• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多尺度多孔介质有效气体输运参数的分形特征

    徐鹏 李翠红 柳海成 邱淑霞 郁伯铭

    徐鹏, 李翠红, 柳海成, 邱淑霞, 郁伯铭, 2017. 多尺度多孔介质有效气体输运参数的分形特征. 地球科学, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104
    引用本文: 徐鹏, 李翠红, 柳海成, 邱淑霞, 郁伯铭, 2017. 多尺度多孔介质有效气体输运参数的分形特征. 地球科学, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104
    Xu Peng, Li Cuihong, Liu Haicheng, Qiu Shuxia, Yu Boming, 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104
    Citation: Xu Peng, Li Cuihong, Liu Haicheng, Qiu Shuxia, Yu Boming, 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104

    多尺度多孔介质有效气体输运参数的分形特征

    doi: 10.3799/dqkx.2017.104
    基金项目: 

    国家自然科学基金项目 51576077

    浙江省自然科学基金项目 LY16A020002

    浙江省自然科学基金项目 LQ16E060002

    详细信息
      作者简介:

      徐鹏(1981-), 男, 副教授, 主要从事多孔介质输运、分形理论和计算物理研究

    • 中图分类号: P313.1

    Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media

    • 摘要: 非常规油气资源的孔隙结构及其连通性非常复杂,其孔隙尺度从毫米到纳米跨越多个量级.多孔介质中气体的输运过程不仅依赖于介质的多尺度微观结构特征,还依赖于气体的相关属性.气体在多尺度多孔介质中的输运过程包括无滑流、滑脱流和过渡流,涉及分子扩散和努森扩散等多种机制,因此很难用唯一的连续介质理论来描述气体的输运特征.大量的数据表明真实多孔介质中的内部孔隙具有分形标度特征,因此采用分形几何表征多尺度多孔介质的孔隙结构,引入孔隙分形维数和迂曲度分形维数定量表征多孔介质的微结构和弯曲流道,建立多尺度多孔介质气体输运过程的细观模型;推导了多尺度多孔介质中气体的有效渗透率和有效扩散系数,并讨论了多尺度多孔介质微结构参数和气体属性对于气体等效输运特性的定量影响.该研究不仅可以丰富渗流理论,且有利于深入理解非常规油气藏的产出机制.

       

    • 图  1  多孔介质分形毛管束模型示意

      Fig.  1.  The sketch of fractal capillary bundle model of porous media

      图  2  多孔介质有效渗透率和分形维数的定量关系

      Fig.  2.  The relationship between effective gas permeability and fractal dimensions

      图  3  分形维数对于有效扩散系数的定量影响

      Fig.  3.  The effect of fractal dimensions on the effective gas diffusion coefficient

