Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es4 in the Dongying Depression
-
摘要: 我国陆相湖盆页岩具有较大的生烃潜力,但是对其研究起步较晚,目前存在诸多不足,尤其对富生烃页岩岩相特征及其沉积作用过程、成因演化等方面的研究工作均处于探索阶段.综合岩心、薄片、XRD矿物含量分析、主微量元素和测井等数据,在沉积学、元素地球化学以及-R(湖进-湖退)层序理论的指导下,详细研究了东营凹陷沙四上亚段页岩的岩相特征及其沉积过程、岩相发育与层序耦合关系以及古气候和湖泊的演化过程.结果表明,沙四上亚段页岩自下而上主要由硬石膏薄夹层页岩相、含粉砂富粘土质页岩相、块状灰质页岩相和纹层状灰质页岩相组成,分别沉积于盐湖环境、前三角洲环境、浅湖环境和深湖-半深湖环境.页岩岩相组合的垂向演化与体系域的纵向分布具有明显的耦合关系,揭示了古气候由干旱转为潮湿、湖盆由小型湖泊演化为大型湖泊,并推断古气候的变化和控盆正断层的活动是控制研究区古湖泊演化的两个重要因素.Abstract: Organic-rich lacustrine shales have high hydrocarbon potential, but relevant studies did not start until recently, suffering from many deficiencies including relatively few studies on lithofaceis, depositional process and origin and evolution of lacustrine shales. The lacustrine shale succession of the upper submember of Es4 in the Dongying depression, Bohai Bay basin, eastern China, is the most important hydrocarbon source rock and an unconventional reservoir. In this study, we conduct detailed lithofacies characterization to the upper submember of Es4 shale succession in the NY1 drilling core by combining core descriptions, microscopic observations, mineralogy, major and minor elements and log data. Based on the theories of petrography, sedimentology, element geochemistry and T-R sequence stratigraphy, lithofacies features, depositional process of lithofacies, coupling relationship between lithofacies and sequence stratigraphy, and evolutions of paleoclimate and paleolake are investigated in detail. Four major lithofacies associations are identified, including the interbedded evaporite and shale lithofacies association, silt-bearing clay-rich shale lithofacies association, the massive calcareous shale lithofacies association, and the laminated calcareous shale lithofacies association from bottom to top. These lithofacies associations are interpreted to be deposited in small salt lake, a pro-delta environment, shallow lacustrine environment and deep, stratified, anoxic lake, respectively. By contrast, there is coupling between dominant lithofacies and system tracts through time. The changes of dominant lithofacies in the upper submember of Es4 shale succession through time suggest that paleoclimate changed from arid to humid and paleolake changed from small and shallow lake to large and deep lake, and it is inferred that paleolake evolution was controlled by paleoclimate changes and the tectonic subsidence associated with the development of depression-bounding faults.
