Enhancement Evaluation of Vertical Reorientation Fractures
-
摘要: 转向压裂是一项新兴的水力压裂技术,在平面渗透率各向异性储层中转向垂直裂缝具有更好的增产效果.基于渗流力学之汇源叠加理论,建立了平面渗透率各向异性储层中转向垂直裂缝的增产评价解析模型,并给出了计算对比和应用算例.分析结果表明:裂缝与渗透率主轴间的夹角(裂缝斜角)微弱影响均匀各向同性储层中井的产能,但明显影响均匀各向异性储层中井的产能;裂缝斜角变化导致沿优势渗透率方向有效流入面积变化,有效流入面积越大,无量纲生产指数越大,产能亦高.因此建议选择平面方向渗透率差异较大的储层进行转向压裂,以期获得更好的经济效益.Abstract: Vertical reorientation fracture is a new hydraulic fracturing technique, which has been proved very effective in oil recovery enhancement, particularly in anisotropic reservoirs. In this paper, an analytical model has been derived to evaluate the productivity of the refractured wells drilled in anisotropic reservoirs by using sink-superposition theory, and computing comparison has been presented for illustration. It is concluded that the angle between the orientation of the secondary fracture and that of the dominant permeability has a little effect on the productivity rate when wells are drilled in isotropic formation, but it does have a strong impact on the productivity enhancement when wells are drilled in anisotropic formation; fracture orientation angles can influence the inflow area of fluid from the formation into the fracture along the dominant permeability direction; and the bigger the inflow area, the larger the dimensionless productivity index. Therefore, it is suggested wells drilled in formation with strong anisotropic properties should be preferred candidates for refracture treatment in order to obtain better economic benefits.
-
表 1 算例参数
Table 1. Parameters used for calculation
kx(mD) ky(mD) xe(m) ye(m) xw(m) yw(m) Lf1(m) Lf3(m) Lf2(m) cfDj μ(cp) B(m3/m3) h(m) θ(°) 5.0 1.0 500.0 500.0 250.0 250.0 10.0 10.0 30.0 1.5 1.0 1.0 15.0 5, 15, 30, 45, 60, 75, 88 -
[1] Benedict, D.S., Miskimins, J.L., 2009.Analysis of Reserve Recovery Potential from Hydraulic Fracture Reorientation in Tight Gas Lenticular Reservoirs.SPE Hydraulic Fracturing Technology Conference, Woodlands. [2] Cai, B., Ding, Y.H., Lu, Y.J., et al., 2012.Study and Application of New In-Fissure Fracturing Technique for Improving Stimulated Reservoir Volume.Petroleum Geology and Recovery Efficiency, 19(5):108-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201205032.htm [3] Du, Z.H., Li, J.Q., Nie, H.L., 2013.A Probe of Secondary Deflection Fracturing Treatment in Hydraulic Fractures.Xinjiang Petroleum Geology, 34(3):349-353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201303030.htm [4] Gringarten, A.C., Ramey Jr., H.J., 1974.Unsteady-State Pressure Distributions Created by a Well with a Single Horizontal Fracture, Partial Penetration, or Restricted Entry.SPE Journal, 14(4):347-360 doi: 10.2118/4051-PA [5] Kang, Y.S., Deng, Z., Wang, H.Y., et al., 2016.Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs.Earth Science, 41(8):1376-1383 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608009.htm [6] Liu, H., Lan, Z.X., Zhang, G.L., et al., 2008.Evaluation of Refracture Reorientation in both Laboratory and Field Scales.SPE International Symposium and Exhibition on Formation Damage Control, Lafayette.doi:10.2118/112445-ms [7] Maxwell, S.C., Zimmer, U., Gusek, R., et al., 2007.Hydraulic Fracture Reorientation across a Thrust Fault.SEG Annual Meeting, San Antonio, 1282-1286.doi:10.1190/1.2792737 [8] Ozkan, E., 1988.Performance of Horizontal Wells (Dissertation).The University of Tulsa, Tulsa. [9] Siebrits, E., Elbel, J.L., Hoover, R.S., et al., 2000.Refracture Reorientation Enhances Gas Production.Journal of Petroleum Technology, 53(4):61-62.doi: 10.2118/0401-0061-JPT [10] Spivey, J.P., Lee, W, J., 1999.Estimating the Pressure-Transient Response for a Horizontal or a Hydraulically Fractured Well at an Arbitrary Orientation in an Anisotropic Reservoir.SPE Reservoir Evaluation & Engineering, 2(5):462-469.doi: 10.2118/58119-PA [11] Wang, X.D., Luo, W.J., Hou, X.C., et al., 2014.Transient Pressure Analysis of Multiple-Fractured Horizontal Wells in Boxed Reservoirs.Petroleum Exploration and Development, 41(1):74-78, 94 (in Chinese with English abstract). [12] Weng, D.W., Yao, F., Li, Y., et al., 2006.Reservoir Numerical Simulation Study for Refracture Reorientation.Oil Drilling & Production Technology, 28(6):65-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZC200606021.htm [13] Zhang, G.S., Zhao, B., Shi, H.N., et al., 2009.Finite-Element Simulation Analysis of Re-Fracture Reorientation Based on ANSYS.Journal of Oil and Gas Technology, 31(6):141-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX200906026.htm [14] Zhang, L., Luo, J., Cui, G.D., et al., 2016.Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases.Earth Science, 41(4):664-674 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604012.htm [15] 才博, 丁云宏, 卢拥军, 等, 2012.提高改造体积的新裂缝转向压裂技术及其应用.油气地质与采收率, 19(5): 108-110. http://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201205032.htm [16] 杜宗和, 李佳琦, 聂洪力, 2013.缝内二次转向压裂技术探索.新疆石油地质, 34(3): 349-353. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201303030.htm [17] 康永尚, 邓泽, 王红岩, 等, 2016.流-固耦合物理模拟实验及其对页岩压裂改造的启示.地球科学, 41(8): 1376-1383. http://earth-science.net/WebPage/Article.aspx?id=3344 [18] 王晓冬, 罗万静, 侯晓春, 等, 2014.矩形油藏多段压裂水平井不稳态压力分析.石油勘探与开发, 41(1): 74-78, 94. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401010.htm [19] 翁定为, 姚飞, 李阳, 等, 2006.重复压裂裂缝转向时油藏数值模拟研究.石油钻采工艺, 28(6): 65-67. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200606021.htm [20] 张公社, 赵蓓, 石惠宁, 等, 2009.重复压裂裂缝转向的ANSYS有限元模拟.石油天然气学报, 31(6): 141-144. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200906026.htm [21] 张亮, 罗炯, 崔国栋, 等, 2016.低温气体辅助煤层气压裂中的冷冲击机理.地球科学, 41(4): 664-674. http://earth-science.net/WebPage/Article.aspx?id=3283