Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing
-
摘要: 中国南方下寒武统牛蹄塘组页岩是目前页岩气勘探的主要目的层位之一,然而在渝东北地区其勘探效果不尽如人意,原因在于其孔隙结构特征并未清楚.采用聚焦离子束扫描电子显微镜、纳米C和气体吸附实验等方法对渝东北地区下寒武统牛蹄塘组页岩微纳米孔隙结构进行了定量表征.结果表明,牛蹄塘组页岩的微纳米孔隙类型主要为无机质孔隙,包括粒间孔和粒内孔,而N2吸附滞后环类型属于4型,对应孔隙类型为单边狭缝型孔隙;牛蹄塘组页岩的平均总孔体积为0.0317mL/g,平均总比表面积为34.7m2/g.牛蹄塘组页岩过高的演化程度导致有机质孔隙不发育,进而导致其微纳米孔隙具有较差的连通性;中孔贡献了绝大部分的孔体积,而微孔则贡献了相对较多的比表面积.Abstract: Lower Cambrian Niututang Formation shale in south China is one of the main target zones for shale gas exploration. However, the exploration of shale in northeastern Chongqing is not satisfactory as the pore structure of the shale is unclear. This study examined pores in shale samples from the Niutitang Formation using focused ion-beam scanning electron microscopy, nano-CT, and gas adsorption analysis. Results show that pores in Niutitang shale are rare and have small diameters and poor connectivity. Most Niutitang-shale pores are inorganic pores, including intraparticle and intergranular pores. N2 adsorption hysteresis loop of Niutitang shale belongs to type H4 corresponding to narrow slit pore. The average total pore volume of the Niutitang shale is 0.0317mL/g, and the average total surface area is 34.57m2/g. Over-high thermal evolution degree resulting small number of organic pores and poor connectivity of micro-nano pores in Niutitang shale. Mesopores contributed most of the pore volume and micropores contributed more pore surface area than that of mesopores.
-
Key words:
- northeast Chongqing /
- lower Cambrian /
- the Niutitang shale /
- pore structure /
- petroleum geology
-
表 1 牛蹄塘组页岩微-中孔体积和比表面积
Table 1. Micro-meso pores volume and surface area of the Niutitang shale
样品 微孔体积(mL/g) 微孔比表面积(m2/g) 中孔体积(mL/g) 中孔比表面积(m2/g) 总孔体积(mL/g) 总孔比表面积(m2/g) CQ1-1 0.004 9 14.51 0.036 8 22.86 0.041 7 37.37 CO1-2 0.004 8 14.89 0.020 6 12.14 0.025 4 27.03 CQ1-3 0.003 0 8.10 0.015 6 10.16 0.018 6 18.26 CQ2-1 0.007 9 24.61 0.021 0 11.60 0.028 9 36.21 CQ2-2 0.006 3 18.80 0.032 0 21.26 0.038 3 40.07 CQ2-3 0.005 0 15.69 0.027 4 14.57 0.032 5 30.25 CQ3-1 0.010 1 29.77 0.031 3 22.90 0.041 4 52.67 CQ3-2 0.006 3 18.74 0.016 0 10.32 0.022 3 29.06 CQ3-3 0.007 3 21.11 0.028 9 19.14 0.036 3 40.25 平均 0.006 2 18.47 0.025 5 16.11 0.031 7 34.57 表 2 牛蹄塘组页岩微-中孔的体积和比表面积占比
Table 2. Proportion of micro-meso pores volume and surface area of the Niutitang shale
样品 微孔体积占比(%) 微孔比表面积占比(%) 中孔体积占比(%) 中孔比表面积占比(%) CQ1-1 11.79 38.83 88.21 61.17 CQ1-2 18.86 55.10 81.14 44.90 CQ1-3 16.06 44.35 83.94 55.65 CQ2-1 27.35 67.96 72.65 32.04 CQ2-2 16.38 46.93 83.62 53.07 CQ2-3 15.52 51.85 84.48 48.15 CQ3-1 24.35 56.52 75.65 43.48 CQ3-2 28.22 64.49 71.78 35.51 CQ3-3 20.17 52.44 79.83 47.56 平均 19.49 53.42 80.51 46.58 -
[1] Chen, Y.Y., Wei, L., Mastalerz, M., et al., 2015.The Effect of Analytical Particle Size on Gas Adsorption Porosimetry of Shale.International Journal of Coal Geology, 138:103-112.doi: 10.1016/j.coal.2014.12.012 [2] Clarkson, C.R., Solano, N., Bustin, R.M., et al., 2013.Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion.Fuel, 103:606-616.doi: 10.1016/j.fuel.2012.06.119 [3] Guo, X.J., Shen, Y.H., He, S.L., 2015.Quantitative Pore Characterization and the Relationship between Pore Distributions and Organic Matter in Shale Based on Nano-CT Image Analysis:A Case Study for a Lacustrine Shale Reservoir in the Triassic Chang 7 Member, Ordos Basin, China.Journal of Natural Gas Science and Engineering, 27:1630-1640.doi: 10.1016/j.jngse.2015.10.033 [4] Han, S.B., Zhang, J.C., Horsfield, B., et al., 2013.Pore Types and Characteristics of Shale Gas Reservoir:A Case Study of Lower Paleozoic Shale in Southeast Chongqing.Earth Science Frontiers, 20(3):247-253 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201303030.htm [5] Hou, Y.G., He, S., Yi, J.Z., et al., 2014.Effect of Pore Structure on Methane Sorption Potential of Shales.Petroleum Exploration and Development, 41(2):248-256 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380414600331 [6] Hu, M.Y., Deng, Q.J., Hu, Z.G., 2014.Shale Gas Accumulation Conditions of the Lower Cambrian Niutitang Formation in Upper Yangtze Region.Oil & Gas Geology, 35(2):272-279 (in Chinese with English abstract). https://www.researchgate.net/publication/287676506_Shale_gas_accumulation_conditions_of_the_Lower_Cambrian_Niutitang_Formation_in_Upper_Yangtze_region [7] Ji, W.M., Song, Y., Jiang, Z.X, et al., 2016.Micro-Nano Pore Structure Characteristics and Its Control Factors of Shale in Longmaxi Formation, Southeastern Sichuan Basin.Acta Petrolei Sinica, 37(2):182-195 (in Chinese with English abstract). [8] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development.Petroleum Exploration and Development, 39(2):129-136 (in Chinese with English abstract). http://www.jstor.org/stable/3724534 [9] Jiao, K., Yao, S.P., Liu, C., et al., 2014.The Characterization and Quantitative Analysis of Nanopores in Unconventional Gas Reservoirs Utilizing FESEM-FIB and Image Processing:An Example from the Lower Silurian Longmaxi Shale, Upper Yangtze Region, China.International Journal of Coal Geology, 128:1-11.doi: 10.1016/j.coal.2014.03.004 [10] Jiao, S.J., Han, H., Weng, Q.P., et al., 2012.Scanning Electron Microscope Analysis of Porosity in Shale.Journal of Chinese Electron Microscopy Society, 31(5):432-436 (in Chinese with English abstract). http://trove.nla.gov.au/work/205288785 [11] Lin, T., Zhang, J.C., Li, B., et al., 2014.Shale Gas Accumulation Conditions and Gas-Bearing Properties of the Lower Cambrian Niutitang Formation in Well Changye 1, Northwestern Hunan.Acta Petrolei Sinica, 35(5):839-846 (in Chinese with English abstract). https://www.researchgate.net/publication/287757398_Shale_gas_accumulation_conditions_and_gas-bearing_properties_of_the_Lower_Cambrian_Niutitang_Formation_in_Well_Changye_1_northwestern_Hunan?ev=auth_pub [12] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861.doi: 10.2110/jsr.2009.092 [13] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.doi: 10.1306/08171111061 [14] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059 [15] Milliken, K.L., Rudnicki, M., Awwiller, D.N., et al., 2013.Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania.AAPG Bulletin, 97(2):177-200.doi: 10.1306/07231212048 [16] Slatt, R.M., O'Brien, N.R., 2011.Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks.AAPG Bulletin, 95(12):2017-2030.doi: 10.1306/03301110145 [17] Tan, J.Q., Horsfield, B., Mahlstedt, N., et al., 2015.Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part Ⅰ:Geological and Geochemical Characterization.International Geology Review, 57(3):1-22.doi: org/10.1080/00206814.2015.1004200. [18] Tan, J.Q., Weniger, P., Krooss, B., et al., 2014.Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part Ⅱ:Methane Sorption Capacity.Fuel, 129:204-218.doi: 10.1016/j.fuel.2014.03.064 [19] Tian, H., Pan, L., Xiao, X.M., et al., 2013.A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods.Marine and Petroleum Geology, 48:8-19.doi:org/ 10.1016/j.marpetgeo.2013.07.008 [20] Tian, H., Pan, L., Zhang, T.W., et al., 2015.Pore Characterization of Organic-Rich Lower Cambrian Shales in Qiannan Depression of Guizhou Province, Southwestern China.Marine and Petroleum Geology, 62:28-43.doi: 10.1016/j.marpetgeo.2015.01.004 [21] Wang, P.F., Jiang, Z.X., Ji, W.M., et al., 2016.Heterogeneity of Intergranular, Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin, South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries.Marine and Petroleum Geology, 72:122-138.doi: 10.1016/j.marpetgeo.2016.01.020 [22] Wu, C.J., Zhang, M.F., Ma, W.Y., et al., 2014.Organic Matter Characteristic and Sedimentary Environment of the Lower Cambrian Niutitang Shale in Southeastern Chongqing.Nature Gas Geosciences, 25(8):1267-1274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201408019.htm [23] Wu, K., Ma, Q.F., Feng, Q.L., 2012.Middle Permian Pore Characteristics and Shale Gas Exploration Significance from the Gufeng Formation in Jianshi, Western Hubei.Earth Science, 37(Suppl.2):175-183 (in Chinese with English abstract). [24] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). [25] Xiao, Z.H., Wang, C.H., Yang, R.F., et al., 2013.Reservoir Conditions of Shale Gas in the Lower Cambrian Niutitang Formation, Northwestern Hunan.Acta Geologica Sinica, 87(10):1612-1623 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201310010.htm [26] Yang, F., Ning, Z.F., Zhang, S.D., et al., 2013.Characterization of Pore Structures in Shales through Nitrogen Adsorption Experiment.Natural Gas Industry, 33(4):135-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201304031.htm [27] Yang, X., Jiang, Z.X., Song, Y., et al., 2016.A Comparative Study on Whole-Aperture Pore Structure Characteristics between Niutitang and Longmaxi Formation of High-Matruity Marine Shales in Southeastern Chongqing.Geological Journal of China Universities, 22(2):368-377 (in Chinese with English abstract). [28] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). [29] Yu, B.S., 2013.Classification and Characterization of Gas Shale Pore System.Earth Science Frontiers, 20(4):211-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201304020.htm [30] Yuan, Y., Jiang, Z.H., Yu, C., et al., 2016.Reservoir Characteristics of High Abundance and Low Thermal Stage Lacustrine Shale:An Example from the Middle Jurassic Shale in the Northern Qaidam Basin.Acta Geologica Sinica, 90(3):541-552 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201603011.htm [31] Zhang, H., Shao, L., Zhang, G.C., et al., 2015.Distribution and Petroleum Geologic Significance of Eocene Marine Strata in the South China Sea.Earth Science, 40(4):660-670 (in Chinese with English abstract). https://www.researchgate.net/publication/281993837_Distribution_and_petroleum_geologic_significance_of_eocene_Marine_strata_in_the_South_China_Sea [32] Zhang, L.Y., Li, J.Y., Li, Z., 2015.Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Acustrine Shales.Earth Science, 40 (11):1824-1833 (in Chinese with English abstract). https://www.researchgate.net/publication/288230302_Development_characteristics_and_formation_mechanism_of_intra-organic_reservoir_space_in_lacustrine_shales [33] Zheng, L.J., Guan, D.F., Guo, X.W., et al., 2015.Key Geological Conditions Affecting Pyrolysis Experiments of Marine Source Rocks for Hydrocarbon Generation.Earth Science, 40(5):909-917 (in Chinese with English abstract). https://www.researchgate.net/publication/281687728_Key_geological_conditions_affecting_pyrolysis_experiments_of_marine_source_rocks_for_hydrocarbon_generation [34] 韩双彪, 张金川, Horsfield, B., 等, 2013.页岩气储层孔隙类型及特征研究:以渝东南下古生界为例.地学前缘, 20(3): 247-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303030.htm [35] 侯宇光, 何生, 易积正, 等, 2014.页岩孔隙结构对甲烷吸附能力的影响.石油勘探与开发, 41(2): 248-256. doi: 10.11698/PED.2014.02.17 [36] 胡明毅, 邓庆杰, 胡忠贵, 2014.上扬子地区下寒武统牛蹄塘组页岩气成藏条件.石油与天然气地质, 35(2): 272-279. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402018.htm [37] 纪文明, 宋岩, 姜振学, 等, 2016.四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素.石油学报, 37(02): 182-195. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm [38] 贾承造, 郑民, 张永峰, 2012.中国非常规油气资源与勘探开发前景.石油勘探与开发, 39(2): 129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm [39] 焦淑静, 韩辉, 翁庆萍, 等, 2012.页岩孔隙结构扫描电镜分析方法研究.电子显微学报, 31(5): 432-436. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJS201607150.htm [40] 林拓, 张金川, 李博, 等, 2014.湘西北常页1井下寒武统牛蹄塘组页岩气聚集条件及含气特征.石油学报, 35(5): 839-846. doi: 10.7623/syxb201405003 [41] 吴陈君, 张明峰, 马万云, 等, 2014.渝东南牛蹄塘组页岩有机质特征及沉积环境研究.天然气地球科学, 25(8): 1267-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408019.htm [42] 吴勘, 马强分, 冯庆来, 2012.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义.地球科学, 37(增刊2): 175-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S2024.htm [43] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188 [44] 肖正辉, 王朝晖, 杨荣丰, 等, 2013.湘西北下寒武统牛蹄塘组页岩气储集条件研究.地质学报, 87(10): 1612-1623. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310010.htm [45] 杨峰, 宁正福, 张世栋, 等, 2013.基于氮气吸附实验的页岩孔隙结构表征.天然气工业, 33(4): 135-140. doi: 10.3787/j.issn.1000-0976.2013.04.025 [46] 杨潇, 姜振学, 宋岩, 等, 2016.渝东南牛蹄塘组与龙马溪组高演化海相页岩全孔径孔隙结构特征对比研究.高校地质学报, 22(2): 368-377. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201602017.htm [47] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067 [48] 于炳松, 2013.页岩气储层孔隙分类与表征.地学前缘, 20(4): 211-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304020.htm [49] 原园, 姜振学, 喻宸, 等, 2016.高丰度低演化程度湖相页岩储层特征——以柴达木盆地北缘中侏罗统为例.地质学报, 90(3): 541-552. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201603011.htm [50] 张浩, 邵磊, 张功成, 等, 2015.海始新世海相地层分布及油气地质意义.地球科学, 40(4): 660-670. http://www.earth-science.net/WebPage/Article.aspx?id=3076 [51] 张林晔, 李钜源, 李政, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40(11): 1824-1833. http://www.earth-science.net/WebPage/Article.aspx?id=3189 [52] 郑伦举, 关德范, 郭小文, 等, 2015.影响海相烃源岩热解生烃过程的地质条件.地球科学, 40(5): 909-917. http://www.earth-science.net/WebPage/Article.aspx?id=3091