-
Key words:
- continental basin /
- shale /
- lithofacies /
- Dongying depression /
- Shahejie Formation /
- petroleum geology
-
图 1 东营凹陷构造地质简图(a)、东营凹陷构造单元组成及主要沉积地层分布(b)和东营凹陷地层综合柱状图(c)
图a据Feng et al.(2013)修改;图b据Guo et al.(2012)修改;图c据Guo et al.(2012)修改
Fig. 1. The structural geological map (a), structural units and main sedimentary strata (b) and comprehensive stratigraphic column (c) of the Dongying depression
表 1 各页岩岩相沉积特征及成因
Table 1. Characteristics and depositional processes of each shale lithofacies
岩相名称 颜色 沉积构造 生物特征 岩相成因 纹层状灰质页岩相 黑棕色 平直、连续和平行的纹层 鱼类、介形虫、颗石藻、无生物扰动 潮湿气候背景下温度分层的深湖-半深湖环境 块状灰质页岩相 浅灰-深灰色 块状 少量介形虫、轻微生物扰动 浅湖环境 含粉砂富粘土质页岩相 浅灰色 块状,夹粉砂质条带 强烈生物扰动 前三角洲沉积环境 硬石膏薄夹层页岩相 浅灰色 块状,页岩与硬石膏薄层互层 各类生物较少,无生物扰动 干旱气候下的盐湖环境 表 2 各页岩岩相中主要的矿物组成及含量
Table 2. Mineral composition and contents of each shale lithofacies
纹层状灰
质页岩相块状灰质
页岩相含粉砂富粘
土质页岩相硬石膏薄夹
层页岩相石英
(%)5~35 20~47 22~53 0~24 (18) (30) (30) (15) 长石
(%)1~15 1~18 6~21 3~17 (3) (5) (11) (9) 粘土矿物
(%)2~31 9~41 12~54 2~49 (15) (24) (43) (25) 方解石
(%)2~76 9~60 0~9 0~79 (47) (35) (5) (18) 白云石
(%)0~76 0~8 3~12 0~38 (13) (4) (6) (18) 黄铁矿
(%)0~11 0~4 1~5 0~5 (3) (2) (4) (3) 注:表中数据范围为最小值至最大值,括号内为平均值. 表 3 各页岩岩相的矿物学特征及划分标准
Table 3. Mineral characteristics and division standard of each shale lithofacies
纹层状灰
质页岩相块状灰质
页岩相含粉砂富粘
土质页岩相硬石膏薄夹
层页岩相碳酸盐含
量(%)>40 <70 10附近 <70 石英和长
石含量(%)<30 大于20小于50 >30 大于20小于40 粘土矿物
含量(%)<30 大于10小于40 >50 大于10小于70 -
[1] Abouelresh, M.O., Slatt, R.M., 2012.Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas.AAPG Bulletin, 96(1):1-22.doi: 10.1306/04261110116 [2] Ashley, G.M., Southard, J.B., Boothroyd, J.C., 1982.Deposition of Climbing-Ripple Beds:A Flume Simulation.Sedimentology, 29(1):67-79.doi: 10.1111/j.1365-3091.1982.tb01709.x [3] Benison, K.C., Goldstein, R.H., 2001.Evaporites and Siliciclastics of the Permian Nippewalla Group of Kansas, USA:A Case for Non-Marine Deposition in Saline Lakes and Saline Pans.Sedimentology, 48(1):165-188.doi: 10.1046/j.1365-3091.2001.00362.x [4] Bohacs, K.M., Carroll, A.R., Neal, J.E., et al., 2000.Lake-Basin Type, Source Potential, and Hydrocarbon Character:An Integrated Sequence-Stratigraphic-Geochemical Framework.In:Gierlowski-Kordesch, E.H., Kelts, K.R., eds., Lake Basins through Space and Time.AAPG Studies in Geology, Tulsa. [5] Bohacs, K.M., Grabowski, G.J., Carroll, A.R., et al., 2005.Production, Destruction, and Dilution—The Many Paths to Source-Rock Development.In:Harris, N.B., ed., Deposition of Organic-Carbon-Rich Sediments:Models, Mechanisms, and Consequences.SEPM, Tulsa.doi:10.2110/pec.05.82.0061 [6] Burwood, R., De Witte, S.M., Mycke, B., et al., 1995.Petroleum Geochemical Characterization of the Lower Congo Coastal Basin Bucomazi Formation.In:Katz, B.J., ed., Petroleum Source Rocks.Springer-Verlag, Berlin.doi:10.1007/978-3-642-78911-3_13 [7] Carroll, A.R., Bohacs, K.M., 1999.Stratigraphic Classification of Ancient Lakes:Balancing Tectonic and Climatic Controls.Geology, 27(2):99.doi:10.1130/0091-7613(1999)027<0099:scoalb>2.3.co;2 [8] Du, X.B., Liu, H., Liu, H.M., et al., 2016.Methods of Sequence Stratigraphy in the Fine-Grained Sediments:A Case from the Upper Fourth Sub-Member and the Lower Third Sub-Member of the Shahejie Formation in Well Fanye 1 of Dongying Depression.Geological Science and Technology Information, 35(4):1-11 (in Chinese with English abstract). [9] Feng, Y.L., Li, S.T., Lu, Y.C., 2013.Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China.Sedimentary Geology, 295:1-26.doi: 10.1016/j.sedgeo.2013.07.004 [10] Feng, Y.L., Jiang, S., Hu, S.Y., et al., 2016.Sequence Stratigraphy and Importance of Syndepositional Structural Slope-Break for Architecture of Paleogene Syn-Rift Lacustrine Strata, Bohai Bay Basin, E.China.Marine and Petroleum Geology, 69:183-204.doi: 10.1016/j.marpetgeo.2015.10.013 [11] Ghadeer, S.G., Macquaker, J.H.S., 2012.The Role of Event Beds in the Preservation of Organic Carbon in Fine-Grained Sediments:Analyses of the Sedimentological Processes Operating during Deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) Preserved in Northeast England.Marine and Petroleum Geology, 35(1):309-320.doi: 10.1016/j.marpetgeo.2012.01.001 [12] Guo, X.W., Liu, K.Y., He, S., et al., 2012.Petroleum Generation and Charge History of the Northern Dongying Depression, Bohai Bay Basin, China:Insight from Integrated Fluid Inclusion Analysis and Basin Modelling.Marine and Petroleum Geology, 32(1):21-35.doi: 10.1016/j.marpetgeo.2011.12.007 [13] Hao, F., Zhou, X.H., Zhu, Y.M., et al., 2010.Charging of Oil Fields Surrounding the Shaleitian Uplift from Multiple Source Rock Intervals and Generative Kitchens, Bohai Bay Basin, China.Marine and Petroleum Geology, 27(9):1910-1926.doi: 10.1016/j.marpetgeo.2010.07.005 [14] Hao, F., Zou, H.Y., Lu, Y.C., 2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346.doi: 10.1306/02141312091 [15] Harazim, D., McIlroy, D., Edwards, N.P., et al., 2015.Bioturbating Animals Control the Mobility of Redox-Sensitive Trace Elements in Organic-Rich Mudstone.Geology, 43(11):1007-1010.doi: 10.1130/g37025.1 [16] Hickey, J.J., Henk, B., 2007.Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T.P.Sims Well, Wise County, Texas.AAPG Bulletin, 91(4):437-443.doi: 10.1306/12040606053 [17] Huc, A.Y., Fournier, J.L., Vandenbroucke, M., et al., 1990.Northern Lake Tanganyika:An Example of Organic Sedimentation in an Anoxic Rift Lake.In:Katz, B.J., ed., Lacustrine Basin Exploration, Case Studies and Modern Analogs.AAPG Memoir, 50:169-185. http://archives.datapages.com/data/specpubs/basinar3/data/a133/a133/0001/0150/0169.htm?q=%2BtextStrip%3Asumatra+textStrip%3Asequence+textStrip%3Astratigraphy [18] Jia, J.L., Liu, Z.J., Bechtel, A., et al., 2013.Tectonic and Climate Control of Oil Shale Deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China).International Journal of Earth Sciences, 102(6):1717-1734.doi: 10.1007/s00531-013-0903-7 [19] Jiang, H.C., Guo, G.X., Cai, X.M., et al., 2016.Geochemical Evidence of Windblown Origin of the Late Cenozoic Lacustrine Sediments in Beijing and Implications for Weathering and Climate Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 446:32-43.doi: 10.1016/j.palaeo.2016.01.017 [20] Jiang, Z.X., Chen, D.Z., Qiu, L.W., et al., 2007.Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China.Sedimentology, 54(2):265-292.doi: 10.1111/j.1365-3091.2006.00834.x [21] Jiang, Z.X., Guo, L., Liang, C., 2013.Lithofacies and Sedimentary Characteristics of the Silurian Longmaxi Shale in the Southeastern Sichuan Basin, China.Journal of Palaeogeography, 2(3):238-251.doi.org/10.3724/SP.J.1261.2013.00029 http://www.journalofpalaeogeography.org/fileup/PDF/2013-3-238.pdf [22] Katz, B.J., 2005.Controlling Factors on Source Rock Development—A Review of Productivity, Preservation, and Sedimentation Rate.In:Harris, N.B., ed., Deposition of Organic-Carbon-Rich Sediments:Models, Mechanisms, and Consequences.SEPM, Tulsa.doi:10.2110/pec.05.82.0007 [23] Könitzer, S.F., Davies, S.J., Stephenson, M.H., et al., 2014.Depositional Controls on Mudstone Lithofacies in a Basinal Setting:Implications for the Delivery of Sedimentary Organic Matter.Journal of Sedimentary Research, 84(3):198-214.doi: 10.2110/jsr.2014.18 [24] Lazar, O.R., Bohacs, K.M., Macquaker, J.H.S., et al., 2015.Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections:Nomenclature and Description Guidelines.Journal of Sedimentary Research, 85(3):230-246.doi: 10.2110/jsr.2015.11 [25] Li, G., Wang, Y., Lu, Z., et al., 2014.Geobiological Processes of the Formation of Lacustrine Source Rock in Paleogene.Science China Earth Sciences, 57(5):976-987. doi: 10.1007/s11430-013-4753-8 [26] Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China.Earth Science, 40(9):1480-1496 (in Chinese with English abstract). https://www.researchgate.net/publication/283873592_Major_and_trace_elements_geochemistry_and_geological_implications_of_dolomite-bearing_mudstones_in_lower_part_of_Shahejie_Formation_in_Tanggu_Area_Eastern_China [27] Li, S.M., Pang, X.Q., Li, M.W., et al., 2003.Geochemistry of Petroleum Systems in the Niuzhuang South Slope of Bohai Bay Basin—Part 1:Source Rock Characterization.Organic Geochemistry, 34(3):389-412.doi: 10.1016/s0146-6380(02)00210-3 [28] Liang, C., Jiang, Z.X., Yang, Y.T., et al., 2012.Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin.Petroleum Exploration and Development, 39(6):691-698 (in Chinese with English abstract). https://www.researchgate.net/publication/316831049_Characteristics_of_shale_lithofacies_and_reservoir_space_of_the_Wufeng-Longmaxi_Formation_Sichuan_Basin [29] Lindqvist, J.K., Lee, D.E., 2009.High-Frequency Paleoclimate Signals from Foulden Maar, Waipiata Volcanic Field, Southern New Zealand:An Early Miocene Varved Lacustrine Diatomite Deposit.Sedimentary Geology, 222(1-2):98-110.doi: 10.1016/j.sedgeo.2009.07.009 [30] Liu, C.L., Wang, P.X., 2013.The Role of Algal Blooms in the Formation of Lacustrine Petroleum Source Rocks—Evidence from Jiyang Depression, Bohai Gulf Rift Basin, Eastern China.Palaeogeography, Palaeoclimatology, Palaeoecology, 388:15-22.doi: 10.1016/j.palaeo.2013.07.024 [31] Liu, S.G., Ma, W.X., Jansa, L.B., et al., 2011.Characteristics of the Shale Gas Reservoir Rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China.Acta Petrologica Sinica, 27(8):2239-2252 (in Chinese with English abstract). https://www.researchgate.net/publication/312371176_Characteristics_of_the_shale_gas_reservoir_rocks_in_the_Lower_Silurian_Longmaxi_Formation_East_Sichuan_basin_China [32] Loftus, G.W.F., Greensmith, J.T., 1988.The Lacustrine Burdiehouse Limestone Formation—A Key to the Deposition of the Dinantian Oil Shales of Scotland.Geological Society, London, Special Publications, 40(1):219-234.doi: 10.1144/gsl.sp.1988.040.01.19 [33] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059 [34] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016a.Climate-Driven Paleolimnological Change Controls Lacustrine Mudstone Depositional Process and Organic Matter Accumulation:Constraints from Lithofacies and Geochemical Studies in the Zhanhua Depression, Eastern China.International Journal of Coal Geology, 167:103-118.doi: 10.1016/j.coal.2016.09.014 [35] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016b.