    • [1] Beskok, A., Karniadakis, G.E., 1999.Report:A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales.Microscale Thermophysical Engineering, 3(1):43-77.doi: 10.1080/108939599199864
      [2] Civan, F., 2001.Scale Effect on Porosity and Permeability:Kinetics, Model and Correlation.AIChE Journal, 47(2):271-287.doi: 10.1002/aic.690470206
      [3] Cussler, E.L., 2009.Diffusion Mass Transfer in Fluid Systems (3rd Ed.).Cambridge University Press, New York.
      [4] Fang, Y., Xie, S.Y., He, Z.L., et al., 2016.Thin Section-Based Geochemical Dissolution Experiments of Ooid Carbonates.Earth Science, 41(5):779-791 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201605005.htm
      [5] Guo, Y.C., Song, Y., Pang, X.Q., et al., 2016.Characteristics and Genetic Mechanism of Near-Source Accumulated Accumulation for Continuous-Type Tigh-Sand Gas.Earth Science, 41(3):433-440 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603009.htm
      [6] Ismail, M.S., Ingham, D.B., Hughes, K.J., et al., 2015.Effective Diffusivity of Polymer Electrolyte Fuel Cell Gas Diffusion Layers:An Overview and Numerical Study.International Journal of Hydrogen Energy, 40(34):10994-11010.doi: 10.1016/j.ijhydene.2015.06.073
      [7] Javadpour, F., Fisher, D., Unsworth, M., 2007.Nanoscale Gas Flow in Shale Gas Sediments.Journal of Canadian Petroleum Technology, 46(10):55-61.doi: 10.2118/07-10-06
      [8] Karniadakis, G.E., Beskok, A., 2002.Micro-Flows, Fundamentals and Simulation.Spinger-Verlag, New York.
      [9] Katz, A.J., Thompson, A.H., 1985.Fractal Sandstone Pores:Implications for Conductivity and Pore Formation.Physical Review Letters, 54(12):1325-1328.doi: 10.1103/PhysRevLett.54.1325
      [10] Li, C.H., Xu, P., Qiu, S.X., et al., 2016a.The Gas Effective Permeability of Porous Media with Klinkenberg Effect.Journal of Natural Gas Science and Engineering, 34:534-540.doi: 10.1016/j.jngse.2016.07.017
      [11] Li, D.L., Zha, W.S., Liu, S.F., et al., 2016b.Pressure Transient Analysis of Low Permeability Reservoir with Pseudo Threshold Pressure Gradient.Journal of Petroleum Science and Engineering, 147:308-316.doi: 10.1016/j.petrol.2016.05.036
      [12] Li, D.L., Zhang, L.J., Wang, J.Y.L., et al., 2016c.Composition-Transient Analysis in Shale-Gas Reservoirs with Consideration of Multicomponent Adsorption.SPE Journal, 21(2):648-664.doi: 10.2118/178435-PA
      [13] Lo, S.K., Tseng, C.J., Tsai, L.D., et al., 2011.Fractal Permeability Models for the Microporous Layer and Gas Diffusion Layer of PEM Fuel Cell.Journal of the Chinese Institute of Engineers, 34(1):39-47.doi: 10.1080/02533839.2011.552964
      [14] Martínez, L., Florido-Díaz, F.J., Hernández, A., et al., 2002.Characterisation of Three Hydrophobic Porous Membranes Used in Membrane Distillation-Modelling and Evaluation of Their Water Vapour Permeabilities.Journal of Membrane Science, 203(1-2):15-27.doi: 10.1016/S0376-7388(01)00719-0
      [15] Perfect, E., Kay, B.D., 1955.Applications of Fractals in Soil and Tillage Research:A Review.Soil & Tillage Research, 36(1-2):1-20.doi: 10.1016/0167-1987(96)81397-3
      [16] Shou, D.H., Fan, J.T., Mei, M.F., et al., 2014.An Analytical Model for Gas Diffusion through Nanoscale and Microscale Fibrous Media.Microfluidics and Nanofluidics, 16(1-2):381-389.doi: 10.1007/s10404-013-1215-8
      [17] Welty, J.R., Wicks, C.E., Wilson, R.E., et al., 2008.Fundamentals of Momentum, Heat and Mass Transfer (5th Ed.).John Wiley & Sons, New York.
      [18] Wu, R., Liao, Q., Zhu, X., et al., 2011.A Fractal Model for Determining Oxygen Effective Diffusivity of Gas Diffusion Layer under the Dry and Wet Conditions.International Journal of Heat and Mass Transfer, 54(19-20):4341-4348.doi: 10.1016/j.ijheatmasstransfer.2011.05.010
      [19] Xu, P., 2015.A Discussion on Fractal Models for Transport Physics of Porous Media.Fractals, 23(3):1530001.doi: 10.1142/S0218348X15300019
      [20] Yu, B., 2008.Analysis of Flow in Fractal Porous Media.Applied Mechanics Reviews, 61(5):050801.doi: 10.1115/1.2955849
      [21] Yu, B.M., Cheng, P., 2002.A Fractal Permeability Model for Bi-Dispersed Porous Media.International Journal of Heat and Mass Transfer, 45(14):2983-2993.doi: 10.1016/S0017-9310(02)00014-5
      [22] Zhang, L.Z., 2008.A Fractal Model for Gas Permeation through Porous Membranes.International Journal of Heat and Mass Transfer, 51(21-22):5288-5295.doi: 10.1016/j.ijheatmasstransfer.2008.03.008
      [23] Zheng, Q., Yu, B.M., Wang, S.F., et al., 2012.A Diffusivity Model for Gas Diffusion through Fractal Porous Media.Chemical Engineering Science, 68(1):650-655.doi: 10.1016/j.ces.2011.10.031
      [24] 方旸, 谢淑云, 何治亮, 等, 2016.基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀.地球科学, 41(5): 779-791. http://www.earth-science.net/WebPage/Article.aspx?id=3292
      [25] 郭迎春, 宋岩, 庞雄奇, 等, 2016.连续型致密砂岩气近源累计聚集的特征及成因机制.地球科学, 41(3): 433-440. doi: 10.11764/j.issn.1672-1926.2016.03.0433
    • 加载中
    图(3)
    计量
    • 文章访问数:  4308
    • HTML全文浏览量:  1816
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-15
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回