甲烷的运移研究是进行页岩气藏开发预测及评价的前提和基础.页岩中分布大量的微/纳米孔隙,其中干酪根中的纳米级孔隙分布广泛.由于气体在不同尺度孔隙中的运移机理大不相同,且在有机孔中存在明显的吸附/解吸现象.因而,甲烷在页岩中的运移机理仍需完善.本研究综合物理模拟及数学分析方法,对甲烷渗流规律进行研究.研究结果表明:(1)温度升高,单位质量页岩的产量减少,达到平衡的时间缩短,总体体现在甲烷在高温下的吸附/解吸-扩散速率大.(2)相同生产压力下,随入口压力升高,甲烷运移速率增大,达到产量平衡的时间增长.(3)数学模型充分考虑干酪根中甲烷扩散对气体运移过程的影响,并与实验结果及不考虑干酪根影响的模型进行对比分析,结果显示,本文建立的数学模型能更准确地描述甲烷在页岩基质中的运移动态.Abstract: It is essential to understand methane mass transport through micro/nano pores in shale for the reservoir evaluation and gas production prediction. There distributes large numbers of pores, including micropores, mesopores and macropores. Kerogen, as the organic matter in shale, is rich in micro/meso-pores with width less than 50 nm. Multiple gas transport mechanisms coexist in porous media with complex pore size distribution, including viscous flow and Knudsen diffusion of free gas, and surface diffusion of adsorbed gas. During pressure depletion of a reservoir, the adsorbed gas desorbs into pore space as additional "free gas", and meanwhile, diffuses along the surface of nanopores in porous media. In this paper, experimental and calculated results for the gas transport in nanopores of shale matrix are presented, accounting for the effect on dynamic transport process of surface diffusion. The main conclusions are:(1) the equilibrium time for gas transport process decreases very quickly with temperature and less gas produced under higher temperature; (2) higher saturation pressure could accelerate the process and increase the amount of produced gas; (3) the mathematical model considers the effect of kerogen on the methane transport. Compared with the models not considering the effect of kerogen, the model presented in this paper fits the experimental results better. This study provides an experimental investigation of the methane mass transport through shale matrix considering the effect of kerogen, which is a relatively simple but information-rich technique for the assessment of shale gas targets.
-
Key words:
- shale /
- kerogen /
- adsorption/desorption /
- diffusion /
- dynamic experiment
-
表 1 页岩基本参数
Table 1. Basic parameters for tested shale cores
名称 孔隙度
(%)渗透率
(D)TOC
(%)样品尺寸
(目)质量
(g)数值 3.76 3.51 1.70 100~120 160 -
[1] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052 [2] Cui, Q., Gao, J.L., 2011.Global Shale Gas Production Technology and China's Exploration.Inner Mongolia Petrochemical Industry, (17):122-124 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMSH201117059.htm [3] Cui, X., Bustin, A.M.M., Bustin, R.M., 2009.Measurements of Gas Permeability and Diffusivity of Tight Reservoir Rocks:Different Approaches and Their Applications.Geofluids, 9(3):208-223.doi: 10.1111/j.1468-8123.2009.00244.x [4] EIA, 2011.World Shale Gas Resources:An Initial Assessment of 14 Regions outside the United States.U.S.Energy Information Administration, Washington. [5] EIA, 2015.Natural Gas Gross Withdrawals and Production.U.S.Energy Information Administration, Washington. [6] Guo, W., Xiong, W., Gao, S.S., et al., 2013.Impact of Temperature on the Isothermal Adsorption/Desorption Characteristics of Shale Gas.Petroleum Exploration and Development, 40(4):481-485 (in Chinese with English abstract). doi: 10.1016/S1876-3804(13)60061-0 [7] He, Y.Q., Wang, L., Zhang, H.Z., 2015.US Residual Oil Zone Hopeful to Become New Field for Incremental Reserve and Production.Oil Forum, 34(2):62-66, 70 (in Chinese with English abstract). [8] Hill, D.G.C., Nelson, C.R., 2000.Gas Productive Fractured Shales:An Overview and Update.Gas Tips, 6:4-13. https://www.mendeley.com/research-papers/gas-productive-fractured-shales-overview-update/ [9] Holt, J.K., Park, H.G., Wang, Y., et al., 2006.Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes.Science, 312(5776):1034-1037.doi: 10.1126/science.1126298 [10] Javadpour, F., 2009.Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone).Journal of Canadian Petroleum Technology, 48(8):15-21.doi: 10.2118/09-08-16-da [11] Jiang, W.P., Zhang, Q., Cui, Y.J., et al., 2014.Quantum Chemistry Characteristics of Coal Adsorbing Gas and Their Applications.Natural Gas Geosciences, 25(3):444-452 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201403019.htm [12] Li, Z.Z., Min, T., Kang, Q.J., et al., 2016.Investigation of Methane Adsorption and Its Effect on Gas Transport in Shale Matrix Through Microscale and Mesoscale Simulations.International Journal of Heat and Mass Transfer, 98:675-686.doi: 10.1016/j.ijheatmasstransfer.2016.03.039 [13] Lu, S.F., Huang, W.B., Chen, F.W., et al., 2012.Classification and Evaluation Criteria of Shale Oil and Gas Resources:Discussion and Application.Petroleum Exploration and Development, 39(2):249-256 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600421 [14] Martini, A.M., Walter, L.M., Ku, T.C.W., et al., 2003.Microbial Production and Modification of Gases in Sedimentary Basins:A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin.AAPG Bulletin, 87(8):1355-1375.doi: 10.1306/031903200184 [15] Moernaut, J., Wiemer, G., Reusch, A., et al., 2017.The Influence of Overpressure and Focused Fluid Flow on Subaquatic Slope Stability in a Formerly Glaciated Basin:Lake Villarrica (South-Central Chile).Marine Geology, 383:35-54.doi: 10.1016/j.margeo.2016.11.012 [16] Pollastro, R.M., Jarvie, D.M., Hill, R.J., et al., 2007.Geologic Framework of the Mississippian Barnett Shale, Barnett-Paleozoic Total Petroleum System, Bend Arch-Fort Worth Basin, Texas.AAPG Bulletin, 91(4):405-436.doi: 10.1306/10300606008 [17] Ross, D.J.K., Bustin, R.M., 2006.Sediment Geochemistry of the Lower Jurassic Gordondale Member, Northeastern British Columbia.Bulletin of Canadian Petroleum Geology, 54(4):337-365.doi: 10.2113/gscpgbull.54.4.337 [18] Song, W.H., Yao, J., Li, Y., et al., 2016.Apparent Gas Permeability in an Organic-Rich Shale Reservoir.Fuel, 181:973-984.doi: 10.1016/j.fuel.2016.05.011 [19] Su, Y.L., Wang, W.D., Sheng, G.L., 2014.Compound Flow Model of Volume Fractured Horizontal Well.Acta Petrolei Sinica, 35(3):504-510 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201403015.htm [20] Wang, J.J., Dong, M.Z., Yang, Z.H., et al., 2017.Investigation of Methane Desorption and Its Effect on the Gas Production Process from Shale:Experimental and Mathematical Study.Energy & Fuels, 31(1):205-216.doi: 10.1021/acs.energyfuels.6b02033 [21] Wang, J.J., Wang, B., Li, Y.J., et al., 2016a.Measurement of Dynamic Adsorption-Diffusion Process of Methane in Shale.Fuel, 172:37-48.doi: 10.1016/j.fuel.2015.12.069 [22] Wang, J.J., Yang, Z.H., Dong, M.Z., et al., 2016b.Experimental and Numerical Investigation of Dynamic Gas Adsorption/Desorption-Diffusion Process in Shale.Energy & Fuels, 30(12):10080-10091.doi: 10.1021/acs.energyfuels.6b01447 [23] Wang, X.Q., Zhai, Z.Q., Jin, X., et al., 2016.Molecular Simulation of CO2/CH4 Competitive Adsorption in Organic Matter Pores in Shale under Certain Geological Conditions.Petroleum Exploration and Development, 43(5):772-779 (in Chinese with English abstract). [24] Xie, W.Y., Li, X.P., Zhang, L.H., et al., 2014.Two-Phase Pressure Transient Analysis for Multi-Stage Fractured Horizontal Well in Shale Gas Reservoirs.Journal of Natural Gas Science and Engineering, 21:691-699.doi: 10.1016/j.jngse.2014.09.027 [25] Zeng, X.L., Liu, S.G., Huang, W.M., et al., 2011.Comparison of Silurian Longmaxi Formation Shale of Sichuan Basin in China and Carboniferous Barnett Formation Shale of Fort Worth Basin in United States.Geological Bulletin of China, 30(2-3):372-384 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2011Z1025.htm [26] Zhang, J.C., Jin, Z.J., Yuan, M.S., 2004.Reservoiring Mechanism of Shale Gas and Its Distribution.Natural Gas Industry, 24(7):15-18, 131-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200407004.htm [27] Zhao, C.P., Lun, Z.M., Wang, W.H., et al., 2016.Isothermal Adsorption Experiment of Full-Diameter Shale Core in Longmaxi Formation under Reservoir Condition.Fault-Block Oil & Gas Field, 23(6):749-752 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DKYT201606014.htm [28] Zhao, Y.S., Meng, Q.R., Kang, T.H., et al., 2008.Micro-CT Experimental Technology and Meso-Investigation on Thermal Fracturing Characteristics of Granite.Chinese Journal of Rock Mechanics and Engineering, 27(1):28-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX200801005.htm [29] 催青, 高金龙, 2011.世界页岩气勘探开发技术及我国勘探前景.内蒙古石油化工, (17): 122-124. doi: 10.3969/j.issn.1006-7981.2011.17.058 [30] 郭为, 熊伟, 高树生, 等, 2013.温度对页岩等温吸附/解吸特征影响.石油勘探与开发, 40(4): 481-485. doi: 10.11698/PED.2013.04.14 [31] 何艳青, 王璐, 张焕芝, 2015.美国残油区有望成为增储上产新领域.石油科技论坛, 34(2): 62-66, 70. http://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201502012.htm [32] 降文萍, 张群, 崔永君, 等, 2014.煤吸附气体的量子化学特性及其应用.天然气地球科学, 25(3): 444-452. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403019.htm [33] 卢双舫, 黄文彪, 陈方文, 等, 2012.页岩油气资源分级评价标准探讨.石油勘探与开发, 39(2): 249-256. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htm [34] 苏玉亮, 王文东, 盛广龙, 2014.体积压裂水平井复合流动模型.石油学报, 35(3): 504-510. doi: 10.7623/syxb201403012 [35] 王晓琦, 翟增强, 金旭, 等, 2016.地层条件下页岩有机质孔隙内CO2与CH4竞争吸附的分子模拟.石油勘探与开发, 43(5): 772-779. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=skyk201605014&dbname=CJFD&dbcode=CJFQ [36] 曾祥亮, 刘树根, 黄文明, 等, 2011.四川盆地志留系龙马溪组页岩与美国Fort Worth盆地石炭系巴奈特组页岩地质特征对比.地质通报, 30(2-3): 372-384. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1025.htm [37] 张金川, 金之钧, 袁明生, 2004.页岩气成藏机理及分布.天然气工业, 24(7): 15-18, 131-132. http://www.cnki.com.cn/Article/CJFDTOTAL-LNHG201702015.htm [38] 赵春鹏, 伦增珉, 王卫红, 等, 2016.储层条件下龙马溪组全直径页岩吸附实验.断块油气田, 23(6): 749-752. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201606014.htm [39] 赵阳生, 孟巧荣, 康天合, 等, 2008.显微CT试验技术与花岗岩热破裂特征的细观研究.岩石力学与工程学报, 27(1): 28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801005.htm