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-309.doi: 10.1016/j.marpetgeo.2016.04.024 [36] Mitra, A., Warrington, D.S., Sommer, A., 2010.Application of Lithofacies Models to Characterize Unconventional Shale Gas Reservoirs and Identify Optimal Completion Intervals.Proceedings of SPE Western Regional Meeting, in Anaheim, California, U.S.A. [37] Pietras, J.T., Carroll, A.R., 2006.High-Resolution Stratigraphy of an Underfilled Lake Basin:Wilkins Peak Member, Eocene Green River Formation, Wyoming, U.S.A..Journal of Sedimentary Research, 76(11):1197-1214.doi: 10.2110/jsr.2006.096 [38] Schieber, J., 1989.Facies and Origin of Shales from the Mid-Proterozoic Newland Formation, Belt Basin, Montana, USA.Sedimentology, 36(2):203-219.doi: 10.1111/j.1365-3091.1989.tb00603.x [39] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145 [40] Slatt, R.M., Rodriguez, N.D., 2012.Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales:Commonality or Coincidence?Journal of Natural Gas Science and Engineering, 8:68-84.doi:10.1016/j.jngse.2012.01.008 [41] Sun, P.C., Sachsenhofer, R.F., Liu, Z.J., et al., 2013.Organic Matter Accumulation in the Oil Shale-And Coal-Bearing Huadian Basin (Eocene; NE China).International Journal of Coal Geology, 105:1-15.doi: 10.1016/j.coal.2012.11.009 [42] Surdam, R.C., Stanley, K.O., 1979.Lacustrine Sedimentation during the Culminating Phase of Eocene Lake Gosiute, Wyoming (Green River Formation).Geological Society of America Bulletin, 90(1):93-110.doi:10.1130/0016-7606(1979)90<93:lsdtcp>2.0.co; 2 [43] Talbot, M.R., 1988.The Origins of Lacustrine Oil Source Rocks:Evidence from the Lakes of Tropical Africa.Geological Society, London, Special Publications, 40(1):29-43.doi: 10.1144/gsl.sp.1988.040.01.04 [44] Tänavsuu-Milkeviciene, K., Sarg, J.F., 2012.Evolution of an Organic-Rich Lake Basin-Stratigraphy, Climate and Tectonics:Piceance Creek Basin, Eocene Green River Formation.Sedimentology, 59(6):1735-1768.doi: 10.1111/j.1365-3091.2012.01324.x [45] Wang, D.D., Li, Z.X., Lü, D.W., et al., 2016.Coal and Oil Shale Paragenetic Assemblage and Sequence Stratigraphic Features in Continental Faulted Basin.Earth Science, 41(3):508-522 (in Chinese with English abstract). [46] Wang, G.C., Carr, T.R., 2012.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers & Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011 [47] Wang, G.M., 2012.Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression.Journal of Jilin University (Earth Science Edition), 42(3):666-671, 680 (in Chinese with English abstract). https://www.researchgate.net/publication/287907461_Laminae_combination_and_genetic_classification_of_eogene_Shale_in_Jiyang_depression [48] Wang, G.M., Ren, Y.J., Zhong, J.H., et al., 2005.Genetic Analysis on Lamellar Calcite Veins in Paleogene Black Shale of the Jiyang Depression.Acta Geologica Sinica, 79(6):834-838 (in Chinese with English abstract). https://www.researchgate.net/publication/283763883_Combination_characteristics_of_lake_facies_source_rock_in_the_Shahejie_formation_Dongying_depression [49] Wang, J.D., Li, S.Z., Santosh, M., et al., 2013.Lacustrine Turbidites in the Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, North China Craton.Geological Journal, 48(5):561-578.doi: 10.1002/gj.2517 [50] Wei, Z.F., Zou, Y.R., Cai, Y.L., et al., 2012.Kinetics of Oil Group-Type Generation and Expulsion:An Integrated Application to Dongying Depression, Bohai Bay Basin, China.Organic Geochemistry, 52:1-12.doi: 10.1016/j.orggeochem.2012.08.006 [51] Wu, J., Jiang, Z.X., Qian, K., et al., 2014.Characteristics of Salinization Mechanism on the Upper Part of Fourth Member of Shahejie Formation in the Dongying Sag, Shandong Province.Acta Geoscientica Sinica, 35(6):733-740 (in Chinese with English abstract). [52] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, (11):1810-1823 (in Chinese with English abstract). [53] Xie, X.M., Li, M.W., Littke, R., et al., 2016.Petrographic and Geochemical Characterization of Microfacies in a Lacustrine Shale Oil System in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, Eastern China.International Journal of Coal Geology, 165:49-63.doi: 10.1016/j.coal.2016.07.004 [54] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://www.researchgate.net/publication/305417638_A_new_method_for_microscopic_pore_structure_analysis_in_shale_matrix [55] Zhang, J.G., Jiang, Z.X., Jiang, X.L., et al., 2016.Oil Generation Induces Sparry Calcite Formation in Lacustrine Mudrock, Eocene of East China.Marine and Petroleum Geology, 71:344-359.doi: 10.1016/j.marpetgeo.2016.01.007 [56] Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristic and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833. https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales [57] Zhang, L.Y., Liu, Q., Zhu, R.F., et al., 2009.Source Rocks in Mesozoic-Cenozoic Continental Rift Basins, East China:A Case from Dongying Depression, Bohai Bay Basin.Organic Geochemistry, 40(2):229-242.doi: 10.1016/j.orggeochem.2008.10.013 [58] Zhang, S., Chen, S.Y., Yan, J.H., et al., 2015.Characteristics of Shale Lithofacies and Reservoir Space in the 3rd and 4th Members of Shahejie Formation, the West of Dongying Sag.Natural Gas Geoscience, 26(2):320-332 (in Chinese with English abstract). https://www.researchgate.net/publication/313359092_Identification_of_sedimentary-diagenetic_facies_and_reservoir_porosity_and_permeability_prediction_An_example_from_the_Eocene_beach-bar_sandstone_in_the_Dongying_Depression_China [59] 杜学斌, 刘辉, 刘惠民, 等, 2016.细粒沉积物层序地层划分方法初探:以东营凹陷樊页1井沙三下-沙四上亚段泥页岩为例.地质科技情报, 35(4): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604002.htm [60] 李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9): 1480-1496. http://www.earth-science.net/WebPage/Article.aspx?id=3152 [61] 梁超, 姜在兴, 杨镱婷, 等, 2012.四川盆地五峰组-龙马溪组页岩岩相及储集空间特征.石油勘探与开发, 39(6): 691-698. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm [62] 刘树根, 马文辛, Jansa, L. B., 等, 2011.四川盆地东部地区下志留统龙马溪组页岩储层特征.岩石学报, 27(8): 2239-2252. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108003.htm [63] 王东东, 李增学, 吕大炜, 等, 2016.陆相断陷盆地煤与油页岩共生组合及其层序地层特征.地球科学, 41(3): 508-522. http://www.earth-science.net/WebPage/Article.aspx?id=3266 [64] 王冠民, 2012.济阳坳陷古近系页岩的纹层组合及成因分类.吉林大学学报(地球科学版), 42(3): 666-671, 680. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203010.htm [65] 王冠民, 任拥军, 钟建华, 等, 2005.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨.地质学报, 79(6): 834-838. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200506023.htm [66] 吴靖, 姜在兴, 钱侃, 等, 2014.山东省东营凹陷沙四上亚段咸化机制特征.地球学报, 35(6): 733-740. doi: 10.3975/cagsb.2014.06.09 [67] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188 [68] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067 [69] 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189 [70] 张顺, 陈世悦, 鄢继华, 等, 2015.东营凹陷西部沙三下亚段-沙四上亚段泥页岩岩相及储层特征.天然气地球科学, 26(2): 320-332. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201703016.htm